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ABSTRACT

This paper introduces an innovative approach for the urban traffic flow prediction (TFP) that utilizes big 
data and deep learning (D-L) to improve accuracy, reducing the incidence of large errors commonplace 
in traditional methods. By implementing this method, sustainable urban developments are able to 
be achieved more effectively in the future. First, an Attention-CNN-GRU-ResNet (ACGR) TFP 
model is built with the D-L network by gridding the urban traffic flow (TF) into a three-dimensional 
S-T tensor sequence. An attention-based GRU is then introduced to combine spatial and channel 
attention in the traditional GRU, and the time dependence and spatio-temporal (S-T) heterogeneity 
of TF in each subset are effectively extracted. Finally, a ResNet module is introduced to capture 
the S-T dependency, which helps avoid the deep network degradation caused by excessive layers. 
Results show the proposed method generates the minimum value in RMSE, MAE, and MAPE with 
18.32, 10.66, and 5.34, respectively. This research provides a new idea to alleviate data sparsity and 
consider the difference of input features and offers a novel approach to solve the S-T learning tasks 
associated with modeling.
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INTRoDUCTIoN

With the development of Internet technology and the popularization of location-based services, 
researchers have discovered valuable knowledge through the analysis and mining of urban S-T big 
data, which has promoted people’s lives, improved urban operation efficiency, reduced resource 
consumption, and achieved sustainable urban development (Wang et al., 2020; Li. 2021; Cheng et al., 
2019). In recent years, significant advances have been made in artificial intelligence-based algorithms, 
which can make accurate predictions of complex problems with minimal domain knowledge and 
strong generalization ability, and AI-based algorithms have found a wide range of applications. These 
characteristics lay a foundation for studying traffic flow (TF) prediction (Li et al., 2021; Shanshan 
et.al., 2022). As an important part of urban S-T big data mining, TFP plays a key role in developing 
cities and intelligent transportation. Transportation, a field crucial to daily life, can help promote 
high-quality social and economic development. To achieve safe, comfortable, convenient, and green 
transportation is a key link to improving people’s sense of security and happiness and ensuring social 
stability (Liu et al., 2020; Huang 2019; Nguyen et al., 2020).
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The surge in private cars will inevitably lead to traffic congestion. The toxic substances emitted 
by vehicles in the process of congestion will not only damage people’s health, induce various diseases, 
and affect life and work efficiency but also cause issues such as environmental pollution, resource 
waste, and economic losses (Zhang et al., 2019; He, 2020; Zhang et al., 2020). Accurate TFP can help 
analyze road planning, recommend more intelligent travel routes, and reduce traffic accidents. At the 
same time, if we can realize the urban TFP we can provide a reference for residents to travel, avoid 
hot traffic areas, ease traffic pressure, reduce traffic control pressure, and improve travel efficiency 
(Cheng et al., 2021; Cui 2020; Wang et al., 2020).

The parameter method with statistics is a general TFP method, and the Auto-Regressive Integrated 
Moving Average (ARIMA) model is a typical parameter method. In the 1970s, Ahmed and Cook 
(1979) first used ARIMA in TFP field to predict short-term TF of the expressway. Later, scholars put 
forward a variety of improved models, such as KARIMA (Voort et al., 1996), SARIMA (Williams 
& Hoel, 2019), and STARIMA (Kamarianakis & Prastacos, 2003).

In addition, as an important part of urban S-T big data mining, TFP is key to developing cities and 
intelligent transportation and has far-reaching practical significance. For example, accurate TFP can 
help analyze road planning, recommend more intelligent travel routes, and reduce traffic accidents. 
The existing methods to solve the urban TFP mainly fall into two types. The first is traditional 
statistical prediction methods, such as Moving Average (MA), ARIMA (Williams & Hoel, 2020), 
etc., and this method only applies to linear data. However, the traditional statistical methods cannot 
learn such complex S-T dependence because TF data is complex and nonlinear with highly complex 
S-T characteristics. The other method is a data-driven prediction model, which makes predictions by 
learning the change rules of data. This method makes predictions without considering the dynamic 
characteristics of traffic scenes. Among them, this method has the best performance at present, such 
as STResNet (Zhang et al., 2017), STDN (Yao et al., 2019), and ConvLSTM (Shi et al., 2021).

The urban TFP mainly faces the following three new challenges: (1) The data distribution is 
uneven, and some data are sparse or difficult to obtain. (2) The related urban S-T data learning task is 
difficult to model. (3) The urban traffic data are in diverse forms, which makes it difficult to express 
them uniformly with the image matrix. Therefore, new data representation forms need to be introduced, 
and unique data characteristics have different impacts on the final prediction (Zhang et al., 2019; Du 
2020; Zhang & Huang, 2019). How to extract the S-T correlation features of complex road networks, 
and use D-L and big data technology to achieve accurate short-term TFP, have thus become a hot spot 
in the industry (Bai et al., 2020; Li, 2021), to provide new technical ideas and effective methods for 
urban S-T big data analysis. The second part of the article describes the related research, the third 
part describes the abortion flow prediction model based on deep learning; the fourth part describes 
the experimental results and analysis; and the fifth part describes the conclusion.

ReLATeD ReSeARCH

Urban TFP is a key component in S-T data mining. With various position sensors used in the era 
of big data, urban S-T big data have been generated in massive amounts, and the data forms have 
become more diversified than ever. The great variety in data form and the increasingly complex data 
correlation pose new research challenges to the existing S-T data mining methods.

Zhang et al. (2021) used D-L to learn the deep S-T features of TF from traffic data and established 
a combined prediction model of TF GGCN-SA with D-L. The soft attention mechanism was introduced 
to aggregate the S-T information in different neighborhoods. This method, however, cannot use data 
to achieve better analysis and prediction of traffic conditions when the data is sparse in the target 
city. Zhang (2020) proposed a multi-task learning gated recursive unit with residual mapping based 
on D-L to improve the low accuracy of traffic state prediction of intelligent transportation systems. 
Accurate prediction was achieved with the introduction of feature engineering. However, it is difficult 
for this method to effectively correlate multi-modal urban S-T data and perform joint analysis on 
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different analysis tasks. Zhou et al. (2019) proposed a new multi-model integration framework based 
on D-L by using a stackable automatic encoder to extract the relationship in TF data and fine-tune 
the architecture, aiming to overcome the weakness that the traditional single TFP model is hardly 
applicable to different scenarios. This method, however, fails to consider the impact of traffic speed, 
road occupancy, and other data characteristics on TF. Zhao et al.(2020) studied the applicability of 
the Time Convolution Network (TCN) in TFP, accurately captured the S-T evolution of TF with 
TCN, and proposed a D-L framework for short-term city-wide TFP. However, this method reduces 
the convergence speed while fully using S-T data in the city. Han and Huang (2020) compressed road 
network data based on correlation analysis and CX decomposition and used the spectral decomposition 
method to eliminate the impact of TF trend items on accuracy. A new TFP method with D-L was 
proposed on this basis. However, this method does not consider the spatial features of TF data. Du et 
al. (2020) realized adaptive learning of S-T and multi-modal traffic data using attention mechanism 
and gave a hybrid multi-modal D-L method for TFP. However, this method fails to fully consider the 
correlation between traffic conditions, and the prediction accuracy needs further improvement. Han et 
al. (2019) proposed a parallel S-T D-L network for highway TFP using CNN to learn TF information 
characteristics from the time dimension and LSTM to learn TF information characteristics from the 
spatial dimension. However, this method does not adapt well to the vastly changing traffic situation.

To overcome the weaknesses in the traditional urban TFP methods, namely large errors and 
inaccurate long-term prediction of the flow of people, this paper proposes a big data-driven urban 
TFP method based on D-L. The foundation concepts are, first, by gridding urban TF into three-
dimensional S-T tensor series, urban TFP is equivalent to multi-dimensional S-T tensor prediction. 
Second, the ResNet module is introduced to acquire S-T dependencies. Third, the attention-based 
GRU is introduced to improve performance. Compared with the traditional urban TFP methods, the 
proposed method is innovative in the following aspects:

1.  The translation invariance of CNN structure is used to cut down the model calculation and 
enhance the prediction efficiency.

2.  The introduction of attention-based GRU model, including spatial attention, GRU, and channel 
attention can capture the time correlation of TF in more detail.

3.  To overcome the difficulties caused by excessive layers ResNet module is introduced via identity 
mapping to calculate residuals, which enhances the model’s overall performance.

TFP MoDeL BASeD oN D-L NeTwoRK

The TFP Model Framework
The direct prediction used here can predict the future TF volume of T times resolution by inputting 
historical values into the prediction model. The framework of the proposed urban TFP is shown in 
Figure 1.

In Figure 1, x x x x x x
t k t k t k t t t− − + − + − −( ), , ,..., , ,

1 2 2 1
 represents the historical value and 

y y y y y y
t t t t T t T t T+ + + + − + − +( )1 2 3 2 1
, , ,..., , ,  represents future TF with T times resolution. Before training 

the prediction model, any prediction interval T needs to be predefined. The sampling period in the 
data set can be the same as the predefined prediction interval.

Attention-CNN-GRU-ResNet (ACGR) Model

Urban TF can be gridded into 3-dimensional S-T tensor series A
t k t k
p q w
− +
× ×
~

, so urban TFP is multi-
dimensional S-T tensor prediction. To solve this problem, an Attention-CNN-GRU-ResNet (ACGR) 
model is proposed with its framework shown in Figure 2.
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Figure 1. Overall urban TFP framework

Figure 2. Framework of the ACGR model
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The mathematical expression of the three-dimensional S-T tensor prediction problem is shown 
in formula (1) below:

A G A H
t
p q w

ST
× × = ( ),  (1)

In the formula, A
ST

 represents a collection of historical S-T flow tensors. A
t
p q w× ×  stands for the 

prediction target of time t . H  is influencing factors. The difficulty of prediction lies in accurately 
modeling the S-T relationship simultaneously.

As can be seen in Figure 2, the ACGR model is composed of six parts. The input part introduces the 
time parameter of the adjustment table. The new attention-based GRU can effectively extract information 
dependence and S-T of TF. ResNet module extracts spatial correlation through convolution operation. In 
this way, the ACGR model can effectively extract and model the S-T relationship through these six modules.

ACG Model
The attention-based ConvGRU module has three parts: GRU, spatial, and channel attention. Its function 
is to get the time correlation of TF. The dataset includes hourly, daily, and weekly TF. The ACG 
model structure of the hourly mode is shown in Figure 3, and the daily mode is like the weekly mode.

The ConvGRU module based on hour attention receives tensors A
F
f p q× × ×2 , including the H hour TF 

approaching the target time t. In time t k− , the feature tensor is expressed as A
t k
p q
−
× ×2 . Figure 3 extracts 

spatial highlighted information by implementing a pooling operation. The application of aggregation 
operations has proven effective in highlighting information areas. Therefore, two spatial context 
descriptors can be obtained by using average pooling and maximum pooling operations: M

t k av

p q

− ( )
×  and 

M
t k

p q

− ( )
×
max

, representing average pooling features and maximum pooling. The average set feature M
t k av

p q

− ( )
× , 

and the maximum set feature M
t k

p q

− ( )
×
max

 are connected to the spatial feature tensor M
t k s

p q

− ( )
× ×2 . Then, a CNN 

with an s-shaped activation function generates spatial attention N
t k s

p q

− ( )
× ×2 . By multiplying the weight 

matrix and the feature graph. Finally, the spatial attention feature map A
t k s

p q

− ( )
× ×2  of time t k−  is obtained.

GRU Model
Because the traffic flow data is temporal and vulnerable to the front and back time slices, the RNN 
network can analyze the sequence data suitable for traffic flow research. The defects of gradient 
attenuation or explosion in the model of RNN, however, make it difficult to obtain the time dependence 
with a long time interval in the actual scenarios. The GRU model, a variant of RNN, can solve the 
above difficulties, and it has a simple structure and high efficiency. The GRU model, therefore, is 
a better solution to practical problems. Unlike LSTM, the GRU model combines its internal self-
circulating cell and hidden layer Hidden. It reconstructs the input and forgetting gates into update 
units and adds reset gates, thus modifying the LSTM hidden state calculation method. In a simpler 
model structure, it effectively shortens the model prediction time. Therefore, the differences between 
LSTM and GRU include: first, LSTM does better control of information flow than GRU; second, 
LSTM can maintain a longer sequence of information thanks to the transmission of its cell state; 
third, LSTM is less efficient. The GRU (Gated Recurrent Unit) model is a variation of the RNN. We 
show the basic principle of the GRU model in Figure 4.

CNN Model
CNN uses the local connection, weight sharing and other methods to solve the problems of general 
fully connected network, and is effective in reducing the number of parameters and speeding up the 
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training speed. Down sampling uses pooling to reduce the number of samples in each layer, thus 
improving the robustness of the model. For image related tasks, the CNN accelerates the training 
speed and ensures the processing effect by retaining feature parameters and reducing the number of 
parameters. However, convolution operation has translation invariance, while pooling operation has 

Figure 3. Framework of the ACG model
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local translation invariance, which makes CNN unable to process data in non-Euclidean space and 
inapplicable to graph structure data.

The basic structure of CNN is shown in Figure 5. The general CNN includes convolution, down 
sampling, and full connection layers. A multi-layer structure is possible with the down sampling layer. 
The introduction of Residual Learning in ResNet has overcome the degradation in deep networks 
and enabled researchers to train deeper networks.

ResNet Model
The network degradation happens because the current training method makes finding a good parameter 
for the deep network difficult.

Some scholars proposed ResNet module to solve the degradation problem. ResNet module can 
capture S-T dependency and avoid deep network degradation. In addition, ResNet can also mitigate 
gradient disappearance/explosion by introducing residuals. This process shortens the effective path 
from loss of input, and directly adds the delta of the endpoint layer of the shortcut to the derivation. 

Figure 4. Basic principle of GRU model

Figure 5. Basic structure of CNN
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Compared with VGG and other neural networks, ResNet has a greater advantage of introducing 
identity mapping because of excessive layers by calculating residuals.

The basic structure of ResNet is shown in Figure 6.

Prediction Model Algorithm Design
After introducing the model’s most critical feature modeling unit, the proposed model’s process will 
be explained. The pre-training process uses the source city’s training samples to obtain a preliminary 
urban TFP model. In the training phase, the objective function of model convergence is to minimize 
the error between the predicted P  and the real T . We show the specific training process in Figure 7.

eXPeRIMeNTAL ReSULTS AND ANALySIS

experimental environment Configuration
The environment involved in the experiments includes a personal computer and server in the model 
training stage. We show the experimental information in Table 1.

Model Super Parameter Settings
We show some super parameter settings in Table 2.

Datasets
Two datasets used in TFP, BikeNYC and TaxiNYC datasets, were selected for experimental verification.

BikeNYC has 9 million bicycle tracks. Among them, there are more than 600 bicycle stations 
and 10000 bicyclesEach bicycle track contains information such as start-stop, time stamp, longitude 
and latitude. The data from the first 11 months are used for training and validation; the rest is for 
testing. TaxiNYC has more than 160 million taxi tracks, with an average of more than 1.3 million taxi 
tracks per month. Each data contains information such as boarding and alighting time, boarding and 
alighting locations, and track distance. Again, the data from the first 11 months are used for training 
and validation, and the rest is used for testing.

Figure 6. Basic structure of ResNet module
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The experiment also uses external information data, such as weather and holidays. The weather 
data includes precipitation, snow, temperature, and wind speed, and considers the effects of working 
days, weekends, and holidays on the crowd flow model. Table 3 describes the details of the above 
two datasets and external information.

evaluation Indicators
Generally, the performance evaluation of urban TFP methods includes three criteria, namely, Root 
Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error 
(MAPE). Their calculation methods are shown in formula (2), (3) and (4), respectively:

RMSE
m

y y
t t

k

m

= −( )
=
∑1
1

ˆ  (2)

Figure 7. Algorithm of the urban TFP model
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Table 3. Datasets and external information

Data set BikeNYC           TaxiNYC

Longitude range -74.02∼-73.95 -74.02∼-73.95

Dimension range 40.67∼40.77 40.67∼40.77

Time range 1/1/2015∼31/12/2015 1/1/2015∼31/12/2015

Time interval 1 hour 1 hour

Grid size (16,16) (16,16)

Number of tracks 9 million 160 million

Number of time intervals 8754 8754

Weather information precipitation, snowfall, temperature

Date Working days, weekends, holidays

Table 1. Experimental environment configuration

Name Configuration

Operating system Windows 10

Computer’s CPU @ 2.90GHz 2.90 GHz

Computer’s processor Intel(R) Core(TM) i7-10700

Computer’s RAM 16GB

Server’s processor Intel(R) Xeon(R)

Server’s CPU E5-2620 v4 @ 2.10GHz

Server’s RAM 64GB

GPU NVIDIA TESLA P40

Programing language Python 3.7.6

Environment Tensorflow

Framework of model Keras 2.1.6

Table 2. Super parameter settings of the prediction model

Parameter Field Value

Loss Objective function keras.losses.huber_loss

Epochs Maximum iteration 5000

Batch_size Number of batch samples 64

Pic_shape Picture shape (256, 256, 3)

Learning_rate Learning rate 0.001

Lr_r_patience Learning rate attenuation 10

Lr_r_factor Learning rate decay rate 0.5

ES_patience Early stop round 20
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MAE
m
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t t
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m
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=
∑1
1

ˆ  (3)

MAPE
m
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y
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tk

m

=
−

×
=
∑1 100
1

ˆ
%  (4)

Model Training
First, the convergence of the proposed urban TFP on BikeNYC and TaxiNYC are simulated, and we 
show the results in Figure 8.

It can be seen from Figure 8 and Figure 9 that in the two datasets, BikeNYC dataset converges 
after the 60th epoch, while TaxiNYC dataset converges in about 75 epochs. However, the loss curve 

Figure 8. Change curve of loss under BikeNYC dataset

Figure 9. Change curve of loss with the TaxiNYC dataset
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obtained from the two datasets does not decline smoothly because it has many losses during training, 
especially the confrontation loss is difficult to train. This paper used 100 epochs to train the proposed 
model in the following experiments.

To get the optimal batch size, work was done with two datasets with a batch sizes of 50, 100, 
200, 300, 400, 500, 600, 700, 800, 900, and 1000, respectively. The results are shown in Figures 10 
and 11, respectively.

In Figures 10 and 11, when two different datasets are used, the three error values of the model are 
low when the batch size is about 50 and 500. RMSE is about 17.2, MAE is about 10.3, and MAPE is 
about 5.1. However, since the duration of each iteration is shorter when the batch size is 50 than when 
the batch size is 500, we set the batch size to 50. After batch size increases, likely, different batches 
do not change in the gradient direction, which readily results in a local minimum. When the same 

Figure 10. Indicator values of models with different batch sizes using the BikeNYC dataset

Figure 11. Indicator values of models with different batch sizes under TaxiNYC dataset
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accuracy is achieved, if the batch size increases, the corresponding iteration times must be increased, 
and the required training time will also be extended. We conducted this experiment by changing the 
batch size based on the same number of iterations. The accuracy, therefore, will decrease when the 
batch size increases.

Verification of Model effectiveness
To verify the proposed TFP method, the following experiments are conducted with the two datasets 
compared with the methods in Zhang et al. (2017), Du et al. (2020) and Bai et al. (2020). With RMSE, 
MAE, and MAPE as evaluation criteria, the prediction performance using periods of 0.25 hour, 0.5 
hour and 1 hour were analyzed. We show the final calculation results of evaluation indicators of 
different algorithms in Tables 4 and 5, respectively.

In Tables 4 and 5, when BikeNYC and TaxiNYC datasets are used, the proposed big data-driven 
urban TFP method based on D-L outperforms the other three comparison methods in three evaluation 
indicators. When using the BikeNYC dataset, the lowest RMSE, MAE, and MAPE of the proposed 
method reach 18.32, 10.66, and 5.34, respectively. In addition, when predicting 0.25 hours in advance, 
the error drops considerably compared to the other three comparison methods.

Table 4. Results of different methods using BikeNYC dataset

Method Proposed Method ST-ResNet DST-ICRL AGCRN

RMSE

0.25h 18.32 35.64 29.88 37.61

0.5h 18.98 36.51 31.64 38.24

1.0h 19.56 37.22 32.18 38.96

MAE

0.25h 10.66 25.31 18.67 22.64

0.5h 11.34 26.87 19.66 23.74

1.0h 11.87 27.43 20.31 24.55

MAPE

0.25h 5.34 10.67 8.52 9.33

0.5h 5.96 10.76 8.76 9.64

1.0h 6.25 10.95 8.97 9.85

Table 5. Results of different methods using TaxiNYC dataset

Method Proposed Method ST-ResNet DST-ICRL AGCRN

RMSE

0.25h 17.72 34.64 28.63 36.07

0.5h 18.35 35.49 30.31 36.67

1.0h 18.91 36.18 30.83 37.36

MAE

0.25h 10.31 24.60 17.89 21.71

0.5h 10.97 26.12 18.83 22.77

1.0h 11.48 26.66 19.46 23.54

MAPE

0.25h 5.16 10.37 8.16 8.95

0.5h 5.76 10.46 8.39 9.24

1.0h 6.04 10.64 8.59 9.45
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Figure 12 shows the relationship between the measurement results of each evaluation indicator 
of different algorithms and the prediction step when using the BikeNYC dataset.

Figure 13 shows the relationship between the measurement results of each evaluation indicator 
of different algorithms and the prediction step when using the TaxiNYC dataset.

As can be seen from Figure 12 and Figure 13, when two different datasets are used, respectively, 
with the continuous growth of the prediction step, the proposed urban TFP method performs better 
than the other three comparison methods. The growth rate and value of the three evaluation indicators 

Figure 12. Measurement results of each evaluation indicator of different algorithms under BikeNYC dataset
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are the smallest, and the trend of change is the most stable. This stability is because the traditional 
statistical methods only use the time series data of each node without considering the spatial 
dependence. Furthermore, the model does not consider the attention mechanism since it can increase 
the model complexity and the training time and cannot achieve the best effect.

Figure 13. Measurement results of each evaluation indicator of different algorithms under TaxiNYC dataset
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With different datasets, the results of different methods for four crowded periods, including 
weekday, vacation, peak, and off-peak periods, are shown in Table 6 and Figure 14.

As seen in Table 6 and Figure 14, the proposed urban TFP method shows better predictability 
than the other three comparison methods in three different evaluation indicators for the four crowded 
periods of weekday, vacation, peak and peak and off-peak, with the lowest of 18.32, 11.02 and 5.67 
respectively.

Table 7 and Figure 15 compare the prediction errors for crowded periods when different methods 
use different datasets. Table 7 and Figure 15 show that when the BikeNYC and TaxiNYC datasets are 
used, the proposed urban TFP method performs better than the other three comparison methods, with 
the smallest error reaching 8.64 and 9.02, respectively. The proposed Attention-CNN-GRU-ResNet 
model includes convolution to extract S-T features rather than just considering temporal features. 
The attention-based ConvGRU module captures the time correlation of TF by comprehensively 
considering spatial attention, GRU, and channel attention, greatly improving the accuracy of urban 
TFP and reducing the prediction error.

CoNCLUSIoN

With the wide application of GPS, Beidou, and other global positioning systems, an enormous amount 
of urban S-T traffic data have been generated. These data are crucial for practical applications like 
traffic planning and crime prediction. However, the existing methods based on D-L require massive 
data to support training, and we cannot apply these models in some cities or fields since they do not 
account for sparse data. At the same time, the existing multi-task learning method of traffic prediction 
only splices the features of related tasks, which cannot well model the correlation between related 
urban traffic prediction tasks. To overcome the large errors and inaccurate prediction for long-term 
flow that comes with the traditional urban TFP method, we propose a big data-driven TFP method 
for sustainable urban development based on deep learning (D-L).

The experiment results show that:

1.  Using CNN to classify the input information according to its hierarchical structure can effectively 
reduce the model calculation.

Table 6. Prediction results of different methods for periods of dense traffic

Period Proposed Method ST-ResNet DST-ICRL AGCRN

Weekday

RMSE 18.32 34.08 29.86 37.92

MAE 11.64 21.65 18.97 24.09

MAPE 5.83 10.84 9.50 12.07

Vacation

RMSE 18.56 34.52 30.25 38.42

MAE 11.54 21.46 18.81 23.89

MAPE 5.94 11.05 9.68 12.30

Peak

RMSE 18.33 34.09 29.88 37.94

MAE 11.02 20.50 17.96 22.81

MAPE 5.67 10.55 9.24 11.74

Off peak

RMSE 18.68 34.74 30.45 38.67

MAE 11.49 21.37 18.73 23.78

MAPE 5.82 10.83 9.49 12.05
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Figure 14. Prediction results of different methods for periods of dense traffic

Table 7. Prediction errors of different methods when using different datasets

Data Sets
Method

Proposed Method ST-ResNet DST-ICRL AGCRN

BikeNYC 8.64 20.64 15.79 23.47

TaxiNYC 9.02 21.22 16.35 24.72
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2.  The introduction of attention-based GRU model into the detection model can capture the time 
correlation of TF more carefully.

3.  By introducing residuals, the ResNet module can alleviate gradient disappearance/explosion, 
avoid deep network degradation, and dramatically improve the model’s prediction performance.

Future work will focus on using domain knowledge or other means to ease data sparsity and 
consider the spatial and temporal complexity of S-T data based on graph structure to further improve 
the accuracy of the model prediction.
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Figure 15. Prediction error of different methods when using different datasets
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