
DOI: 10.4018/JDM.323436

Journal of Database Management
Volume 34 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Adaptive Modularized Recurrent Neural
Networks for Electric Load Forecasting
Fangwan Huang, Fuzhou University, China

Shijie Zhuang, Fuzhou University, China

Zhiyong Yu, Fuzhou University, China

Yuzhong Chen, Fuzhou University, China

Kun Guo, Fuzhou University, China*

ABSTRACT

In order to provide more efficient and reliable power services than the traditional grid, it is necessary
for the smart grid to accurately predict the electric load. Recently, recurrent neural networks (RNNs)
have attracted increasing attention in this task because it can discover the temporal correlation between
current load data and those long-ago through the self-connection of the hidden layer. Unfortunately, the
traditional RNN is prone to the vanishing or exploding gradient problem with the increase of memory
depth, which leads to the degradation of predictive accuracy. Many RNN architectures address this
problem at the expense of complex internal structures and increased network parameters. Motivated
by this, this article proposes two adaptive modularized RNNs to tackle the challenge, which can
not only solve the gradient problem effectively with a simple architecture, but also achieve better
performance with fewer parameters than other popular RNNs.

Keywords
Cumulative Priority, Gate Mechanism, General framework, Long-term Dependencies, Module Update, Multi-
timescale Connections, Skip Length, Weight Pruning

INTRODUCTION

Electric load forecasting plays a vital role in ensuring the security, stability, and efficiency of the
smart grid. From the view of electricity generation, it helps to make a reasonable plan to provide a
sufficient power supply and avoid the waste of resources caused by excessive production (Patel et
al., 2019). From the view of the electricity market, it helps to set a time-of-use price to encourage
off-peak power consumption (Zhao et al., 2021). Recently, the continuous emergence of various high-
precision data acquisition equipment (such as smart meters) in the smart grid has provided strong
support for electric load forecasting (Fekri et al., 2021).

Journal of Database Management
Volume 34 • Issue 1

2

As load data are usually recorded sequentially at a certain time interval, electric load forecasting
can be regarded as the time series prediction in the field of data mining (Yu et al., 2020). Therefore,
Recurrent Neural Network (RNN) that can well capture the time correlation of the sequence has been
considered as a good choice for this task recently (Bianchi et al., 2017). As the simplest architecture,
a Vanilla RNN is generally composed of three parts: the input layer, the hidden layer, and the output
layer. Instead of the traditional Multi-Layer Perceptron containing only input and output connections,
the Vanilla RNN introduces the recurrent connection from the previous to the current moment in the
hidden layer (Elman, 1990). This means that the current input xt and the hidden state of the previous
moment ht-1 together affect the hidden state ht. Because of the self-connection of the hidden layer,
RNN designed for sequence modeling can be regarded as a deep network when it is unrolled along
the time axis. Such a deep network structure can easily lead to the vanishing or exploding gradient
problem for the long sequence in the process of parameter training using Back Propagation Through
Time (BPTT) (Fernando et al., 2018). To address this challenge, different architectures were proposed
to improving the trainability of RNN, but at the cost of significant computation overhead, such as
Long Short-Term Memory (LSTM) (Hochreiter et al., 1997) and its variants (Yu et al., 2019). They
pose a challenge in the training of many more parameters with the introduction of gates. Recently,
Clock-Work RNN (CW-RNN) was proposed to utilize another simple but effective architecture to
alleviate the gradient problem (Koutnik et al., 2014). It first divides the hidden layer into several
modules with different updated frequencies, and then makes the slow-updating modules have recurrent
connections with longer time delays. This allows data dependencies to be passed in fewer time steps
to avoid excessive multiplications of the gradient. Besides, CW-RNN uses the predefined rule instead
of training to determine module updates, greatly reducing the number of network parameters. But
this inevitably weakens the generalization ability of the network. The motivation of this article is
to refine and extend this architecture based on multi-timescale connections, aiming to resolve the
contradiction between the performance and the number of parameters. The research content mainly
includes the adaptive updating strategy of modules in the hidden layer and the pruning problem of
recurrent connections caused by this strategy. The contributions of this article are:

•	 A new modularized RNN (M-RNN) is proposed to generalize the existing CW-RNN. M-RNN
is a framework with the skip length of the module as the key component, which can realize the
update of the hidden state by taking the module as the minimum unit.

•	 Two adaptive strategies for updating the hidden modules are proposed by designing two new
activation functions to calculate the priority of each module. On this basis, the unordered and
ordered adaptive M-RNNs (AM-RNNs) are defined respectively to achieve dynamic multi-
timescale connections.

•	 Since the existing pruning strategy is only applicable to ordered AM-RNN, a two-way pruning
strategy is designed for the unordered AM-RNN to realize the sparsification of recurrent
connections.

•	 Both versions of AM-RNN are compared with other popular RNNs for electric load forecasting.
The experimental results show that AM-RNNs can achieve better predictive accuracy with fewer
network parameters than the current RNNs widely used in this field.

RELATED WORK

Considering the economic and environmental implications of even a slight improvement in accuracy,
there is still a lot of research on electric load forecasting recently (Bendaoud et al., 2020). Methods
to accomplish this task can be generally divided into two categories: statistics-based methods and
data-driven methods (Hong et al., 2016). Although the statistics-based methods have been developed
very maturely, their abilities are limited due to the nonlinearity of sequences, the randomness of user
behaviors, the diversity of external factors, etc. (Hafeez et al., 2020). This makes data-driven methods

Journal of Database Management
Volume 34 • Issue 1

3

based on artificial intelligence gradually become a research hotspot, including dynamic neural network
(Mordjaoui et al., 2017), extreme learning machine (Chen et al., 2018), deep belief network (Ouyang
et al., 2019), convolutional neural network (Huang et al., 2020), etc. However, the above models do not
take the temporal relationship of data as a definite feature of the load, which may lead to performance
degradation when complex dependencies between the current load and those long-ago need to be
considered. From this point, RNNs that can continuously transmit early input information through the
hidden state have been widely applied to electric load forecasting, especially in the absence of feature
engineering (Shi et al., 2018). Because the gradient problem mentioned above makes the Vanilla RNN
perform poorly in long sequence learning, some measures including algorithm substitution, weight
constraint, gate mechanism, and multi-timescale connections have been proposed for its improvement.

The first measure is to replace BPTT with other optimization algorithms, such as Hessian-Free
(HF) method (Martens et al., 2012), Reservoir Computing (RC) (Gallicchio et al., 2017), etc. However,
they are also criticized for problems like difficulty in implementation or limited learning capacity. The
second measure is to constrain the recurrent weight to guarantee that the continuous multiplication of
multiple matrices does not cause the gradient to approach zero or very large (Arjovsky et al., 2016).
Note that the strict implementation of weight constraints may hinder training speed and generalization
ability (Vorontsov et al., 2017). Gate mechanism represented by LSTM and its variants is the third
measure and has been applied in numerous tasks of time series, including short-term or midterm electric
load forecasting (Li et al., 2021) (Dudek et al., 2021). The hidden state of LSTM needs to be obtained
through a cell state and three gate vectors, all of which require additional connection weights with the
input and the previous hidden state. So a typical LSTM requires about four times as many training
parameters as Vanilla RNN (Greff et al., 2016). Reducing the number of the gate is a common method
that leads to faster convergence and improved generalization. As a simplified variant of LSTM, Gated
Recurrent Unit (GRU) without memory cell performed better on some tasks than LSTM, even though it
has only the update and reset gates (Cho et al., 2014). Furthermore, Minimal Gated Unit (MGU) which
contains only one gate can be regarded as the simplest design among all gated architecture by sharing
the gate vector (Zhou et al., 2016). To handle the problem of gate undertraining, a new gate mechanism
was designed to perform the element-wise refining operation on the input and the output of each gate
(Cheng et al., 2020). While it can be equipped with any kind of gated RNNs to improve performance, it
does not reduce the number of parameters. The final common measure to improve the performance of
RNN on long-term dependencies is to introduce multi-timescale connections with increasing recurrent
skip lengths. Similar to the skip-connection of residual neural network (He et al., 2016), the main idea
of multi-timescale connections is that the recurrent connections should exist not only in adjacent time
steps but also in larger time steps. For example, Skip RNN allows the network to determine whether to
fully replicate the previous state or to update it at the current moment, based on the calculated updated
likelihood (Campos et al., 2018). In addition to neurons, multi-timescale connections can also be formed
in modules, such as the CW-RNN described earlier (Koutnik et al., 2014). Dilated RNN stacks multiple
hidden layers that work on different skip lengths to focus on different temporal dependencies (Chang et
al., 2017). More recently, the latest advances have focused on integrating some of the aforementioned
measures (Jing et al., 2019) (Moirangthem et al., 2021).

In summary, from the perspective of trade-off optimization between accuracy and efficiency,
the authors consider the modularized RNN (M-RNN) modified on the Vanilla RNN to be a very
competitive multi-timescale architecture because it does not require additional hidden layers or
connection weights. However, little work has been done on this architecture, prompting them to
study it in this article.

THE NEW FRAMEWORK M-RNN

The core idea of M-RNN is to obtain the short-term and long-term dependencies of the data by
introducing different skip lengths of the hidden modules at different moments. According to the

Journal of Database Management
Volume 34 • Issue 1

4

framework shown in Figure 1, the hidden layer is first divided into k modules. It is assumed that each
module has m neurons, which means the number of the hidden neurons nh=k*m. Secondly, skip length
St
i (i=1, 2, …, k) is introduced to determine the time delay of the module Ht

i , to clearly distinguish
its responsibility for short-term or long-term dependency at time t. The module with a smaller skip
length is more conducive to short-term dependency. Conversely, the longer the skip length, the fewer
steps needed to transform the information, and the more favorable the long-term dependency. The
equations of M-RNN are defined as (1)-(3).

M-RNN: h f W x W M h bt h ih t hh t h' (()) ,� � � ��1 	 (1)
h u h u ht t t t t� � ��() ' ,1 1  	 (2)
y f W h bt o ho t o� �() . 	 (3)

Here, xt, ht, ht’, and yt are the input, the hidden state, the candidate state, and the output at time step
t;  and * are denoted as the element-wise product between two vectors and two matrices,
respectively; fh(.) and fo(.) are the activation functions of the hidden and the output layer, such as tanh
or ReLu. Wih, Whh, and Who represent the input, the recurrent, and the output weight matrices. They
and the bias vectors bh, bo are parameters to be learned. W is used to represent all the above parameters,
which are required to be the same at each time step. Note that the equations for M-RNN are very
similar to those for GRU. There are two main differences between them. One is that the updated
vector ut of GRU is learned by the update gate, while the updated vector of M-RNN is easier to obtain
by the updated strategy described later. The other is that GRU adopts the reset vector rt learned by

Figure 1. Illustration of M-RNN where . St
i represents the skip length of the module Ht

i at time t

Journal of Database Management
Volume 34 • Issue 1

5

the reset gate to obtain part of ht-1 for the calculation of ht’, as shown in (4). While M-RNN achieves
a similar effect by a mask matrix M obtained by the pruning strategy of recurrent connections.

GRU: h f W x W r h bt h ih t hh t t h' (()) .� � �� 1 	 (4)

Besides, the elements of ut and rt for GRU range from 0 to 1 due to activation functions (usually
sigmoid), while the elements of ut and M for M-RNN are either 1 or 0. In other words, M-RNN can be
thought of as containing a binary gate that controls the flow of information. Furthermore, M-RNN
requires the same values of updated elements for all neurons in the same module to ensure that they are
updated or retained at the same time. Finally, as a general framework, note that the skip length St

i can
be either a constant or a variable, depending on the updated strategy of the module described below.

THE UPDATED STRATEGY OF HIDDEN MODULES

Different from RNN with gate mechanism, the update of M-RNN is not based on the neuron, but on the
module, which aims to greatly reduce the network parameters and training time. As the simplest model of
M-RNN, the computational efficiency of CW-RNN is not only much higher than gated RNNs but even
higher than Vanilla RNN, because not all modules are updated at every time, but must be determined by
the updated vector. Therefore, designing an appropriate strategy to obtain the updated vector is crucial
to the performance of M-RNN. In this article, based on the fixed strategy adopted by CW-RNN, several
other effective updating strategies are discussed to meet the challenge of finding suitable time scales.

THE EXISTING STRATEGIES AND THEIR SHORTCOMINGS

The Fixed Strategy
As a typical representative, CW-RNN utilizes a fixed strategy to determine whether each module is
updated at time step t through a predefined rule. More specifically, after assigning a period Ti to each
module, CW-RNN stipulates that the state of all neurons in the module can be updated only if the
current time t is divisible by the period of the module; otherwise, the previous state should always
be maintained. According to the above rule, the updated vector of CW-RNN in any time step can be
obtained without training. If the updated vector ut is divided into k sub-vectors according to module
size, then the element values of each sub-vector are either all zeros or all ones. One means that the
corresponding neuron is involved in the update, while zero means that it retains the value of the
previous time. Figure 2 shows the locations of the activated modules about CW-RNN with 4 modules
at different time steps, where the period Ti=2i-1 (1≤ ≤i k).

As can be seen from Figure 2, this CW-RNN can provide a set of recurrent connections with
skip lengths of 1, 2, 4, and 8. Modules with longer skip lengths update slower than other modules.

Figure 2. Illustration of the locations of the activated modules about CW-RNN with 4 modules, where gray indicates that this
module participates in the update at the current moment

Journal of Database Management
Volume 34 • Issue 1

6

By taking advantage of these slow-updating modules, information that takes a lot of time steps to
transmit has other paths with fewer time steps. This effectively alleviates the gradient problem caused
by too long time steps. The benefit of the fixed strategy is that its simplicity reduces the number of
network parameters and saves a lot of training time. However, it is undeniable that the generalization
ability of fixed strategies is unsatisfactory.

The Random Strategy
Inspired by Zoneout which regularizes LSTM by randomly preserving hidden states (Krueger et al.,
2017), the authors designed an updated strategy for the modules based on random probability in their
early work (Zhuang et al., 2020). Different from traditional Zoneout based on neurons, this strategy
randomly assigns some modules to participate in the update at each time step. Firstly, the module
Ht
i is randomly assigned an updated probability Pt

i at each time step. Secondly, given an updated
threshold ε (0<ε<1), the elements in the updated vector corresponding to the neurons in Ht

i are set
to 1 only if Pt

i > ε, otherwise are set to 0. In this way, the updated vector for any time step can be
obtained. Figure 3 shows an example of Zoneout M-RNN (ZM-RNN) based on the random strategy.

It can be concluded from Figure 3 that the skip length of each module is no longer a constant
but a variable, which means that each module is sometimes updated faster and sometimes slower.
This means a strict division between faster and slower modules can be avoided. Each module can
accommodate both short-term and long-term dependencies. Although the random strategy is simple
to implement, it inevitably introduces an additional hyper-parameter, namely the updated threshold,
which can be adjusted by the validation set. Besides, the performance fluctuation caused by random
probability is also one of the problems to be considered.

THE PROPOSED STRATEGIES

The Adaptive Strategy Without Order
Compared with the existing strategies, the adaptive strategy can be regarded as a more active and effective
strategy. The key is to determine which modules are worth updating and which ones are worth retaining at
each time step. In this article, a new concept of “module priority” is proposed to measure the importance of
each module participating in the update. Firstly, the element-wise vector based on (5) is implemented for
the candidate state ht’ to obtain the priority of the hidden neurons. Secondly, as shown in (6), the priority
of each neuron in the same module is accumulated to obtain the priority of each module.

e soft ht t= max(') .	 (5)

a e i kt
i

t
j

j i m

im

� �
� � �
�
()

, , ,
1 1

1 2 .	 (6)

Figure 3. Illustration of the locations of the activated modules about ZM-RNN with 4 modules, where gray indicates that this
module participates in the update at the current moment

Journal of Database Management
Volume 34 • Issue 1

7

Here, k represents the number of modules in the hidden layer; m represents the number of neurons
in each module; et

j refers to the jth element of the vector et; and at
i indicates the priority of module

Ht
i at time t. Finally, according to the priority of each module, the updated sub-vector of each module

u Rt
i m∈ can be easily obtained by (7).

u
if a

k
else

t
i

T
t
i

T
�

�
�

�
�
�

��

(, , ,) ,

(, , ,) .

1 1 1
1

1

0 0 0





	 (7)

The updated threshold is set to 1/(k+1) to ensure that all modules have the opportunity to participate
in the update at some particular moment. Finally, a fully updated vector ut can be obtained by splicing
all the updated sub-vectors up and down. For the convenience of expression, the adaptive M-RNN based
on this strategy is called AM-RNN-I. Figure 4 shows several examples of AM-RNN-I with 4 modules
obtaining the updated vectors based on (5)-(7). The skip length obtained by AM-RNN-I is similar to that
obtained by ZM-RNN, which is also variable and does not strictly distinguish long/short dependencies.
Therefore, Figure 3 can also be used to illustrate the locations of the activated modules about AM-
RNN-I. The difference between them is that ZM-RNN is based on random probability to determine
whether a module is updated, while AM-RNN-I is based on the module priority. By comparing Figure
2 and Figure 3, it can be observed that ZM-RNN and AM-RNN-I do not have an obvious hierarchy like
CW-RNN because the update of the module is independent of its index.

The Adaptive Strategy With Order
The latest research has an explicit preference for the hierarchical hidden layer (Shen et al., 2019)
(Schoene et al., 2021). This leads the authors to further consider how to improve the above adaptive
strategy to ensure that the updated frequency of modules can be decreased in order. In other words,
when the module Ht

i is updated, all modules with smaller indexes (Ht
j , 1� �j i) are updated at

the same time. To achieve this goal, the learning process of the updated vector needs to perform the
following two steps after gaining the priority of each module:

Step 1: Calculate the cumulative priority of each module ct
i in descending order of the index,

as shown in (8). Obviously, c ct
i

t
i� �1 and ct

1 1= because the softmax function in (5) guarantees
that the sum of all neurons’ priority is 1.

c a i k kt
i

t
j

j i

k

� � �
�
� , , , .1 1 	 (8)

Figure 4. Several examples of AM-RNN-I with 4 modules obtaining the updated vectors, where the updated threshold is set to 1/5

Journal of Database Management
Volume 34 • Issue 1

8

Step 2: Set an updated threshold ε (0<ε<1) to determine the number of modules to be updated
per time step. The updated vector can be obtained by (9).

u if c c i kt
m i m k i

T
t
i

t
i� � � � �

� � �

�(, , , , ,) () .

()

1 1 0 0 21�� ���� � 	 (9)

More specifically, the updated vector is split into two segments: the 1-segment and the 0-segment.
The length of the segment is variable, depending on the number and size of the updated modules. The
AM-RNN based on the above-updated rule is called AM-RNN-II. Figure 5 shows several examples
of AM-RNN-II with 4 modules obtaining the updated vectors where the updated threshold ε=0.5.

It can be concluded from Figure 5 that module Ht
1 is updated at each time step, which allows

it to be treated as a Vanilla RNN. The updated frequency of modules keeps decreasing, making the
module with a larger index more conducive to long-term dependencies. Figure 6 shows more details
about the location of the activated modules about an AM-RNN-II with 4 modules. For example, the
updated vectors at time t=2, 6, 10, 13 can be considered similar to the four examples in Figure 5,
respectively. Similar to CW-RNN, AM-RNN-II has strict differences in updated frequency between
modules. However, except that the skip length of module Ht

1 is a constant equal to 1, those of all
other modules are a variable learned in a data-driven way.

In summary, M-RNN can contain multiple models based on the above-updated strategies, as
shown in Figure 7. The characteristic of CW-RNN based on the fixed strategy is that the skip length of
each module is a preset constant. So the Vanilla RNN can be regarded as a special case of CW-RNN
retaining all recurrent connections when the hidden layer is a module with skip length 1. Different
from CW-RNN, the module of ZM-RNN based on the random strategy is sometimes updated fast and
sometimes updated slowly. The probability change of skip lengths can achieve dynamic updating of
modules. Finally, AM-RNN-I and AM-RNN-II based on the adaptive strategy can be regarded as the
improvement of ZM-RNN and CW-RNN respectively. Their common feature is that the skip lengths
can be adjusted according to the input information, rather than determined in advance or randomly.

Figure 5. Several examples of AM-RNN-II with 4 modules obtaining the updated vectors, where the updated threshold is set to 0.5

Figure 6. Illustration of the locations of the activated modules about AM-RNN-II with 4 modules, where gray indicates that this
module participates in the update at the current moment

Journal of Database Management
Volume 34 • Issue 1

9

THE PRUNING STRATEGY OF RECURRENT CONNECTIONS

In addition to the updated strategy of hidden modules, another key issue for M-RNN is the pruning
strategy of recurrent connections. According to different pruning strategies, different mask matrices
M in (1) can be obtained to determine which information of ht-1 is used to calculate the candidate
state ht’. It should be pointed out that the purpose of M-RNN adopting a pruning strategy instead of
the reset gate in GRU is to further reduce network parameters and avoid over-fitting.

THE EXISTING STRATEGY FOR ONE-WAY PRUNING AND ITS LIMITATIONS

CW-RNN emphasizes that a given hidden neuron at time t-1 is only allowed to establish connections
with those hidden neurons running at the same or faster-updated frequency at time t. Since a larger
module index means a slower-updated frequency, the neurons of the module Ht

j
−1 can be fully

connected to the neurons of the module Ht
i only if j i≥ . Figure 8(a) shows an illustration of this

strategy. According to this slow-to-fast connection, if the mask matrix M are partitioned into k k×
blocks as shown in (10), then M Rij

m m� � (i j≤) is a sub-matrix with all elements of value 1,
otherwise, it must be a sub-matrix with all elements values of 0.

M
M M

M M

k

k kk

�
�

�

�
�
�

�

�

�
�
�

11 1

1

�
� � �
�

s t M orij. . .�
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

1 1

1 1

0 0

0 0

�
� � �
�

�
� � �
�

	 (10)

Since M is a block-upper triangular matrix, the weights below the block-diagonal of the Hadamard
product Whh*M in (1) are all 0, to realize the pruning of the recurrent connections. This means that only
m k k2 1 2� � �� � / non-zero parameters in Whh need to be trained, which is much smaller than

m k�� �2
 parameters of Vanilla RNN. It can be concluded from (1) that this strategy makes the slow-

updating modules retain less information about ht-1 and rely more on the input xt when calculating the
candidate state ht’. However, this strategy needs to determine which module updates faster or slower to

Figure 7. Illustration of multiple models belonging to M-RNN, where the main work of this paper is highlighted with grey shadow

Journal of Database Management
Volume 34 • Issue 1

10

achieve one-way pruning of the recurrent connections. Therefore, it is only suitable for ordered M-RNNs
(CW-RNN or AM-RNN-II). The unordered M-RNNs (ZM-RNN or AM-RNN-I) cannot meet the above
requirement due to the variable skip length of each module at different moments. A two-way strategy
is designed to solve the problem that the updating speed of modules cannot be strictly distinguished.

THE PROPOSED STRATEGY FOR TWO-WAY PRUNING

Previous work by the authors has shown that CW-RNN can also perform well when there is not only the
slow-to-fast connection but also the fast-to-slow connection (Huang et al., 2019). The fast-to-slow connection
means a module at time t-1 can be connected to a module with the slower-updated frequency at time t. On
this basis, a two-way strategy is designed for the unordered M-RNNs, whose principle is to decide which
sub-matrices in M have all 1 or all 0 elements according to the pruning threshold p. This strategy is similar
to the sparse connections of the reservoir in ESN (Hu et al., 2020), except that it is to prune the recurrent
connections between modules directly rather than between neurons. To ensure the basic performance of
the model, the two-way strategy first retains the recurrent connections of the same module at adjacent
moments (i.e., all elements of Mii are 1). The goal is to form a simple fixed, non-random topology in the
network to ensure that each module is fully connected at different times (Rodan et al., 2010). Secondly,
the remaining sub-matrices (Mij, i¹j) are determined according to their random probabilities to control the
sparsification of recurrent connections. The goal is to make use of random connections between different
modules to achieve undifferentiated pruning. This poses a new question: is it better to generate a mask
matrix M for the entire sequence or a new M for each step? Considering that the candidate state affected by
M will later be used for learning the module priority, it is recommended to generate a new M for each step
to ensure sufficient dynamic changes in the model (Qiao et al., 2016). Figure 8(b) shows an illustration of
this strategy. Different from Figure 8(a), the updated speed of each module in 8(b) is variable at different
moments, so there are both slow-to-fast and fast-to-slow connections in the hidden layer of adjacent
moments. Besides, the one-way strategy forces the same pruning of the recurrent connections, while the
two-way strategy allows different pruning at different times.

To sum up, as a general framework with modules as the minimum updated unit, M-RNN needs
to pay attention to the following two parts. One is the updated strategy of hidden modules, including
fixed strategy, random strategy, and adaptive strategy without order or with the order. The other is the

Figure 8. Illustration of two pruning strategies of recurrent connections for M-RNN; for (a), the larger the index of the module,
the slower the update; for (b), the fast and slow modules cannot be strictly separated, because the updated frequency of the
module at different times is different

Journal of Database Management
Volume 34 • Issue 1

11

pruning strategy of recurrent connections, including one-way strategy and two-way strategy. According
to different combinations of the above two parts, four models can be obtained as shown in Table 1.

EXPERIMENTS AND RESULTS

In this section, all the above M-RNNs are compared with some popular gated RNNs for electric load
forecasting. All models are implemented with Tensorflow. The experiments are performed according
to the following principles: 1) all models contain only one hidden layer and have the same number
of neurons; 2) the output layer is added only to the last moment of the sequence; 3) no tricks, such
as recurrent dropout (Semeniuta et al., 2016), batch normalization (Laurent et al., 2016), gradient
clipping (Pascanu et al., 2013), etc., are adopted.

Experimental Settings
A real-world dataset provided by the Australian Energy Market Operator is used for the one-day-ahead
prediction of the load. The daily maximum load values from 2014 to 2017 in Queensland are selected
for the experiment, among which the data from 2014 to 2016 are taken as the training set, the first six
months of 2017 as the validation set, and the last six months as the test set. Z-Score standardization
is adopted for data preprocessing to make its distribution more regular. To investigate the memory
capacity of each model for long-term information, the time step is set to 365(the length of a year).
The number of hidden neurons is set to 210. For M-RNN, the hidden layer is divided into 7 modules,
with 30 neurons in each module. The initial weights are drawn from a truncated normal distribution
with zero mean and a standard deviation of 0.01. All models are trained for 20000 epochs using
RMSProp optimizer, where the learning rate could be optimized in {10-3, 10-4, 10-5} and the decay
rate is set to 0.9. Other settings are as follows: the batch size=128; the updated threshold ε=0.5; and
the pruning threshold p=0.5. Finally, the number of parameters (NP), mean absolute percentage error
(MAPE), and normalized root means square error (NRMSE) are used to comprehensively evaluate
the performance of each model. The equations of MAPE and NRMSE are as follows:

MAPE
y y
y
t t

t

�
�

�
�

� 100% , 	 (11)

NRMSE
y y

y y

t t

t t

�
�

�

�

�

()

()

,

2

2

	 (12)

where • is the operation of the mean; yt and yt
* represent the predicted value and the ground-truth value

respectively. The smaller the value of the above indicators is, the higher the predictive accuracy will be.

Table 1. Summary of multiple models belonging to M-RNN obtained from the combination of different strategies

Model Updated Strategy of Hidden Modules Pruning Strategy of Recurrent Connections

CW-RNN The fixed strategy The one-way pruning strategy

ZM-RNN The random strategy The two-way pruning strategy

AM-RNN-I The adaptive strategy without order The two-way pruning strategy

AM-RNN-II The adaptive strategy with order The one-way pruning strategy

Journal of Database Management
Volume 34 • Issue 1

12

Experimental Results
Table 2 shows the performance of each model over the test set. In terms of predictive accuracy, Vanilla
RNN is the worst performing model due to the gradient problem of the long sequence. Among the three
models based on gate mechanism, GRU has the best performance, followed by MGU, and LSTM has
the worst performance. This indicates that more network parameters do not mean better performance.
Finally, among the four models based on multi-timescale connections, CW-RNN is inferior to LSTM
in MAPE but superior to it in NRMSE. ZM-RNN performs better than LSTM but worse than MGU
and GRU. This fully illustrates the inadequacy of module updates using fixed or random strategies.
Both versions of the proposed AM-RNN are superior to the aforementioned models. This indicates that
the modeling capability of AM-RNN is significantly enhanced by introducing adaptive updating of
modules in a data-driven way. In terms of training complexity, the difference in network architecture
determines the difference in the number of training parameters. According to the structure of each
model, the number of parameters can be deduced by (13)-(18).where ni=1, nh=210, and no=1 represent
the number of neurons in the input, hidden and output layers respectively; k=7 refers to the number of
modules into which the hidden layer is divided; nM (k n kM≤ ≤ 2) is the number of nonzero sub-
matrices in mask matrix M obtained by using the two-way pruning strategy. For the gated RNNs
(including LSTM, GRU, and MGU), the number of parameters increases with the number of gates.
While the number of parameters of M-RNN is not only much less than gated RNN but even less than
Vanilla RNN. This is thanks to the partial update of modules and pruning of recurrent connections taken
by M-RNN. Note that since ZM-RNN and AM-RNN-I prune the recurrent connection according to
probability, the number of parameters is an indeterminate value. When they happen to have the same
amount of weight pruning as CW-RNN, the number of parameters can be considered equal. Finally,
AM-RNN-II has the same number of parameters as CW-RNN because both adopt a slow-to-fast strategy
for pruning the recurrent connection. As can be seen from Table 2, AM-RNN-II requires only 58% of

Table 2. Experimental results on the Queensland load dataset (number of modules k=7)

Model # parameters MAPE (%) NRMSE

Vanilla RNN ≈45K 2.6698 0.6817

Gated RNNs

LSTM ≈181K 2.2442 0.6393

GRU ≈135K 1.8895 0.5537

MGU ≈90K 2.1157 0.5879

Modularized RNNs

CW-RNN ≈26K 2.6414 0.6215

ZM-RNN ≈7K~45K 2.1782 0.6348

AM-RNN-I ≈7K~45K 1.6833 0.5148

AM-RNN-II ≈26K 1.6764 0.5176

NP n n n n nVRNN h i h o h� � � � �() () ,1 12
 (13)

NP n n n n nLSTM h i h o h� � � � �4 4 4 12() () , (14)

NP n n n n nGRU h i h o h� � � � �3 3 3 12() () , (15)

NP n n n n nMGU h i h o h� � � � �2 2 2 12() () , (16)

NP NP n n n k k k n nAM RNN II CW RNN h i h o h� � � � � � � � �= 1() () () () ,2 1 2 1 (17)

NP NP n n n k n n nAM RNN I ZM RNN h i h M o h� � �� � � � � �() () () ,1 2 1 (18)

Journal of Database Management
Volume 34 • Issue 1

13

Vanilla RNN’s parameters to reduce MAPE by 37%. Compared to the best-performing GRU in the
gated RNN, it takes only 19% of GRU’s parameters to reduce MAPE by 11%.

Figure 9 shows more detail of the residuals between the ground-truth value and the predicted value
of all models. The larger the black area in the figure indicates the larger the predictive error. In particular,
it can be observed that the areas with large residuals tend to be relative to the same intervals. These
intervals are characterized by large abnormal fluctuations that make load changes particularly difficult
to predict. Especially in the last segment, which corresponds to December 2017, due to the summer
in Australia, the load shows a significant upward trend. Nevertheless, both versions of the proposed
AM-RNN can still be very close to the target time series and obtain the best predictive accuracy. Note
that their performance is very similar, with only minor differences. The consistent high performance
of AM-RNN across different versions can be explained by its adaptive multi-timescale connectivity.

DISCUSSIONS

For M-RNN, the most important parameter is considered to be the number of modules in the hidden
layer, because it determines the diversity of multi-timescale connections. To better determine the
applicability of the proposed AM-RNNs, comparative experiments with different numbers of modules
were carried out on the Queensland load dataset with other experimental settings unchanged. Since
this parameter does not exist for Vanilla RNN and gated RNNs, Table 3 shows only the performance of
multiple models belonging to M-RNN. The experimental results show that both versions of AM-RNN

Figure 9. Illustration of the residuals between the predicted value of each model and the ground-truth value of the Queensland
load dataset, where the larger the black area indicates the larger the residual

Journal of Database Management
Volume 34 • Issue 1

14

continue to outperform CW-RNN and ZM-RNN based on different numbers of modules. Overall,
AM-RNN-II is slightly better than AM-RNN-I.

To further evaluate the performance of AM-RNNs, additional experiments are carried out on
a baseline dataset for chaotic time series prediction. Firstly, a time series containing 1700 sampling
points is generated using the following Mackey-Glass equation:

dx t
dt

x t
x t

x t() ()

()
()�

�
� �

�
0.2

0.1
10

�
�1

	 (19)

where the initial condition x(0)=0.5 and the chaotic attractor τ =17. The first 1500 points are used
for training, while the last 200 points are divided equally for validation and testing. The number of
hidden neurons is set to 12 and can be equally divided into 6 modules for M-RNN. The initial weights
are drawn from a truncated normal distribution with zero mean and a standard deviation of 0.1. All
models are trained using Adam optimizer with the learning rate 10-4. All other settings remain the
same as the previous experiment except that the batch size=100. To assess the dependencies of
different lengths, time steps are set to 50, 100, and 150 respectively, with the results shown in Table
4. Consistent with the previous experimental results, both versions of AM-RNN show good
performance. The performance of AM-RNN-II is particularly outstanding. It almost always has the
best predictive accuracy regardless of the time-step size.

Table 3. Experimental results for different numbers of modules on the Queensland load dataset

Model
Number of Modules k=5 Number of Modules k=7 Number of Modules k=10

MAPE (%) NRMSE MAPE (%) NRMSE MAPE (%) NRMSE

CW-RNN 2.1468 0.6599 2.6414 0.6215 2.7419 0.6707

ZM-RNN 1.9327 0.5572 2.1782 0.6348 2.2624 0.6237

AM-RNN-I 1.8055 0.5652 1.6833 0.5148 1.7231 0.5369

AM-RNN-II 1.7138 0.5404 1.6764 0.5176 1.7270 0.5368

Table 4. Experimental results of different time steps on the MG dataset

Model
Time step=50 Time step=100 Time step=150

MAPE (%) NRMSE MAPE (%) NRMSE MAPE (%) NRMSE

Vanilla RNN 1.20E-1 5.68E-3 7.10E-2 3.31E-3 8.39E-2 4.02E-3

Gated RNNs

LSTM 1.13E-1 5.17E-3 6.94E-2 3.38E-3 7.21E-2 3.70E-3

GRU 3.85E-2 2.17E-3 5.03E-2 2.42E-3 2.37E-2 1.33E-3

MGU 4.05E-2 1.88E-3 5.19E-2 2.44E-3 3.29E-2 1.55E-3

Modularized RNNs

CW-RNN 3.77E-2 1.83E-3 7.02E-2 3.26E-3 6.42E-2 3.07E-3

ZM-RNN 3.31E-2 1.61E-3 4.35E-2 2.11E-3 5.34E-2 2.57E-3

AM-RNN-I 3.24E-2 1.55E-3 3.32E-2 1.61E-3 3.28E-2 1.68E-3

AM-RNN-II 3.12E-2 1.57E-3 2.15E-2 9.80E-4 1.77E-2 8.50E-4

Journal of Database Management
Volume 34 • Issue 1

15

CONCLUSION

RNNs have gained widespread attention in many time-related tasks, such as electric load forecasting
studied in this article. However, capturing complex time dependencies in sequence data, especially
long-term dependencies, remains an open challenge for RNNs. By introducing the skip length of the
module, this article mainly studies the general framework called the modularized RNN (M-RNN).
The adaptive M-RNN (AM-RNN) is designed under this framework, which can capture long-term
dependencies adaptively thanks to the multi-timescale recurrent connections. The main feature of
AM-RNN is to dynamically adjust the updated frequency of each module by calculating its priority.
By reducing the number of the module being updated to obtain longer skip lengths, AM-RNN provides
shortcuts for gradient propagation. Finally, two versions of AM-RNN are obtained by combining
the updated strategy of hidden modules and the pruning strategy of recurrent connections, and their
superiority is proved by experiments. The experimental results demonstrate that AM-RNN-II is
superior not only to the Vanilla RNN and the popular gated RNNs but also to the existing multi-
timescale RNNs. In the future, the authors will further study the application of AM-RNN in other
fields of smart cities, such as traffic flow prediction and air quality prediction.

ACKNOWLEDGMENT

The authors wish to thank the reviewers for their thorough and helpful remarks. This research was
supported by the National Natural Science Foundation of China [grant numbers 61772136, 61672159].

Journal of Database Management
Volume 34 • Issue 1

16

REFERENCES

Arjovsky, M., Shah, A., & Bengio, Y. (2016). Unitary evolution recurrent neural networks. In Proceedings of
International Conference on Machine Learning (pp. 1120-1128).

Bendaoud, N. M. M., & Farah, N. (2020). Using deep learning for short-term load forecasting. Neural Computing
& Applications, 32(18), 15029–15041. doi:10.1007/s00521-020-04856-0

Bianchi, F. M., Maiorino, E., Kampffmeyer, M. C., Rizzi, A., & Jenssen, R. (2017). Recurrent neural networks
for short-term load forecasting: an overview and comparative analysis. Springer. doi:10.1007/978-3-319-70338-1

Campos, V., Jou, B., Giró-i-Nieto, X., Torres, J., & Chang, S. F. (2018). Skip RNN: Learning to skip state updates
in recurrent neural networks. In Proceedings of International Conference on Learning Representations (pp. 1-17).

Chang, S., Zhang, Y., Han, W., Yu, M., Guo, X., Tan, W., & Huang, T. S. (2017). Dilated recurrent neural
networks. In Proceedings of Advances in Neural Information Processing Systems (pp. 77-87).

Chen, Y., Kloft, M., Yang, Y., Li, C., & Li, L. (2018). Mixed kernel based extreme learning machine for electric
load forecasting. Neurocomputing, 312, 90–106. doi:10.1016/j.neucom.2018.05.068

Cheng, Z., Xu, Y., Cheng, M., Qiao, Y., Pu, S., Niu, Y., & Wu, F. (2020). Refined gate: A simple and effective
gating mechanism for recurrent units. arXiv preprint arXiv:2002.11338.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014).
Learning phrase representations using RNN encoder–decoder for statistical machine translation. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing (pp. 1724-1734). ACL. doi:10.3115/
v1/D14-1179

Dudek, G., Pełka, P., & Smyl, S. (2021). A hybrid residual dilated LSTM and exponential smoothing model for
midterm electric load forecasting. IEEE Transactions on Neural Networks and Learning Systems. doi:10.1109/
TNNLS.2020.3046629 PMID:33417572

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211. doi:10.1207/
s15516709cog1402_1

Fekri, M. N., Patel, H., Grolinger, K., & Sharma, V. (2021). Deep learning for load forecasting with smart meter
data: Online adaptive recurrent neural network. Applied Energy, 282, 116177. doi:10.1016/j.apenergy.2020.116177

Fernando, T., Denman, S., McFadyen, A., Sridharan, S., & Fookes, C. (2018). Tree memory networks for
modelling long-term temporal dependencies. Neurocomputing, 304, 64–81. doi:10.1016/j.neucom.2018.03.040

Gallicchio, C., Micheli, A., & Pedrelli, L. (2017). Deep reservoir computing: A critical experimental analysis.
Neurocomputing, 268, 87–99. doi:10.1016/j.neucom.2016.12.089

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A search space
odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. doi:10.1109/
TNNLS.2016.2582924 PMID:27411231

Hafeez, G., Alimgeer, K. S., & Khan, I. (2020). Electric load forecasting based on deep learning and optimized
by heuristic algorithm in smart grid. Applied Energy, 269, 114915. doi:10.1016/j.apenergy.2020.114915

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778). IEEE.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
doi:10.1162/neco.1997.9.8.1735 PMID:9377276

Hong, T., & Fan, S. (2016). Probabilistic electric load forecasting: A tutorial review. International Journal of
Forecasting, 32(3), 914–938. doi:10.1016/j.ijforecast.2015.11.011

Hu, H., Wang, L., Peng, L., & Zeng, Y. R. (2020). Effective energy consumption forecasting using enhanced
bagged echo state network. Energy, 193, 116778. doi:10.1016/j.energy.2019.116778

http://dx.doi.org/10.1007/s00521-020-04856-0
http://dx.doi.org/10.1007/978-3-319-70338-1
http://dx.doi.org/10.1016/j.neucom.2018.05.068
http://dx.doi.org/10.3115/v1/D14-1179
http://dx.doi.org/10.3115/v1/D14-1179
http://dx.doi.org/10.1109/TNNLS.2020.3046629
http://dx.doi.org/10.1109/TNNLS.2020.3046629
http://www.ncbi.nlm.nih.gov/pubmed/33417572
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1016/j.apenergy.2020.116177
http://dx.doi.org/10.1016/j.neucom.2018.03.040
http://dx.doi.org/10.1016/j.neucom.2016.12.089
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://www.ncbi.nlm.nih.gov/pubmed/27411231
http://dx.doi.org/10.1016/j.apenergy.2020.114915
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1016/j.ijforecast.2015.11.011
http://dx.doi.org/10.1016/j.energy.2019.116778

Journal of Database Management
Volume 34 • Issue 1

17

Huang, F., Zhuang, S., & Yu, Z. (2019). Power load prediction based on an improved clock-work RNN. In
Proceedings of International Conference on Ubiquitous Intelligence and Computing (pp. 596-601). IEEE.
doi:10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00140

Huang, Q., Li, J., & Zhu, M. (2020). An improved convolutional neural network with load range discretization
for probabilistic load forecasting. Energy, 203, 117902. doi:10.1016/j.energy.2020.117902

Jing, L., Gulcehre, C., Peurifoy, J., Shen, Y., Tegmark, M., Soljacic, M., & Bengio, Y. (2019). Gated orthogonal
recurrent units: On learning to forget. Neural Computation, 31(4), 765–783. doi:10.1162/neco_a_01174
PMID:30764742

Koutnik, J., Greff, K., Gomez, F., & Schmidhuber, J. (2014). A clockwork RNN. In Proceedings of International
Conference on Machine Learning (pp. 1863-1871). IEEE.

Krueger, D., Maharaj, T., Kramár, J., Pezeshki, M., Ballas, N., Ke, N. R., & Pal, C. (2017). Zoneout: Regularizing
rnns by randomly preserving hidden activations. In Proceedings of International Conference on Learning
Representations (pp. 1-11). IEEE.

Laurent, C., Pereyra, G., Brakel, P., Zhang, Y., & Bengio, Y. (2016). Batch normalized recurrent neural networks.
In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 2657-2661).
IEEE.

Li, J., Deng, D., Zhao, J., Cai, D., Hu, W., Zhang, M., & Huang, Q. (2021). A novel hybrid short-term load
forecasting method of smart grid using MLR and LSTM neural Network. IEEE Transactions on Industrial
Informatics, 17(4), 2443–2452. doi:10.1109/TII.2020.3000184

Martens, J., & Sutskever, I. (2012). Training deep and recurrent networks with hessian-free optimization. In
Neural networks: Tricks of the trade (pp. 479–535). Springer. doi:10.1007/978-3-642-35289-8_27

Moirangthem, D. S., & Lee, M. (2021). Hierarchical and lateral multiple timescales gated recurrent units with
pre-trained encoder for long text classification. Expert Systems with Applications, 165, 113898. doi:10.1016/j.
eswa.2020.113898

Mordjaoui, M., Haddad, S., Medoued, A., & Laouafi, A. (2017). Electric load forecasting by using dynamic neural
network. International Journal of Hydrogen Energy, 42(28), 17655–17663. doi:10.1016/j.ijhydene.2017.03.101

Ouyang, T., He, Y., Li, H., Sun, Z., & Baek, S. (2019). Modeling and forecasting short-term power load with
copula model and deep belief network. IEEE Transactions on Emerging Topics in Computational Intelligence,
3(2), 127–136. doi:10.1109/TETCI.2018.2880511

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. In
Proceedings of International Conference on Machine Learning (pp. 1310-1318).

Patel, R., Patel, M. R., & Patel, R. V. (2019). A review: Introduction and understanding of load forecasting.
Journal of Applied Science and Computations, 4, 1449–1457.

Qiao, J., Li, F., Han, H., & Li, W. (2016). Growing echo-state network with multiple subreservoirs. IEEE
Transactions on Neural Networks and Learning Systems, 28(2), 391–404. doi:10.1109/TNNLS.2016.2514275
PMID:26800553

Rodan, A., & Tino, P. (2010). Minimum complexity echo state network. IEEE Transactions on Neural Networks,
22(1), 131–144. doi:10.1109/TNN.2010.2089641 PMID:21075721

Schoene, A. M., Turner, A., De Mel, G. R., & Dethlefs, N. (2021). Hierarchical Multiscale Recurrent Neural
Networks for Detecting Suicide Notes. IEEE Transactions on Affective Computing. Advance online publication.
doi:10.1109/TAFFC.2021.3057105

Semeniuta, S., Severyn, A., & Barth, E. (2016). Recurrent dropout without memory loss. In Proceedings of
International Conference on Computational Linguistics: Technical Papers (pp. 1757-1766). ACL.

Shen, Y., Tan, S., Sordoni, A., & Courville, A. (2019). Ordered neurons: Integrating tree structures into
recurrent neural networks. In Proceedings of International Conference on Learning Representations (pp. 1-14).
OpenReview.

http://dx.doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00140
http://dx.doi.org/10.1016/j.energy.2020.117902
http://dx.doi.org/10.1162/neco_a_01174
http://www.ncbi.nlm.nih.gov/pubmed/30764742
http://dx.doi.org/10.1109/TII.2020.3000184
http://dx.doi.org/10.1007/978-3-642-35289-8_27
http://dx.doi.org/10.1016/j.eswa.2020.113898
http://dx.doi.org/10.1016/j.eswa.2020.113898
http://dx.doi.org/10.1016/j.ijhydene.2017.03.101
http://dx.doi.org/10.1109/TETCI.2018.2880511
http://dx.doi.org/10.1109/TNNLS.2016.2514275
http://www.ncbi.nlm.nih.gov/pubmed/26800553
http://dx.doi.org/10.1109/TNN.2010.2089641
http://www.ncbi.nlm.nih.gov/pubmed/21075721
http://dx.doi.org/10.1109/TAFFC.2021.3057105

Journal of Database Management
Volume 34 • Issue 1

18

Fangwan Huang is a senior lecturer at the College of Mathematics and Computer Science, Fuzhou University,
China. She received the B.S. and M.E. degrees in Computer Science and technology from Fuzhou University, China
in 2002 and 2005. Fuzhou University, China in 2022. Her research interests include computational intelligence,
big data analysis, and mobile crowdsensing.

Shijie Zhuang is a student at the College of Mathematics and Computer Science, Fuzhou University, China. He
received the B.S. and M.E. degrees in Computer Science and technology from Fuzhou University, China in 2017
and 2020. His research interests include computational intelligence and deep learning.

Zhiyong Yu is a full professor in the College of Mathematics and Computer Science, Fuzhou University, Fuzhou,
China. He received the M.E. and Ph.D. degrees in computer science and technology from Northwestern
Polytechnical University, Xi’an, China in 2007 and 2011, respectively. He was also a visiting student at Kyoto
University, Kyoto, Japan, from 2007 to 2009, and a visiting researcher at the Institut Mines-Telecom, TELECOM
SudParis, Evry, France, from 2012 to 2013. His current research interests include pervasive computing, mobile
social networks, and mobile crowdsensing.

Yuzhong Chen received the B.S. and Ph.D. degrees in communication and information system from the University
of Science and Technology of China, in 2000 and 2005, respectively. He is currently a Professor with the College
of Mathematics and Computer Science, Fuzhou University. His current research interests include computational
intelligence, natural language processing, and data mining. He is also the Vice Chief of the Fujian Provincial Key
Laboratory of Network Computing and Intelligent Information Processing.

Kun Guo is currently an associate professor with the College of Mathematics and Computer Science at Fuzhou
University. He received the M.E. and Ph.D. degrees in computer science and technology and management from
Fuzhou University, Fuzhou, China in 2005 and 2012, respectively. He was also a visiting scholar at Hong Kong
University of Science and Technology, Hong Kong, China, from 2019 to 2020. He is a member of China Computer
Federation (CCF) and Fujian Provincial Key Laboratory of Network Computing and Intelligent Information
Processing. His research interests include complex network data mining, distributed parallel computation and
grey system theory.

Shi, H., Xu, M., & Li, R. (2018). Deep learning for household load forecasting—A novel pooling deep RNN.
IEEE Transactions on Smart Grid, 9(5), 5271–5280. doi:10.1109/TSG.2017.2686012

Vorontsov, E., Trabelsi, C., Kadoury, S., & Pal, C. (2017). On orthogonality and learning recurrent networks
with long term dependencies. In Proceedings of International Conference on Machine Learning (pp. 3570-
3578). MLR Press.

Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural networks: LSTM cells and network
architectures. Neural Computation, 31(7), 1235–1270. doi:10.1162/neco_a_01199 PMID:31113301

Yu, Z., Zheng, X., Huang, F., Guo, W., Sun, L., & Yu, Z. (2020). A framework based on sparse representation
model for time series prediction in smart city. Frontiers of Computer Science, 15(1), 1–13.

Zhao, X., Gao, W., Qian, F., & Ge, J. (2021). Electricity cost comparison of dynamic pricing model based on
load forecasting in home energy management system. Energy, 229, 120538. doi:10.1016/j.energy.2021.120538

Zhou, G. B., Wu, J., Zhang, C. L., & Zhou, Z. H. (2016). Minimal gated unit for recurrent neural networks.
International Journal of Automation and Computing, 13(3), 226–234. doi:10.1007/s11633-016-1006-2

Zhuang, S., & Yu, Z., Guo w., & Huang, F. (2020). Short term load forecasting via zoneout-based multi-time
scale recurrent neural network. Computer Science, 47(9), 105–109.

http://dx.doi.org/10.1109/TSG.2017.2686012
http://dx.doi.org/10.1162/neco_a_01199
http://www.ncbi.nlm.nih.gov/pubmed/31113301
http://dx.doi.org/10.1016/j.energy.2021.120538
http://dx.doi.org/10.1007/s11633-016-1006-2

