
DOI: 10.4018/IJOCI.322767

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

A Unified Architecture Framework 
Supporting SoS’s Development:
Case of the Aircraft Emergency 
Response System-of-Systems
Charaf Eddine Dridi, University Constantine 2, Algeria*

 https://orcid.org/0000-0001-5724-8187

Zakaria Benzadri, University Constantine 2, Algeria

Faiza Belala, University Constantine 2, Algeria

 https://orcid.org/0000-0002-4563-4061

ABSTRACT

The engineering of systems-of-systems (SoSs) is a critical issue that requires the definition of multiple 
viewpoints that are dedicated to various concerns of stakeholders. To address this challenge, this article 
contributes to the definition of a reusable framework handling the design of SoSs’ architectures by 
adopting a conceptual model of architecture framework ‘ISO42010.’ The proposed framework extends 
this standard by using well-defined software development processes to identify and implement the 
different architectural viewpoints. Besides, these processes are used in a way to take advantage of 
managing a set of diagrams given by a UML profile, and then, to verify that the parts of the architecture 
form a consistent whole. In this context, the authors define four main viewpoints dedicated to the 
various stakeholders and which are essential to allow them to implement different SoSs. To guide the 
coordination of the development tasks, this framework provides again a development processes model 
that allows the stakeholders to explicitly design the viewpoint they want using an SoS-UML profile.

KEywORDS
IEEE 42010, Multi-Viewpoints Architecture Framework, SoS, SoSE process, SoS-UML Profile

1. INTRODUCTION

In recent years, SoSs have experienced an increasing evolution and interest from the computer science 
community. SoSs are not designed in a top-down way, they have been designed to integrate multiple 
independent functional systems into a larger system in several important application domains. However, 
these Constituent-Systems (CSs) are becoming larger, more complex, and difficult to develop as well. 
Examples of these large-scale systems can be found in several fields such as Robotics, Avionics, 

https://orcid.org/0000-0001-5724-8187
https://orcid.org/0000-0002-4563-4061


International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

2

Military, Intelligent systems (Smart-Grids, Smart-Cities, Smart-Homes, etc.). An SoS is characterized 
by offering new functionalities to users that cannot be offered by its CSs, but emerging from their 
combination. The CSs making up an SoS are independent, geographically distributed, developed 
with different technologies and intended for several platforms.

As SoSs get more and more complex, engineers need to pay a lot of attention to early-stage 
design decisions rather than focusing on implementation and writing code. This will facilitate the 
process of developing such large-scale systems. Additionally, Architecture Frameworks are a recent 
discipline in Software Engineering (SE) that consider Architectural Viewpoints as first-class entities 
in software development. The viewpoints have become the major paradigm in which the SE will be 
able to open a door to the development representation and provide a new way of designing systems. 
In the context of SoSs, we argue that our architecture framework encompassing the knowledge on 
how to design SoSs would ease the application of this process and, consequently, produce an SoS of 
higher quality. A single comprehensive viewpoint of an SoS’ architecture is often too complex to be 
understood and communicated in its most detailed form, showing all the relationships between the 
various business, structural and behavioral aspects. Therefore, we are seeking to represent by means 
of one or more architecture viewpoints that together can provide a unified AF of SoS’ architecture.

1.1 Context and Problematic
The field of SoSs comes up against constraints during the engineering process. The difficulty of 
modeling SoSs lies in the complexity resulting from the interaction, cooperation and collaboration 
of their heterogeneous CSs, which each have specific goals to accomplish, different roles to play, 
and they are not easily interoperable. Independent evolution and dynamic changes can cause these 
CSs to be- have differently. These changes can affect their interactions and communications within 
the SoS and consequently, it can derail the overall mission of the SoS. Architecting an SoS helps to 
understand how it works, as well as to master its complexity before its implementation.

In this new perspective, SoSs development does not follow the normal system development process. 
As SoSs’ capabilities are based on the contributions of the individual CSs, their interdependences make 
a document-centric development impractical as an exorbitant effort. The development processes refer 
to activities that can guide an SoS’ lifecycles from the system requirements level down to the software 
implementation level, and naturally, by coordinating the various processes for the development of a 
new system (Dridi et al., 2020).

From a SE perspective, design decisions made at the architectural level have a direct impact 
on the fulfillment of functional and quality requirements of SoSs development. At this stage, the 
SoS’ Stakeholders identify functional and non-functional characteristics through the use of their 
own theoretical backgrounds, notations and environments. In addition, the SoSs’ architectures are 
still created without the support of a systematic processes and traditional design approaches do not 
adequately support the creation of these types of systems due to their composed nature, their large-
scale, their decentralized control mechanism, their evolving environments, and their large number 
of stakeholders (Dridi et al., 2020).

1.2 Motivation and Objectives
To get a handle on this complexity, it is necessary to maintain consistency and coherence between 
the different viewpoints of different stakeholders, as well as the ability to reconcile and include all 
their viewpoints before proceeding to the various processes in the SoSE lifecycle. In this context, the 
paper introduces a Multi-viewpoints approach-based Architecture Framework, that is associated with 
a set of SoSE development processes and a UML profile dedicated to the SoSs that can facilitate and 
improve the design of SoSs’ architectures. The main contributions of this paper are:

• The proposal of an AF that encompasses the concepts proposed by “ISO/IEC/IEEE 42010:2011 
Systems and Software Engineering-Architecture description” to manage the complexity of SoSs’ 



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

3

architectures following a multi-viewpoint approach. However, the standard is a general Meta-
Model, therefore we have had to specialize according to SoSE’s context. Consequently, our 
specialization aims at specifying a set of SoSE processes necessary to have a semantic consistency 
between the different parts of the SoS’ architecture specified in the different viewpoints.

• Improving the potential of the AF by integrating systematic processes of developing SoSs’ 
architectures which can have a positive impact on the overall quality of the framework. The 
design of these processes is based on a consolidated Model-Based SoSE in which the involved 
processes can be seen as a sequence of connected and dependent activities. It should be noted 
that to our knowledge, there is no available SoSE process in the literature to support the design 
of IEEE 42010 standard.

• Defining an SoS-UML Profile to model a set of SoSs’ processes. The advantage of this profile 
is to provide a large number of models to separately capture, describe and organize each of the 
processes of different viewpoints. The proposed profile is a package of new stereotypes’ notations 
that are extended from existing UML2.0 elements. These new notations will complete the list of 
standard UML notations by modeling explicitly and appropriately all structural and behavioral 
aspects of SoSs.

• Demonstration of the work by designing an SoSs’ architecture of an “Aircraft Emergency Response 
System-of-Systems” (AERSoS). It is therefore the aim of the paper to show that a unified AF 
for SoSs’ architectures abstractions are needed.

1.3 Paper Structure
The remainder of this paper is organized as follows: in Section 2, we provide some prerequisites and 
backgrounds on SoSs and our related works. Section 3, we discuss different approaches adopted to 
design and analyze these systems. Section 4, gives a detailed description of the Multi-viewpoint-based 
architecture framework. In Section 5, we introduce a UML extension mechanism for modeling the 
SoS’s architectures, conducted by an illustrative case study. Finally, Section 6 concludes the paper 
and discusses possible future works.

2. PREREQUISITES

In general, the definition of an SoS is mainly based on the properties and application domains. Based 
on existing works (Maier et al., 1998) (ISO/IEC/IEEE 15288) (Department of Defense (DoD), 2004) 
(Cocks et al., 2006) (Kotov et al., 1997), we define an SoS as a set of distributed and complex CSs 
that interact in a network structure to create a large-scale system and perform a unified capability 
that cannot be provided by any of the CSs.

Moreover, the authors of (Maier et al., 1998) (Cocks et al., 2006) and others, highlight the five 
common characteristics which are: (1) operational independence of CSs, (2) managerial independence 
of CSs, (3) geographic distribution, (4) emergent behavior and (5) evolutionary development. These 
characteristics are the main distinguishing properties between SoSs and other types of systems. A 
system that does not have these characteristics cannot be considered an SoS (Dridi et al., 2020).

In addition, an SoS can take four different types. These types are primarily based on the 
governance, management complexity and the relationships among the CSs in the SoS. Therefore, 
every SoS can be recognized, treated and classified following one of the following four types of SoSs: 
Virtual, Collaborative, Acknowledged or Directed.

On the other hand, there is no doubt that today’s SoSs can be found everywhere and it is easy 
to see that their applications are increasingly covering a variety of domains. A wide range of studies 
has already addressed these domains: Transportation (DeLaurentis et al., 2005) (Gunes et al., 2014) 
(Nielsen et al., 2015) (Jamshidi et al., 2008), Healthcare (Wickramasinghe et al., 2007) (Gunes et al., 
2014), Military Defense (Lane et al., 2013) (Dahmann et al., 2015), Smart City (Assaad et al., 2016) 



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

4

(Aljohani et al., 2018), Smart Energy Grids (Gunes et al., 2014) (Assaad et al., 2016), Emergency 
Management and Response (Gunes et al., 2014). For more details about SoS’ characteristics, types 
and application domains, see (Dridi et al., 2020) (Dridi et al., 2020).

To validate our approach, an example of Aircraft Emergency Response System-of-Systems, 
abbreviated AERSoS, will be considered in order to clarify and concretize the basic elements and the 
contributions made by SoS-AF methodology. This case study was illustrated in (Dridi et al., 2020) 
to introduce the notion of Meta-Modeling in the SoSs context. We will adopt it here to encapsulate 
all the necessary notions in the SoS-AF.

As an illustrative example of an SoS, consider a collection of autonomous and interacted CSs 
tasked with the prevention of the aircraft from any accident or system failures. To achieve this 
Goal, AERSoS must be designed in such a way that the CSs can interact and perform a unique 
capability that cannot be provided by any of the CSs. Examples of the AERSoS’ CSs include an 
AircraftEmergenciesSoS, EmergencyResponseSoS, WarningSoS, EvacuationCS, TowerControlCS, 
EnginesProtectionCS, LandingCS, etc. see Figure 1.

Each CS of the AERSoS is a system that is specified by a set of entities, which are divided 
into three types. The first set represents the Roles describing the ideal behavior of CSs through the 
gathering of the required Capabilities to accomplish the AERSoS global-Goals, the second represents 
the Capabilities describing the functions provided by each CS in specific Roles to the wider needs 
of the AERSoS, and finally, the Goals, describing instances of the AERSoS’ Roles, that represents 
sub-Goals of each CS and Global-Goal of AERSoS.

In our previous work (Dridi et al., 2020), we have introduced a Meta-Model called MeMSoS (see 
Figure 2.). We have presented the main notions, concepts and entities constituting an SoS. MeMSoS 
emphasizes a vision-oriented on the hierarchical composition of CSs and highlights the importance 
of CS, Roles, Capabilities, Goals and Interactions, etc. (For further details, readers are encouraged 
to refer to (Dridi et al., 2020) and (Dridi et al., 2020)). The MeMSoS is based on the EMF “Eclipse 
Modelling Framework”, we used Ecore Modelling Language to specify the abstract syntax of the 
Meta-Model and carried out within Eclipse Sirius tool.

Figure 1. 
Aircraft emergency response system-of-systems (AERSoS)



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

5

In addition, MeMSoS supports a Platform-Independent Model (PIM) level. Therefore, it allows 
the designers to successively refine the PIM in terms of SoSs aspects and concepts. In this work, 
we consider the MeMSoS as our reference of concepts since it specifies the necessary concepts for 
SoSs description, identifies relations between their CSs and defines vocabulary to be mapped to 
SoS-UML Profile.

3. RELATED wORKS

SoSE standardization represents the process of designing, organizing, deploying, and integrating 
the capabilities of a mix of existing and complex systems to produce desirable results into an SoS. 
A large number of modeling approaches that address SoS architectural aspects were identified by 
recent works and the seven main classes are (Dridi et al., 2020): MDA, MD, SOA, Ontology, ADL, 
Bigraph and Hybrid.

The following presented works in this section describe a review of the contributions in SoS, SoSE 
and related subjects. Most of these points are collected from (Dridi et al., 2020):

• Model-Driven Architecture approaches: the aim of (Barbi et al., 2012) was to define an abstract 
view with all the possible information in the configuration and deployment processes. A meta-
model that represents several possible configurations was also produced. The authors of (El 
Hachem et al., 2016) have adopted an MDE approach to define a DSML that was used to model 
SoS security architectures. The authors of (Mori et al., 2016) have defined an SoS profile that 
extends on the SysML reference meta-model with specific language constructs. They have also 
introduced an extension of this work in (Mori et al., 2018). In the same direction, in our previous 
paper (Dridi et al., 2020), we have provided an MDA method that simplifies SoSs complexity 
by increasing their abstraction level.

• Model-Driven approaches: authors of (Gezgin et al., 2012) have proposed a formalism for 
relating basic SoS concepts by means of a UML class diagram. They have identified a set of 
basic concepts to describe a modelling approach for distributed collaborative SoSs. The goal of 
(Lane et al., 2013) was to show how SysML models can be used to support a set of needs that are 
essential for a SoS. In (Axelsson et al., 2019), the authors have investigated through a case study 
in the construction domain the interplay between SoS and CS architectures. The paper (Cherfa et 

Figure 2. 
Overview of the MeMSoS, from (Dridi et al., 2020)



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

6

al., 2018) has provided an approach to support design activities in the SoS development process. 
Another contribution (Dridi et al., 2023) where we provided a formal modeling approach which 
reduces the complexity of designing SoS temporal constraints, resources types, etc. We adopted 
an approach based on rewriting logic to provide a model for specifying resources consumption, 
and temporal behavior of SoSs.

• Services-Oriented Architecture approaches: the authors of (Vargas et al., 2018) have proposed 
an approach to assist the SE community during the integration among CSs of a SoS and to use 
it as a basis for the composition of Directed SoS. In (Chang et al., 2019a) the authors suggested 
a Business Integrity Modeling and Analysis (BIMA) framework to unify business integrity 
with performance using big data predictive analytics and business intelligence to provide risk 
analysis and optimization services for ESPR. The authors of (Braga et al., 2016) have proposed a 
service-based architecture, which they named MV-SoSA, that serves as a basis when composing 
new Mixed-type SoSs. The authors of (Kaur et al., 2013) have realized a modular reconfigurable 
SoS based on a platform of reusable distributed CSs integrated within a SOA. The paper (Chang 
et al., 2019b) demonstrates a Reuse Strategic Decision Pattern Framework (RSDPF) based on 
blending ANP and TOPSIS techniques, enabled by the OSM model with data analytics. The 
authors used a real financial service firms to demonstrate a successful use case.

• Ontology-based approaches: the authors of (Osmundson et al., 2006), have described a SE 
methodology using a UML-like representation of SoS. UML has assisted the authors to develop 
the required elements of SoS ontologies. The aim of this paper (Franzén et al., 2019), was to 
provide a method for approaching the first two levels “Needs and boundary conditions” and 
“SoS Capabilities” of the SoS-process and generating a SoS design space using ontology. The 
authors (Benali et al., 2014) have proposed an approach to build an SoS conceptual model and 
a foundational ontology adapted from DOLCE to depict SoS interoperability context (Yang et 
al., 2019). The authors of (Ormrod et al., 2015) have proposed an SoS cyber effects ontology 
that outlines the requirements for a series of ontologies necessary to model the SoS effects of 
cyber-attacks.

• Architecture Description Language: this approach (Seghiri et al., 2018) suggests a Maude-
based formal and executable model where communications and relationships architecture is 
well defined. The authors of (Oquendo et al., 2016) have presented SosADL, an ADL based on 
a π-Calculus with Concurrent Constraints specially designed for describing SoS architectures. 
The extended work (Oquendo et al., 2016) enables the description of evolutionary architectures, 
which maintain emergent behavior supporting dynamic reconfigurations. And in (Oquendo et al., 
2016), they have focused on the description of SoS architecture to support automated verification.

• Bigraph-based approaches: in (Gassara et al., 2017), the authors have proposed a novel 
methodology based on the formal technique of BRS with an inspiring vision from multi-scale 
modeling. The authors of (Stary et al., 2016) and (Wachholder et al., 2014) have demonstrated 
how bigraph-based approaches can engage with SoS through abstract relationships that allow 
for dynamic interaction. In (Gassara et al., 2017), the authors have presented a tool for bigraph 
matching and transformation. They have implemented a solution based on an investigation 
of formal approach reaction rules that have been used to rewrite bigraphs for modeling and 
simulation of SoS.

• Hybrid approaches: in (Rao et al., 2008) where the authors have exploited different models and 
in particular executable models from SysML specifications. This work (Baek et al., 2018) has 
focused on developing a conceptual meta-model called M2SoS that represents SoS ontologies. 
The authors of (Zhang et al., 2012) have presented a hybrid modeling method based on service-
oriented and ontology-based modeling. The authors of (Hu et al., 2014), have presented an MDA 
for service-oriented SoS architecting, modeling and simulation. The authors of (Wang et al., 
2015), have used a hybrid approach with both Colored Petri Nets and Object Process Method 
modeling languages to create executable architecture models for SoSs.



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

7

Based on the previously mentioned approaches, we note that various modeling methods were 
adopted in the development lifecycle of SoSs; from the system, requirements level down to the software 
implementation level. The majority of the approaches have some advantages and disadvantages.i.e. 
all of them are only limited to dealing with some SoS concepts; namely, by taking into account the 
high-Level SoS requirements, understanding the CSs and their relationships and inter-dependencies, 
effective mission capability, etc.

Additionally, the adopted modeling methods come from a wide range of backgrounds, ranging 
from conceptual models to formal methods, hybrid methods, etc. The adopted modeling methods 
face several challenges: (1) some focus on describing the SoS as a whole, addressing structural 
organizations, ignoring how the CSs interaction; (2) others express the SoS at different levels of 
abstraction which is broad enough to cover the different aspects of SoS; (3) more still target the 
reasoning focusing less on detecting CSs behavior and how the goals and requirements change at 
runtime; (4) finally, and most importantly these approaches are not to mention a complete SoSE 
process. In fact, SoSE adopts a structured, main three-process engineering (Conceptual design and CSs 
selection, Architectural Design, and Integration and deployment) to develop projects from Analysis 
through Implementation that permits releasing an efficiently finished SoS, satisfying stakeholders 
and performs as required.

One possible solution for describing an SoSE and SoS architecture is to rely on standards such as 
ISO/IEC/IEEE 42010 (ISO/IEC/IEEE42010, 2011). However, in practice it is much too complicated 
to understand such standards, as they are considered too high-level to be used in practice, and also 
too complex to be easily understandable by the SoS designers. The proposal within this paper is to 
specify a framework named AF-SoS to satisfy the level of architectural maturity using ISO/IEC/
IEEE 42010 as context.

4. METHODOLOGy AND PRINCIPLES OF THE SOLUTION

The shortage of academic interest in the architectural standards of SoSs’ domain and the lack of 
a single unified consensus of processes involved in the SoSE lead to the absence of consolidated 
AF of these types of systems (Dridi et al., 2020). Besides, Creating and managing a coherent SoS 
architecture framework is clearly a complex task. Therefore, the main purpose of this work is to 
follow the roadmap that we previously have suggested in (Dridi et al., 2020) and define a Model-
Based SoSE methodology, allowing decision-makers to design informed architectural solutions for 
the most well-known SoSs challenges. To this end, an Architecture Framework called SoS-AF that 
describes this methodology is introduced in this paper, it supports the SoSs development and resolves 
the common issues encountered in the SoSE.

Figure 3. below summarizes the framework, it can depict four different phases:

• Initiation phase: describes the initiation methods and the architectural principles required to 
create our AF; namely, ISO Standard 42010, Model-Driven Approach (MDA), Unified Modeling 
Language (UML) profile and SoSE process model. This combination covers and connects 
different processes in a global framework. As well as it contains both the tools and the methods 
for constructing and managing SoSs architectures.

• Extension phase: permits to use an MDA-based Meta-Model that we developed in the previous 
work as a reference to obtain extended UML models. In particular, it proposes a UML Profile-
based modeling tool for SoSs called SoS-UML Profile. The latter provides a generic extension 
mechanism for building UML models in SoSs domain, and offer a way that reflects and refines 
the specifications of the new framework.

• Adaptation phase: permits obtaining global AF viewpoints of the SoS by incorporating the first 
two phases. On the one hand, It is essentially based on the adaptation of “ISO/IEC/IEEE42010 
standard: Systems and Software Engineering-Architecture Description” (ISO/IEC/IEEE42010, 



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

8

2011) to make it suitable to a Model-Based SoS Engineering context. And on the other hand, 
it highlights the adoption of SoSE processes and demonstrates how SoS-UML Profile can be 
leveraged to lead the production of SoSs architectures and to govern the involved stakeholders. The 
strength of this methodology lies in migrating SoSE processes from one architecture viewpoint 
to another and at the same time mitigating common concerns.

• Illustration phase: involves a set of examples to validate some of SoS-AF related properties. It 
demonstrates that this work can offer a consistent AF for an SoS’ case study (e.g. AERSoS). i.e. 
it represents a complete and more generic AERSoS-AF that is conducted throughout an orderly 
SoSE development processes.

The proposed SoS-AF will enable various stakeholders to separately design each process from 
different viewpoints. i.e. it gives a generic methodology to ensure that the resulting SoSs architecture 
models will also yield the desired expectations. Moreover, we argue that with this methodology and 
the SoS-UML profile-based model kind it provides, will offer a map to guide stakeholders towards 
achieving a unified SoS’ AF.

5. A MULTI-VIEwPOINTS APPROACH FOR THE SOS ENGINEERING

Architecture frameworks are mechanisms widely used in architecting. They establish a common 
practice for creating, interpreting, analyzing and using architecture descriptions within a particular 
domain of application or stakeholder community. As a result, their uses include, but are not limited 
to (May et al., 2011):

• Creating architecture descriptions.
• Developing architecture modeling tools and architecting methods.
• Establishing processes to facilitate communication, commitments and inter-operation across 

multiple projects and/or organizations.

Figure 3. 
Multi-Viewpoints Framework for SoSs’ Architectures



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

9

The idea is that an AF is a knowledge prefabricated structure that stakeholders can use to organize 
an architecture description into complementary views (Emery et al., 2009). The specification of an AF 
is one area of the standardization in ISO/IEC/IEEE42010:2011. This standard proposes a conceptual 
model to describe the terms and concepts pertaining to systems and architecture description. This 
standard specifies an AF as a composition of multiple Viewpoints (VPs), each VP can be used to 
address specific concerns of different Stakeholders (May et al., 2011).

We aim to extend this standard to offer a comprehensive guideline to define an SoS-AF. It is 
specified by enhancing the concepts of the AF description represented in the international standard 
with the essential processes that an SoS’ AF should encompass, as well as an SoS-UML Profile that 
identifies a set of Model Kind as a way to guide the SoS-AF construction (red rectangles in Figure 4.).

The proposed SoS-AF conforms to the standard IEEE 42010:2011 and its description is motivated 
by the different concerns commonly shared by SoSs’ stakeholders across various development processes. 
Therefore, to form a collection of architecture VPs that constitutes the body of our SoS-AF description, 
we provide a comprehensive UML profile-based modeling basis for the notion of SoSs that can guide 
the development of SoSE processes pertaining to the shared concerns of each involved Stakeholder.

Consequently, our SoS-AF model is introduced as a composition of a set of VPs, each VP is 
created through an aggregation of one or more SoSE processes. A SoSE process is governed by a 
set of Model Kind appropriate to specific concerns to be addressed by different Stakeholders. These 
Model kinds are specified by SoS UML Profile. i.e. SoS-UML profile defines a modeling tool that 
we develop to describe the associated Model kind that governs different SoSE processes and their 
underlying relations and dependencies. In the following, the SoS-AF, Concerns, Stakeholders, SoSE 
Process, VPs and Model Kinds are described.

5.1 Concerns
Concerns arise throughout the development life-cycle of SoSs, from the CSs knowledge level down 
to design and implementation level. A concern may appear in many forms, such as stakeholder 
relationships, SoSs’ global objectives, Capabilities, requirements, modeling constraints, CSs’ inter-
dependencies, Quality Attributes, design decisions or other issues that pertain to any influence on 
SoS in its environment. Through our previous studies (Dridi et al., 2020) (Dridi et al., 2020), we 
were able to extract these concerns by exploring multiple aspects related to SoSE; those concerns 
are framed in this study according to five SoSE processes as follows.

5.2 SoSE Processes
SoSE processes have a major stake in the SoS-AF and strong influence in its implementation. Our 
contribution consists in inspiring from the SoSE processes provided by (Arass et al., 2019) to guide 

Figure 4. 
An extended conceptual model of the SoS-AF (from (Dridi et al., 2022))



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

10

the SoSs lifecycle processes from CSs knowledge, to design and implementation. We propose to take 
inspiration from this work by modifying some elements to adapt it to our previous works.

SoSE processes express the activities engaged under SoSE from the perspective of one or more 
Stakeholders to frame specific Concerns, using the conventions established by its models. Each SoSE 
process will be identified by one or more governing Model Kind that adheres to the conventions of 
SoS UML Profile.

As shown in Figure 5. the main SoS development processes involved in our SoS-AF are:

• SoS Knowledge: addresses high-Level SoS requirements and investigates existing CSs that can 
participate in the SoS.

• Selection: this process consists of choosing a set of CSs and distinguishing their relevant 
Capabilities and Goals.

• Conceptual Design: the design involves creating a global vision of an SoS, defining the essential 
relationships and identifying mission capability assessment.

• Architectural Design: represents a global architecture for the SoS’ constituents and their possible 
Roles. It could be developed in parallel with the CSs Selection process.

• Interaction: the different CSs involved in an SoS usually have different Capabilities. Therefore, 
a large part of the software engineering effort in the SoSE is to design interactions so that the 
CSs can interoperate.

• Integration & deployment: this process implies that the different CSs involved in the SoS work 
together and interact through the assigned Roles. Deployment of the system consists of setting 
up the CSs interactions in the organizations concerned and making it operational.

5.3 Viewpoints
A viewpoint in SoS-AF is a selection of relevant aspects of the SoSE processes (and their Stakeholders’ 
concerns); and the representation of that part of an architecture that is expressed in different Model 
Kind. It is claimed that the SoSE processes form a necessary and sufficient set to meet the needs of 
SoS-AF. Four main VPs are identified in our proposed SoS-AF:

• Business viewpoint: the VP of Business includes the knowledge and requirement of CSs, and 
the creation of a rough draft of the SoS requirements including identification of the possible 
Capabilities, which could be derived from the existing CSs of the application domain.

• Analysis viewpoint: aims to analyze the problem and the addressed solution, it starts by selecting 
the appropriate CSs involved in providing the required SoS capabilities and then by building the 
conceptual design model, which will offer a global understanding of CSs, their relationships and 
inter-dependencies as part of the SoS.

• Design viewpoint: supports architects and designers in the design processes from initial sketch 
to detailed design. It can deal with the fundamental processes of an SoS development and the 
discipline of designing such architectures, CSs, Roles, and their collaborations.

Figure 5. 
The proposed SoSE development processes (Adapted from (Arass et al., 2019))



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

11

• Deployment viewpoint: is a process of merging two or more diverse Roles that are designed to 
define, control, and monitor complex interactions that extend across SoS and CSs boundaries.

5.4 Stakeholders
Stakeholders are inherently heterogeneous due to multiple users, their VPs, engineering processes, 
platforms, environments…etc. Stakeholders are individuals, groups or organizations holding Concerns 
for an SoS. They use SoS-AF Description to understand, analyze and compare SoS’ architectures. 
Each SoSs’ concern could be managed by one or more stakeholders; four main stakeholders have 
been identified in this framework:

• SoS Experts: a group of persons responsible for the Business VP establishment, with strong 
theoretical knowledge in an SoS application domain and they have the ability to understand 
the practical implications of the existing CSs that can participate in SoS and can translate SoS 
Capability Objectives into High-Level SoS Requirements.

• Architects and Designers: their role is vital to the success of both Analysis and Design VPS, they 
translate the requirements into a demand for CSs Capabilities. i.e. they look at business plans and 
requirements provided by SoS Experts, analyze the Goals and the Capabilities of the selected CSs, 
and propose recommendations on the right selection of CSs to achieve the SoS’ Global Goal.

• Collaboration Specialists: they are also Analysis and Design experts; they are responsible for 
understanding CSs and their Capabilities’ collaboration. They also look at integrations with 
existing CSs, interfaces with people and other systems.

• Interactions Engineers: persons responsible for the Deployment VP and they are responsible for 
specifying communication and interactions between different Roles. They oversee the CSs’ Capabilities 
and their Roles’ interactions to facilitate the interaction modeling within an SoS application.

5.5 Model kinds
The proposed SoS-AF must support the modeling of all the concepts and relationships of the SoSs 
entities, with their different static and dynamic aspects. Thus, we propose an “SoS-UML Profile 
for SoS-AF”. In Figure 6. we summarize the needed diagrams for each VP. The SoS-UML profile 
introduces a graphical construct to represent the requirements diagram and relate it to other Static 
and/or Behavior diagrams. The static diagrams include the Goals diagram, Domain model diagram 
and Constituent diagrams. The SoS behavior diagrams are represented by the Capabilities diagrams, 
Roles Interaction diagrams, Capabilities Collaboration diagrams and Roles Interfaces diagram.

The concrete syntax of SoS-UML profile is formulated to graphically represent a set of Model 
Kind using UML notation for each SoS aspect. This SoS-UML profile, its diagrams and all their 
associated concepts will be detailed in the next section.

Figure 6. 
SoS-UML Profile’s diagrams



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

12

6. SOS-UML PROFILE: UML EXTENSIONS FOR MODELING SOS-AF

SoS-AF is our proposed architecture framework to support the entire development of SoSs’ 
lifecycles, including its various processes from the requirements’ specification process, design, to the 
implementation process. Hence, the need for a tool allowing the definition of the overall architecture 
of SoSs, and also the definition of specific models for each involved process (such as UML models) 
is essential. For this reason, we present a UML2.0 extension tool, denoted SoS-UML profile, for the 
management of SoS’ architectures following the approach proposed in SoS-AF.

A key engineering problem then is to construct an Architecture Framework of the AERSoS 
(AERSoS-AF) based on the proposed AF-SoS, and this requires to:

• Create different VPs matching the VPs of SoS-AF at high-level abstraction,
• Take advantage of SoSE processes that can be used to manage the AERSoS,
• Use the SoS-UML Profile to abstract their analysis and design from implementation technologies, 

increase the automation of the development of AERSoS and allow VPs modeling.

To be able to specialize the UML for the SoSs domain, we needed to extend the MeMSoS to 
integrate new entities and constructions adapted to treat SoSs. Figure 7. shows the new version of 
MeMSoS (black rectangles: unchanged entities, green rectangle: updated entities and red rectangle: 
new entities). Consequently, MeMSoS’ will represent the definition of SoS-UML Profile below, and 
defines the available building elements and how they can be assembled.

The new version of MeMSoS offers better support of different VPs modeling, frames Stakeholders 
concerns and introduces new features. This new version provides all the mapping information required 
to automatically generate the SoS-UML profile with all the semantic expressiveness and precision. 
With the new extended abstract and corresponding concrete syntaxes of SoS-UML Profile, we are 
able to successfully reach high-level specification of aspects and address the cross-cutting concerns 
that depend on the Stakeholders’ VPs.

The proposed SoS-UML profile is a Meta-Model extension mechanism that allows stakeholders 
to add new elements of the MeMSoS Meta-Model, better suited to model particular systems as SoSs. 
Every existing element will be specialized by a stereotype and semantically equivalent to a new class 
of the MeMSoS which will bear the same name as the stereotype. In the following, we introduce 
new elements enriching UML 2.0 diagrams. These elements will make it possible to frame the main 
processes, aspects characterizing the notion of SoSs. As well as, we give a brief representation of 
the abstract syntax for the proposed profile.

To sum up, the figure bellow illustrates the AF that describes the proposed methodology. It can 
depict four different and complimentary parts:

• SoS-UML Profile, the proposed tool takes advantage of the MeMSoS model to frame the 
concepts, the characteristics and the structural and dynamic aspects of an SoS. The idea is that 
we consider the MeMSoS as our reference of concepts to map them to the UML Profile for SoSs, 
and implement the AF to introduce a set of model kind.

• To facilitate the task of designing and managing these diagrams, we used a customized set of 
SoSE development processes to support the specific parts of the architecture. the objective is to 
separately capture, describe and organize each diagram.

• The framework take advantage again of the customized SoSE processes model to enable the 
stakeholders to explicitly manage their concerns that they want and express them using an SoS-
UML profile’s diagram.

• The deliverable of this AF processes is a set of SoSs specifications that provide a set of guidelines 
for structuring the specifications expressed as models corresponding to different VPs. The 
design of these VP is based on a consolidated Model-Based SoSE in which the AF can be seen 



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

13

as a sequence of connected and dependent VP. i.e. each VP is created through an aggregation 
of one or more SoSE process. Each one of these latter is governed by a set of diagrams that are 
appropriate to specific concerns.

The main purpose of this section is to present some UML extensions that define the Meta-
Modeling aspects for our SoS-UML Profile. We have used the “IBM Rational Software Architect 
9.0” tool for the realization of this profile. As well as, we work on an instance of Eclipse which loads 
the plugins that we generate previously, in order to be able to design a set of examples of our models. 
This section presents the abstract/concrete syntaxes of the SoS-UML profile, which is structured 
into packages labeled by the SoSE development processes’ names to make groupings of different 
aspects, and thus better manage the complexity of each process. Figure 8.(a). shows a screenshot 
of the different packages in IBM RSA tool that make up the Profile’s Meta-Model, it involves six 
packages namely: SoS_Knowledge_Package, CS_Selection_Package, Conceptual_Design_Package, 
Architectural_Design_Package, Interaction_Package and Integration_Deployment_Package. 
Additionally, Figure 8.(b). shows their relevant inter-dependencies as mentioned in the SoSE processes 
model. In the following, we will demonstrate how we use each package of them as a model kind to 
design the main concepts of each process in the SoSE development.

Figure 7. 
Overview of the new version of MeMSoS



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

14

6.1 SoS_Knowledge_Package
The SoS_Knowledge_Package describes the basic elements needed to describe the SoS Knowledge. 
The deliverable contained in this package will guide the description of the SoS’ Goals and support the 
identification of its Capabilities during the next process. Particularly, the two stereotypes Requirement 
and System are the central concepts in this model, and they represent a unit SoS Knowledge process. 
The latter starts with understanding the desired Requirement and suggesting a set of Systems as 
various options for achieving that Requirement. It is used for the representation of the Requirement 
Diagram’s Model. The package contents are shown in the next Figure 10.

The Requirements Model represents the functionalities or the conditions that an SoS must fulfill 
based on the contributions of the collaborative CSs. As shown in the package figure, it contains 
different stereotypes for describing the knowledge and requirement of an SoS, and how they can be 

Figure 8. 
Overview of SoS-AF

Figure 9. 
SoS-UML profile packages



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

15

related to the necessary entities to gather, organize, analyze and decompose the different existing 
systems that can participate in an SoS. A part of this diagram, describing the most important stereotypes 
and the extended meta-classes is shown in Table 1.

Take the AERSoS case study, requirements can be organized as an ordered tree hierarchical 
structure. A typical structure may include a top-level requirement for all sub-requirements. By using 
different relationships, each requirement within the top-level one could be associated with different 
systems (SoSs or CS, component, etc.) to describe its scope; for example (see Figure 11.), the <<Re
quirement>>HandleAbnormalSituation wich is derived from <<Requirement>>EnsureAircraftSaf
ety can be satisfied by <<CS>>AircraftEmergencySystem using the two relationships <<Derive>> 
and <<Satisfy>> respectively.

6.2 CSs_Selection_Package
The Selection of CSs requires the characterization of the Capabilities in which the CSs will perform to 
fulfill their Goal, and thus, the SoS’ global Goal. Therefore, the main Systems that can participate in the 
SoS must be defined, described, and documented using the CSs_Selection_Package. As shown in the 
structure of this package that is depicted in Figure 12. the extensions proposed here comprise stereotypes 
that reflect the entities that constitute the basis for the specification of Systems’ Goals (CS_Goal and 
SoS_Goal) and the identification of their relevant Capabilities (CS_Capability and SoS_Capability).

Figure 10. 
The structure of SoS_Knowledge_Package

Table 1. 
Stereotypes of SoS_Knowledge_Package

Process Model Kind UML Diagram Stereotypes Description Meta-class

SoS 
knowledge

Requirement 
Diagram

Class Diagram Requirement Capability or Goal that must (or should) be performed Class

System Systems, SoS, CS...etc

Refine Clarifies the requirement’s meaning or context ElementImport

Depend A requirement uses or depends on other ones

Derive Impose additional sub-requirements

Need Express required systems for a requirement Message

Verify Relate a requirement with a system that verifies it

Satisfy Relate a requirement with a system that satisfies it



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

16

The CS_Selection_Package uses the output artifacts of the SoS Knowledge process (Requirements) 
to describe the SoS in terms of Goals and Capabilities. Thus, the notions of CS_Goal and SoS_Goal 
are the central concepts in the Goals Model, representing a unit of the local goals of CSs as well as 
the SoS global goal in which high-level Goals may be realized through the combination of lower-
level Goals. As well as, the Capabilities Model contains the concepts enabling the description of 
Capabilities which the selected CSs should perform to achieve the predefined Goals.

The concepts in this package are divided into two diagrams, Goals Diagram and Capabilities 
Diagram (Table 2.)

Figure 11. 
Requirements diagram for AERSoS

Figure 12. 
The structure of CSs_selection_package



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

17

The first diagram in this package is Goals Diagram where different Goals can be organized as 
a tree structure in which a high-level Goal that represents <<SoS_Goal>> may be realized through 
the combination of lower level Goals <<CS_Goal>> of CSs. In addition, relations between them 
denote sharing of the same common Goals; for example, Figure 13. the <<SoS_Goal>>Aircraft 
Safety has three sub-goals, <<CS_Goal>> Safe Landing, <<CS_Goal>>Safe Flight and <<CS_
Goal>>Accident Report.

For the second diagram (Capabilities Diagram), it can be viewed as a mechanism to capture 
the SoS Capabilities in terms of the Capabilities of the pre-selected CSs which specify the expected 
behavior (what), and not the exact method of making it behave (how) of an SoS and thus, it represents 
a black-box view of the SoS; it is therefore well suited to serve later in Interactions and Architectural 
Design Diagrams. Figure 14. represents the AERSoS capabilities, where a set of sub-capabilities (e.g. 
<<CS_Capability>>GeneratingPower, <<SoS_Capability>>InsultingReactors) for different CSs 
are required to perform the global-Capibility <<SoS_Capability>> ControllingSituation.

6.3 Conceptual_Design_Package
This package captures the main blocks for designing the Conceptual Design process, the design 
allows creating a global vision of an SoS, defining the essential relationships and identifying 
mission capabilities. The main concepts in this model are Systems, Roles, Capabilities and different 
relationships types that can offer a global understanding of CSs, their Roles and their interdependencies 
as part of an SoS. A general structure of the package is depicted in Figure 15.

The stereotyped concepts in this model can be used to provide a global structure of an SoS 
to enhance the interaction of its CSs. Consequently, they can be used to describe the CSs, the 
Capabilities they have to accomplish Goals and the Roles they play within an SoS. In Addition, the 
Conceptual_Design_Package defines to which a Sub-System has access to and which Role it can 
play to solve missions.

The concepts of this package are introducing one single diagram called Domain Model as showed 
in the Table 3.

At this stage, the Domain Model Diagram is used by stakeholders to design the SoS’ characteristics 
in terms of its structural CSs, behavioral Roles, the internal Capabilities and relationships between 
the CSs. An example of PowerUnitsSoS as it is depicted in Figure 16. the stakeholders can display 
various kinds of CSs and SoSs that constitute the top-level entities, e.g. <<SoS>>PowerUnitsSoS, 

Table 2. 
Stereotypes of CS_selection_package

Process Model Kind ML Diagram Stereotypes Description Meta-class

CSs 
Selection

Goals 
Diagram

Class Diagram Goal Represents objectives of a system Class

CS_Goal Represents objectives of a CS

SoS_Goal Represents objectives of an SoS

Include Split a goal into several sub one ElementImport

Contain Expresses the capability of having sub-goals

Capabilities 
Diagram

Use Case 
Diagram

Could be any type of System providing a Capability Package

SoS providing the Capability Class

CS providing the Capability

Refers to functions provided by any system Use Case

Refers to functions provided by any system

Refrs to functions provided by an SoS



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

18

Figure 14. 
Capabilities diagram for AERSoS

Figure 13. 
Goals diagram for AERSoS



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

19

<<CS>>ReactorsProtectionCS, etc. their corresponding Roles, e.g. <<SoS_Role>>PowerGenerator, 
<<CS_Role>>OxiginProvider, etc. and relationships among them <<Play>> <<Lead>>, etc.

6.4 Architectural_Design_Package
This package which is depicted in Figure 17. presents the concepts to support the Architectural Design 
decision in every CS’ architectures. This is required to propagate the CS’ architectural characteristics in 
the next processes in the lifecycle of an SoS. They manifest the structure of every CS by characterizing 
which Roles are part and which functions are used by the different stakeholders.

The Constituent Model has the ability to describe the internal structure of every autonomous entity 
cooperating within the SoS and how the operational and managerial independence can be defined. 
Additionally, the Architectural_Design_Package defines which CSs’ stakeholders have access to and 
which functions they can perform.

The main distinct stereotypes of the diagram from our package are summarized in the Table 4.

Figure 15. 
The structure of conceptual_design_package

Table 3. 
Stereotypes of conceptual_design_package

Process Model Kind UML Diagram Stereotypes Description Meta-class

Conceptual 
Design

Domain 
Model

Class Diagram System Represents the involved System Class

SoS Represents the involved SoS

CS Represents the involved CS

Role Ideal behavior of any type of System

CS_Role Ideal behavior of a CS

SoS_Role Ideal behavior of an SoS

Capability Represents Capabilities of a System in specific Role Operation

CS_Capability Represents Capabilities of a CS in specific Role

SoS_Capability Represents Capabilities of an SoS in specific Role

Own Expresses authority of one system to another Usage

Lead Expresses control or guidance of one system to 
another

Play Associates systems with the required Roles



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

20

Figure 18. shows an example of a Constituent Diagram used to model the decomposition 
of the EvacuationCS and its internal entities such as functions (e.g. <<Function>> extinguish, 
<<Function>> manage) which are associated to one of the main independence classes: the 
management class with the stereotype <<I_Management>> CSManagement and the operation class 
with stereotype <<I_Operation>> CSOperation, as well as, each function involves the corresponding 
stakeholders as attribute, e.g. <<Stakeholder>> Manager and <<Stakeholder>> FireFighter, 
respectively.

6.5 Interaction_Package
The Interaction_Package contains the concepts to describe how flexible collaboration and cooperation 
take place between different CSs in an SoS. This package’s model supports the Interactions process 

Figure 17. 
The structure of Architectural_Design_Package

Figure 16. 
Domain model for the PowerUnitsSoS



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

21

by focusing on the quality of the interaction architecture and, as a consequence. We define two major 
Models: The Capabilities Collaboration Model and the Roles Interactions Model. Both determining 
the types of Collaborations among Collaborative Capabilities and the interactive Roles. The package’s 
stereotyped concepts are represented in Figure 19.

In the Capabilities Collaboration diagram, we define the stereotypes to describe the internal 
behavior of different CSs used for fulfilling predefined Goals. The global-Goals of an SoS can be 
achieved in terms of combining simple Capabilities of its participating CSs. Additionally, the Roles 
Interactions diagram covers the abstract representations of the collaborative Capabilities of different 
CSs within an SoS. Moreover, the Role package provides the different relationships that can be used 
to connect CSs among each other.

The identified stereotypes are summarized in Table 5.

Table 4. 
Stereotypes of Architectural_Design_Package

Process Model Kind UML Diagram Stereotypes Description Meta-class

Architectural Design Constituent 
Diagram

Component 
Diagram

System Refers to system’s class Class

CS Refers to a CS’ class

SoS Refers to an SoS’ class

I_Operation Independent operations

I_Management Independent management

Function Represents a service

Role Roles of a system Component

CS_Role Roles of a CS

SoS_Role Roles of an SoS

Stakeholder Intervening persons

Figure 18. 
Constituent diagram for EvacuationCS



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

22

The Figure 20. shows an example of Capabilities Collaboration diagram which describes 
“AssessingRisks” Capability of <<SoS>>WarningSoS collaborating with other CSs’ Capabilities 
(<<CS_Capability>> CO_sensing and <<CS_Capability>> IR_radiation of <<CS>> 
FireDetectionCS) and (<<CS_Capability>>Transducer_probe of <<CS>>IceDetectionCS). 
This diagram particularly offers a good method to express the flow of capabilities of the 
<<SoS>>WarningSoS and how its CSs can collaborate.

Table 5. 
Stereotypes of Interaction_Package

Process Model Kind UML Diagram Sereotypes Description Meta-class

Interactions Capabilities 
Collaboration

Activity 
Diagram

System System performing Capabilities Meta-class

CS CS performing Capabilities

SoS SoS performing Capabilities

Capability functions provided by a System ActivityNode

CS_ Capability functions provided by a CS

SoS_ Capability functions provided by an SoS

Roles 
Interactions

Sequence 
Diagram

Role Interactive Role of a System Lifeline

CS_Role Interactive Role of a CS

SoS_Role Interactive Role of an SoS

Capability Refers to a Capability of a System Activation

CS_ Capability Refers to a Capability of a CS

SoS_ Capability Refers to a Capability of an SoS

Create_role Initiating a new Role Message

Destroy_role Finishing a Role

Activate_role Starting a Role

Deactivate_role Interrupting a Role

Cancel_role Omitting a Role

Cancel_role Replacing a Role

Commit_role Performing a Role

Figure 19. 
The structure of Interaction_Package



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

23

We can use the Roles Interactions diagram Figure 21. to show how the different Roles interact 
within the <<SoS>>AERSoS when fulfilling the global goal <<SoS_Goal>>SafeLanding in 
case of critical situations in the aircraft. This diagram depicts a collection of interactions between 
external Roles of different CSs <<SoS_Role>>LandingManager, <<CS_Role>>EmergencyLand
ingController, etc. In this case, the Roles represent the specification of a sequence of Capabilities 
(<<CS_Capability>>first_aid, <<SoS_Capability>>landing, etc.), that an SoS (or CS) can perform. 
In addition, the roles represent a path or flows of a sequence of interactions (e.g. <<Change_
role>>Unplanned_Landing, <<Create_role>>pilot, etc.) that occurs during the execution to 
accomplish the SafeLanding goal.

6.6 Integration_Deployment_Package
The Integration_Deployment_Package (Figure 22.) contains the concepts to describe the process of 
Deployment, including instances of Roles and the corresponding Interfaces. This model contains 
the stereotypes of CS’ interfaces defined by their Roles and the necessary provided or/and required 
Interfaces (RUIs for Relied Upon Interfaces).

Figure 20. 
Capabilities collaboration diagram for WarningSoS



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

24

The different stereotypes in Table 6. included in this diagram describe the aspect of Integration of 
an SoS itself. In this case, the Integration and deployment diagram describes the physical deployment 
of different interfaces required or provided by CSs. The interfaces extend the meta-class port to specify 
the interaction points among CSs supporting the integration of behavior and structure.

The Figure 23. shows an example of this diagram of PowerUnitsSoS. the stakeholders assemble a 
set of Relied Upon Message or/ and Physical Interfaces (e.g. <<RUMI>>I_OP and <<RUPI>>I_RP1) 
and their associations (e.g. <<Role_Provider>> control_Engines and <<Role_Consumer>>provide_
O2) that constitute the basic elements to define how the CSs of one SoS can collaborate among each 
other to realize the integration of structure and/or behavior of the SoS.

Figure 22. 
The structure of the Integration and deployment package

Figure 21. Roles interactions diagram for SafeLandingCS’ roles



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

25

7. CONCLUSION

In this paper, we presented a multi-viewpoint Architecture Framework called SoS-AF which is 
understandable and easily manipulated by different stakeholders. This methodology aims to offer 
the audience of SoSs’ Stakeholders the tools to facilitate the task of developing a multi-viewpoint 
architecture that is managed by a new SoSE processes and documented through the SoS-UML profile’s 
models. Besides, this approach conforms to a very widespread standard in software architectures 
community “IEEE 42010” which was designed in order to standardize the definition of Systems and 
Software Engineering-Architecture description. Specifically, SoS-AF inherits the definitions of the 
main elements which are part of this standard, and extends them by the two elements “SoSE process” 
and “SoS-UML Profile”. It is based around the construction of multi-viewpoint SoSs’ architectures, 
through the definition of several viewpoints for a given SoS architecture, which is in our example we 
used an Aircraft Emergency Response System-of-Systems (AERSoS) as a case study.

The first extension of the standard is to integrate the notions contained in the SoSE process. This 
adoption allows the SoS-AF to pass through several processes. At the end of each process, each one 
of the involved stakeholders must raise the level of concretization of his architecture by creating a set 

Figure 23. 
Roles Interfaces diagram of PowerUnitsSoS

Table 6. 
The structure of the Integration and deployment package

Process Model Kind UML Diagram Stereotypes Description Meta-class

Integration and 
Deployment

Roles 
Interfaces

Component 
Diagram

System Integrated System Component

CS Integrated CS

SoS Integrated SoS

RUI Relied Upon Interface Port

RUMI Relied Upon Message Interface

RUPI Relied Upon Physical Interface

Role_Provider Role providing a RU ElementImport

Role_Consumer Role consuming a RUI Dependency



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

26

of models that better meet his essential concerns. The stakeholders can benefit from the SoS-UML 
Profile to support the design of all the concepts and relationships of an SoS’ CSs. This tool defines 
structural diagrams: Goals diagram, Domain model diagram and Constituents diagrams. In addition, 
to behavioral diagrams which aim to represent the dynamic aspects of an SoS: Capabilities diagrams, 
Roles Interaction diagrams, Capabilities Collaboration diagrams and Roles Interfaces diagrams. The 
visual syntax allows using diagrams to manage the SoSE development processes by its audience of 
stakeholders within the SoS-AF’s Viewpoints.

To the best of our knowledge, this is the first paper supporting the modeling of SoSs’ multi-
viewpoints architectures using a SoS-UML Profile to manage the development lifecycle. However, 
there can be a need for enhancing the SoS-AF by considering some non-functional requirements to 
provide more comprehensive support. In addition, the proposed SoS-AF, can treat Cyber-Physical 
Systems (CPS) implicitly as SoSs. Therefore, and as a future enhancement, the SoS-AF also needs 
to be extended to other instances such as CPSs.



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

27

REFERENCES

Aljohani, T. M. (2018). Analysis of the Smart Grid as a System of Systems. arXiv preprint arXiv:1810.11453.

Arass, M. E., Ouazzani-Touhami, K., & Souissi, N. (2019). The system of systems paradigm to reduce the 
complexity of data lifecycle management. Case of the security information and event management. International 
Journal of System of Systems Engineering, 9(4), 331–361. doi:10.1504/IJSSE.2019.104173

Assaad, M. A., Talj, R., & Charara, A. (2016, July). A view on Systems of Systems (SoS). In 20th World Congress 
of the International Federation of Automatic Control (IFAC WC 2017. IFAC.

Axelsson, J., Fröberg, J., & Eriksson, P. (2019). Architecting systems-of-systems and their constituents: A case 
study applying Industry 4.0 in the construction domain. Systems Engineering, 22(6), 455–470. doi:10.1002/
sys.21516

Baek, Y. M., Song, J., Shin, Y. J., Park, S., & Bae, D. H. (2018, May). A meta-model for representing system-
of-systems ontologies. In 2018 IEEE/ACM 6th International Workshop on Software Engineering for Systems-
of-Systems (SESoS) (pp. 1-7). IEEE. doi:10.1145/3194754.3194755

Barbi, E., Cantone, G., Falessi, D., Morciano, F., Rizzuto, M., Sabbatino, V., & Scarrone, S. (2012, July). A 
model-driven approach for configuring and deploying systems of systems. In 2012 7th International Conference 
on System of Systems Engineering (SoSE) (pp. 214-218). IEEE. doi:10.1109/SYSoSE.2012.6384139

Benali, H., Saoud, N. B. B., & Ahmed, M. B. (2014, November). Context-based ontology to describe system-of-
systems interoperability. In 2014 IEEE/ACS 11th International Conference on Computer Systems and Applications 
(AICCSA) (pp. 64-71). IEEE. doi:10.1109/AICCSA.2014.7073180

Braga, R. T. V., Vargas, I. G., & Gottardi, T. (2016). A service-based architecture for virtual and collaborative 
system of systems. In X Workshop em Desenvolvimento Distribud de Software, Ecossistemas de Software e 
Sistemas-de-Sistemas (WDES), CBSoft Proceedings (pp. 51-60).

Chang, V., Abdel-Basset, M., & Ramachandran, M. (2019a). Towards a reuse strategic decision pattern 
framework–from theories to practices. Information Systems Frontiers, 21(1), 27–44. doi:10.1007/s10796-018-
9853-8

Chang, V., Abdel-Basset, M., & Ramachandran, M. (2019b). Chang, V., Valverde, R., Ramachandran, M., & Li, 
C. S. (2020). Toward business integrity modeling and analysis framework for risk measurement and analysis. 
Applied Sciences (Basel, Switzerland), 10(9), 3145. doi:10.3390/app10093145

Cherfa, I., Sadou, S., Belloir, N., Fleurquin, R., & Bennouar, D. (2018, June). Involving the application domain 
expert in the construction of systems of systems. In 2018 13th Annual Conference on System of Systems 
Engineering (SoSE) (pp. 335-342). IEEE. doi:10.1109/SYSOSE.2018.8428728

Cocks, D. (2006, July). How Should We Use the Term “System of Systems” and Why Should We Care? INCOSE 
International Symposium, 16(1), 427–438. doi:10.1002/j.2334-5837.2006.tb02755.x

Dahmann, J. S. (2015). Systems of systems characterization and types. Systems of Systems Engineering for 
NATO Defence Applications (STO-EN-SCI-276), 1-14.

DeLaurentis, D. (2005, January). Understanding transportation as a system-of-systems design problem. In 43rd 
AIAA Aerospace Sciences Meeting and Exhibit (p. 123). AAIA. doi:10.2514/6.2005-123

(Department of Defense (DoD). (2004). Defense Acquisition GuidebookCh. 4.2.6. “System of Systems 
Engineering,” DoD. 

Dridi, C. E., Benzadri, Z., & Belala, F. (2020, June). System of Systems Engineering: Meta-Modelling Perspective. 
In 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE) (pp. 000135-000144). IEEE.

Dridi, C. E., Benzadri, Z., & Belala, F. (2020, November). System of Systems Modelling: Recent work Review 
and a Path Forward. In 2020 International Conference on Advanced Aspects of Software Engineering (ICAASE) 
(pp. 1-8). IEEE. doi:10.1109/ICAASE51408.2020.9380125

Dridi, C. E., Benzadri, Z., & Belala, F. (2022, September). Towards a Multi-Viewpoints Approach for the SoS 
Engineering. In 2022 International Conference on Advanced Aspects of Software Engineering (ICAASE) (pp. 
1-6). IEEE. doi:10.1109/ICAASE56196.2022.9931580

http://dx.doi.org/10.1504/IJSSE.2019.104173
http://dx.doi.org/10.1002/sys.21516
http://dx.doi.org/10.1002/sys.21516
http://dx.doi.org/10.1145/3194754.3194755
http://dx.doi.org/10.1109/SYSoSE.2012.6384139
http://dx.doi.org/10.1109/AICCSA.2014.7073180
http://dx.doi.org/10.1007/s10796-018-9853-8
http://dx.doi.org/10.1007/s10796-018-9853-8
http://dx.doi.org/10.3390/app10093145
http://dx.doi.org/10.1109/SYSOSE.2018.8428728
http://dx.doi.org/10.1002/j.2334-5837.2006.tb02755.x
http://dx.doi.org/10.2514/6.2005-123
http://dx.doi.org/10.1109/ICAASE51408.2020.9380125
http://dx.doi.org/10.1109/ICAASE56196.2022.9931580


International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

28

Dridi, C. E., Hameurlain, N., & Belala, F. (2023, January). A Maude-Based Rewriting Approach to Model 
and Control System-of-Systems’ Resources Allocation. In Advances in Model and Data Engineering in the 
Digitalization Era. Springer Nature Switzerland.

El Hachem, J., Pang, Z. Y., Chiprianov, V., Babar, A., & Aniorte, P. (2016, December). Model driven software 
security architecture of systems-of-systems. In 2016 23rd Asia-Pacific Software Engineering Conference (APSEC) 
(pp. 89-96). IEEE. doi:10.1109/APSEC.2016.023

Emery, D., & Hilliard, R. (2009, September). Every architecture description needs a framework: Expressing 
architecture frameworks using ISO/IEC 42010. In 2009 Joint Working IEEE/IFIP Conference on 
Software Architecture & European Conference on Software Architecture (pp. 31-40). IEEE. doi:10.1109/
WICSA.2009.5290789

Franzén, L. K., Staack, I., Jouannet, C., & Krus, P. (2019, October). An Ontological Approach to System of 
Systems Engineering in Product Development. In FT2019. Proceedings of the 10th Aerospace Technology 
Congress, (No. 162, pp. 35-44). Linköping University Electronic Press.

Gassara, A., Bouassida, I., & Jmaiel, M. (2017, April). A tool for modeling sos architectures using bigraphs. In 
Proceedings of the Symposium on Applied Computing (pp. 1787-1792). doi:10.1145/3019612.3019802

Gassara, A., Rodriguez, I. B., Jmaiel, M., & Drira, K. (2017). A bigraphical multi-scale modeling methodology for 
system of systems. Computers & Electrical Engineering, 58, 113–125. doi:10.1016/j.compeleceng.2017.01.016

Gezgin, T., Etzien, C., Henkler, S., & Rettberg, A. (2012, April). Towards a rigorous modeling formalism for 
systems of systems. In 2012 IEEE 15th International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing Workshops (pp. 204-211). IEEE. doi:10.1109/ISORCW.2012.42

Gunes, V., Peter, S., Givargis, T., & Vahid, F. (2014). A survey on concepts, applications, and challenges in 
cyber-physical systems. KSII Transactions on Internet and Information Systems, 8(12).

Hu, J., Huang, L., Chang, X., & Cao, B. (2014, March). A model driven service engineering approach to system 
of systems. In 2014 IEEE International Systems Conference Proceedings (pp. 136-145). IEEE. doi:10.1109/
SysCon.2014.6819248

Jamshidi, M. (2008, December). System of systems-innovations for 21st century. In 2008 IEEE Region 10 and 
the Third international Conference on Industrial and Information Systems (pp. 6-7). IEEE.

Kaur, N., McLeod, C. S., Jain, A., Harrison, R., Ahmad, B., Colombo, A. W., & Delsing, J. (2013, February). 
Design and simulation of a SOA-based system of systems for automation in the residential sector. In 2013 
IEEE International Conference on Industrial Technology (ICIT) (pp. 1976-1981). IEEE. doi:10.1109/
ICIT.2013.6505981

Kotov, V. (1997). Systems of systems as communicating structures (Vol. 119). HP Labs.

Lane, J. A., & Bohn, T. (2013). Using SysML modeling to understand and evolve systems of systems. Systems 
Engineering, 16(1), 87–98. doi:10.1002/sys.21221

Lane, J. A., & Epstein, D. (2013). What is a System of Systems and why should I care? University of Southern 
California.

Maier, M. W. (1998). Architecting principles for systems of systems. Systems Engineering: The Journal of the 
International Council on Systems Engineering, 1(4), 267-284.

May, I. S. O. (2011). Systems and software engineering–architecture description. Technical report, ISO/IEC/
IEEE 42010, 2011.

Mori, M., Ceccarelli, A., Lollini, P., Bondavalli, A., & Frömel, B. (2016, January). A holistic viewpoint-based 
SysML profile to design systems-of-systems. In 2016 IEEE 17th International Symposium on High Assurance 
Systems Engineering (HASE) (pp. 276-283). IEEE. doi:10.1109/HASE.2016.21

Mori, M., Ceccarelli, A., Lollini, P., Frömel, B., Brancati, F., & Bondavalli, A. (2018). Systems-of-systems 
modeling using a comprehensive viewpoint‐based SysML profile. Journal of Software (Malden, MA), 30(3), 
e1878. doi:10.1002/smr.1878

http://dx.doi.org/10.1109/APSEC.2016.023
http://dx.doi.org/10.1109/WICSA.2009.5290789
http://dx.doi.org/10.1109/WICSA.2009.5290789
http://dx.doi.org/10.1145/3019612.3019802
http://dx.doi.org/10.1016/j.compeleceng.2017.01.016
http://dx.doi.org/10.1109/ISORCW.2012.42
http://dx.doi.org/10.1109/SysCon.2014.6819248
http://dx.doi.org/10.1109/SysCon.2014.6819248
http://dx.doi.org/10.1109/ICIT.2013.6505981
http://dx.doi.org/10.1109/ICIT.2013.6505981
http://dx.doi.org/10.1002/sys.21221
http://dx.doi.org/10.1109/HASE.2016.21
http://dx.doi.org/10.1002/smr.1878


International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

29

Nielsen, C. B., Larsen, P. G., Fitzgerald, J., Woodcock, J., & Peleska, J. (2015). Systems of systems engineering: 
Basic concepts, model-based techniques, and research directions. ACM Computing Surveys, 48(2), 1–41. 
doi:10.1145/2794381

Oquendo, F. (2016, June). Formally describing the software architecture of systems-of-systems with SosADL. In 
2016 11th system of systems engineering conference (SoSE) (pp. 1-6). IEEE. doi:10.1109/SYSOSE.2016.7542926

Oquendo, F. (2016, June). Pi-Calculus for SoS: A foundation for formally describing software-intensive systems-
of-systems. In 2016 11th System of Systems Engineering Conference (SoSE) (pp. 1-6). IEEE.

Oquendo, F. (2016, November). Formally describing the architectural behavior of software-intensive systems-
of-systems with SosADL. In 2016 21st International Conference on Engineering of Complex Computer Systems 
(ICECCS) (pp. 13-22). IEEE. doi:10.1109/ICECCS.2016.012

Ormrod, D., Turnbull, B., & O’Sullivan, K. (2015, December). System of systems cyber effects simulation 
ontology. In 2015 Winter Simulation Conference (WSC) (pp. 2475-2486). IEEE. doi:10.1109/WSC.2015.7408358

Osmundson, J. S., Huynh, T. V., & Shaw, P. (2006). Developing Ontologies for Interoperability of Systems of 
Systems. In Conference on Systems Engineering Research.

Rao, M., Ramakrishnan, S., & Dagli, C. (2008). Modeling and simulation of net centric system of systems using 
systems modeling language and colored Petri‐nets: A demonstration using the global earth observation system 
of systems. Systems Engineering, 11(3), 203–220. doi:10.1002/sys.20095

Seghiri, A., Belala, F., Benzadri, Z., & Hameurlain, N. (2018, June). A maude based specification for sos 
architecture. In 2018 13th Annual Conference on System of Systems Engineering (SoSE) (pp. 45-52). IEEE. 
doi:10.1109/SYSOSE.2018.8428738

Stary, C., & Wachholder, D. (2016). System-of-systems support—A bigraph approach to interoperability and 
emergent behavior. Data & Knowledge Engineering, 105, 155–172. doi:10.1016/j.datak.2015.12.001

Vargas, I. G., Gottardi, T., & Braga, R. T. V. (2018, September). An approach to integrate systems towards 
a directed system-of-systems. In Proceedings of the 12th European Conference on Software Architecture: 
Companion Proceedings (pp. 1-7). doi:10.1145/3241403.3241431

Wachholder, D., & Stary, C. (2014, October). Bigraph-ensured interoperability for system (-of-systems) 
emergence. In OTM Confederated International Conferences” On the Move to Meaningful Internet Systems” 
(pp. 241-254). Springer, Berlin, Heidelberg.

Wang, R., Agarwal, S., & Dagli, C. H. (2015, April). OPM & color petri nets based executable system of systems 
architecting: A building block in FILA-SoS. In 2015 Annual IEEE Systems Conference (SysCon) Proceedings 
(pp. 554-561). IEEE.

Wickramasinghe, N., Chalasani, S., Boppana, R. V., & Madni, A. M. (2007, April). Healthcare system of systems. 
In 2007 IEEE International Conference on System of Systems Engineering (pp. 1-6). IEEE.

Yang, L., Cormican, K., & Yu, M. (2019). Ontology-based systems engineering: A state-of-the-art review. 
Computers in Industry, 111, 148–171. doi:10.1016/j.compind.2019.05.003

Zhang, Y., Liu, X., Wang, Z., & Chen, L. (2012). A Service-Oriented Method for System-of-Systems Requirements 
Analysis and Architecture Design. Journal of Software, 7(2), 358–365. doi:10.4304/jsw.7.2.358-365

http://dx.doi.org/10.1145/2794381
http://dx.doi.org/10.1109/SYSOSE.2016.7542926
http://dx.doi.org/10.1109/ICECCS.2016.012
http://dx.doi.org/10.1109/WSC.2015.7408358
http://dx.doi.org/10.1002/sys.20095
http://dx.doi.org/10.1109/SYSOSE.2018.8428738
http://dx.doi.org/10.1016/j.datak.2015.12.001
http://dx.doi.org/10.1145/3241403.3241431
http://dx.doi.org/10.1016/j.compind.2019.05.003
http://dx.doi.org/10.4304/jsw.7.2.358-365


International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

30

Charaf Eddine DRIDI is a PhD student in computer science from university of Constantine 2, Algeria and university 
of Pau and countries of Adour, France. Since September 2019, he is a research and teaching assistant at the 
University of Pau and is affiliated to the LIRE and GL teams of theUC2 and LIUPPA laboratories. His research 
interests include software engineering and formal modeling of large scale SoSs.

Zakaria BENZADRI is an Associate Professor, Innovation Manager, and FabLab Director at the University of 
Constantine 2-Abdelhamid Mehri, Constantine, Algeria. He is a member of the research team GLSD, LIRE 
Laboratory, Constantine, Algeria. He did his Ph.D. in Computer Science & Engineering at the University of 
Constantine 2-Abdelhamid Mehri, Algeria. His research areas are Distributed Computing (Cloud, Fog, Mist and 
Edge computing), Internet of Things (IoT), Cyber Physical Systems (CPS), System-of-Systems (SoS), and Formal 
Methods (Rewriting Logic, Bigraphs, Petri nets, etc.). He completed a research project in Cloud Computing, and 
currently he has projects on System-of-Systems and IoT. He has been actively involved in the research community 
by serving as a reviewer for International Journals. He has organized and chaired the International Conference on 
Advanced Aspects of Software Engineering (ICAASE), and the TACC 2022: 2nd Tunisian-Algerian Joint Conference 
on Applied Computing.

Faiza Belala received a Ph.D. degree in computer science from Mentouri University of Constantine in 2001. 
She is currently a Professor at the same university and head of the GLSD team (LIRE Laboratory). Her current 
research focuses on architecture description languages, formal refinement (Rewriting Logic, Bigraphs, Petri nets, 
etc.), mobility and concurrency aspects in software architectures, formal analysis of distributed systems. She 
has organized and chaired the international conferences on Advanced Aspects of Software Engineering ICAASE 
/ Tunisian-Algerian Joint Conference on Applied Computing TACC, she is the author of many refereed journal 
articles and peer reviewed international and regional conference papers. She has supervised over sixty Master 
and Ph.D. theses.


