
DOI: 10.4018/IJDCF.325062

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

The Metric for Automatic Code Generation
Based on Dynamic Abstract Syntax Tree
Wenjun Yao, Kunming University of Science and Technology, China

Ying Jiang, Kunming University of Science and Technology, China*

Yang Yang, Kunming University of Science and Technology, China

ABSTRACT

In order to improve the efficiency and quality of software development, automatic code generation
technology is the current focus. The quality of the code generated by the automatic code generation
technology is also an important issue. However, existing metrics for code automatic generation ignore
that the programming process is a continuous dynamic changeable process. So the metric is a dynamic
process. This article proposes a metric method based on dynamic abstract syntax tree (DAST). More
specifically, the method first builds a DAST through the interaction in behavior information between
the automatic code generation tool and programmer. Then the measurement contents are extracted
on the DAST. Finally, the metric is completed with contents extracted. The experiment results show
that the method can effectively realize the metrics of automatic code generation. Compared with the
MAST method, the method in this article can improve the convergence speed by 80% when training the
model, and can shorten the time-consuming by an average of 46% when doing the metric prediction.

Keywords
Automatic Code Generation, Dynamic Abstract Syntax Tree, Extract Algorithm, Metric

INTRODUCTION

Automatic code generation technology is one of the means to improve the efficiency and quality
of software development. Many researchers have studied technical means and improved automatic
code generation implementation methods to enhance the quality of automatically generated code and
achieve the purpose of meeting programmer’s expectations. Therefore, automatic code generation
technology has always been the core issue for practitioners and researchers (Hu et al., 2019).

In recent years, artificial intelligence technology has made great progress and development,
which has further formed an important promotion for the research on automatic code generation
technology. Automatic code generation technology has also achieved vigorous development (Yang
et al., 2020). Part of the current research on automatic code generation technology has been applied
to actual development. The automatic code generation tools implemented according to a certain code

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

2

generation method are usually embedded in the integrated development environment in the form
of plugins. For example, integrated development environments such as IntelliJ IDEA, Eclipse, and
PyCharm all support embedded code automatic generation plugins to help programmers improve
development efficiency.

Among the number of automatic code generation technologies, the ability to evaluate the model
includes the accuracy of predicting the next token, the MRR indicator used in the field of information
retrieval, and so on. The evaluation indicators cannot be directly converted because of automated
evaluation standards are different (Hu et al., 2019). Therefore, the existing research on automatic code
generation technology focuses on the improvement of its model capability, ignoring the research on the
quality measurement of its generated code. In addition, the existing research on software code quality
measurement is based on the content of the written code, ignoring the programmer’s programming
behavior information. However, programming behavior information is a factor that cannot be ignored
when doing the automatic code generation measurement. The programming behavior information is
continuously and dynamically changing. So the automatic generation of code measurement is also a
process of continuous dynamic changeable. Traditional software quality measurement methods are
not suitable for code measurement generated by code automatic generation technology. Therefore,
it is of great significance to study the metric method for the code generated by the automatic code
generation technology.

To fully consider that the automatic code generation metric is a process of continuous dynamic
changeable, this paper proposes a metric method for automatic code generation based on dynamic
abstract syntax tree (DAST method). Specifically, the authors build a dynamic abstract syntax tree, and
then extract metric-related content from the dynamic abstract syntax tree. Finally, the authors complete
the metric for automatic code generation according to the extracted content. The experiment results
show that the method can effectively realize the metrics of automatic code generation. Compared with
the automatic generation metric method (Zhang, 2021) (MAST method) of which constructed by all
programming codes and programming records, the method in this paper can improve the convergence
speed by 80% when training the model, and can shorten the time-consuming by an average of 46%
when doing the automatic code generation metric prediction.

The contributions of this paper are summarized as follows:

1. 	 In this paper, the authors propose an algorithm to construct a Dynamic Abstract Syntax Tree
(DAST) by combining programmer behavior and code generation tool behavior information.
This algorithm effectively utilizes the cooperation behavior information between programmers
and code generation tools in the programming process. A DAST reflects the dynamic changes
of semantics, structure information and programming behavior information in a abstract syntax
tree (AST), providing a basic platform for the measurement of code generated by code automatic
generation tools.

2. 	 The authors propose an algorithm to extract metric content through traversing the DAST. This
algorithm effectively extracts the content which is deeply related with metric for automatic code
generation.

3. 	 The authors propose a method to build a metric model for automatic code generation based on
code semantic, programmer behavior and behavior information of code automatic generation
tools, and send the extracted content to this model and complete the measurement.

The rest of this article is organized as follows. First this article introduces related work on
automatic code generation techniques and metric for automatic code generation. Secondly this article
elaborates the construction and implementation of DAST. Thirdly this article elaborates algorithms
for extracting metric content on DAST. Then this article elaborates the method of automatically
generating metrics from code based on the extracted metrics content of DAST. After that the article
shows the experimental setup and analyzes the results. Finally, this article concludes this article’s work.

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

3

RELATED WORK

In the research work on evaluation metric for the automatic code generation methods, indicators
such as accuracy, precision, recall, MRR (Mean Reciprocal Rank), and F-measure are usually used
to evaluate the performance of automatic code generation methods (ZHAO et al., 2020).

Accuracy refers to the proportion of correctly predicted numbers in all sample sizes. In automatic
code generation, the accuracy rate is defined as the ratio of the number of correctly generated codes
to the number of all generated codes. Liu, F., et al (2022) used the accuracy to evaluate the generated
code of proposed UMTLM (Unified Multi-Task learning based neural Language Model) method.
When calculating the accuracy, the paper compute the top-1 accuracy on next token/AST node’s
value and type, i.e., the fraction of times the correct suggestion appears in the first of the predicted
list. Experiments show that, in the AST-level and token-level code automatic generation tasks, the
accuracy of the UMTLM model method is higher than that of PMN, LSTM, and Transformer-XL.
Nguyen, A.T et al. (2022) used the accuracy to evaluate the generated code of the proposed ASTCC
method. The accuracy in this paper is defined as the ratio between the number of hits over the total
number of suggestions. In the task of Next-Statement Suggestion, compared with the AutoSC and
PCC methods, the ASTCC method has achieved an improvement in accuracy. Lu, S et al. (2022)
used the accuracy rate to evaluate the generated code of the proposed ReACC method (a Retrieval-
Augmented Code Completion framework). In the token-level code generation task, the ReACC method
has achieved higher accuracy than GPT-2, CodeGPT and other methods.

Precision is defined as the ratio of the number of codes correctly recommended by the automatic
code generation tool to the total number of codes recommended by the automatic code generation tool.
Rahman M et al. (2021) used the precision to evaluate the proposed BiLSTM method for automatic
code generation. When calculating the precision in that paper, the paper uses the ratio of correct error
classifications to total error classifications. Experiments show that BiLSTM method improves the
precision rate of 98% by comparing with the automatic code generation methods of neural networks
such as LSTM and RNN.

Recall is defined as the ratio between the number of correctly recommended codes by the code
generation tool and the total number of recommended codes that programmers actually need. Bruch
et al. (2009) used the recall to evaluate the BMN algorithm for automatic code generation. When
calculating recall, that paper uses the ratio between the relevant (correct) recommendations made by
the recommendation method for a given query and the total number of recommendations it should
make. Experiments show that the recall of the BMN algorithm reaches 72%. Ding, Y., et al. (2022)
used the recall to evaluate the COCOMIC framework for automatic code generation. Compared with
the CodeGen method, the recall rate of the COCOMIC framework increased from 50.09% to 55.83%.

MRR is defined to mean reciprocal rank. Kim S et al. (2021) used the MRR to evaluate their
proposed transformer method for the basic neural network framework to automatic generate code.
When calculating MRR, that paper refers the indicator as a percentage number. The higher the correct
token prediction position is, the higher the MRR value will be. By comparison, the automatic code
generation method proposed by Kim S et al. improves the MRR index from 43.9% to 58% compared
to the TravTrans method on the Deep3 model; on the Code2Seq model, the MRR index increases
from 43.6% compared to the TravTrans method. to 58%. Yang, K., et al. (2022) use MRR to evaluate
the code generated by their proposed CCGGNN method. This paper conclued that, comparing to the
metric (Acc@1), MRR is closer to the realistic scenario when completion suggestions are presented
to developers. This paper presentd MRR@5 as a percentage in task of various types and values of
leaf token predictions. Experiments show that, the CCGGNN method achieved the highest MRR
score compared to methods such as DEEP3. Liu, Y., et al. (2022) used the MRR to evaluate the
code generated by approach, of which in two real-world datasets and find that sequence features are
practically crucial for code completion. Compared to previous researches, the best model in this paper
has a 10% improvement for the mean reciprocal rank (MRR) metric compared to previous researches.

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

4

F-measure is defined as the weighted harmonic mean of precision and recall. Allamanis M et
al. (2021) evaluate the performance of a neural probabilistic language model specially designed for
the method naming problem via F-Measure. When calculating the F1 score for the proposed level k
> 1, the paper selects the precision, recall value of the level l ≤ k that leads to the highest F1 score.
Experiments show that the evaluation of the model achieves a final F1 score of 60% in the prediction
of the method name, and a F1 score of 55% in the prediction of the class name.

In the existing research on automatic code generation metrics, indicators such as validity, usability,
reliability, normalization, maintainability, time efficiency, space efficiency, and assistance are usually
used to measure the code generated by automatic code generation tool (Zhang, 2021).

Validity is defined as the degree that the automatic code generation tool produces the code to fit the
programmer’s expectation. That is, the degree to which the automatic code generation function can be
realized under the predetermined environment. Usability is defined as how easily it is for programmers
to obtain generated code in the process of using an automatic code generation tool. Reliability is referred
to a degree of how reliable the generated code is in the context of the code. High-reliability code has a
lower error rate. Normalization is referred to measure the degree of which generated code conforms to
grammatical rules. Maintainability is defined as the degree to which programmers and code completion
tools correct the results of automatic code generation in the process of generating code. Time efficiency
is represented the efficiency of the corresponding processing time of the code automatic generation
tool in the code automatic generation process. Space efficiency is represented the throughput rate of the
code generation tool during the code generation process. Assistance is referred to the ease with which
the automatic code generation tool assists the programmer in programming. Zhang (2021) constructed
the MAST feature tree, and used the TBCNN (Tree-based Convolutional Network) (Mou et al., 2014)
neural network to establish three dimensions of convolution extraction on MAST, including syntax,
semantics, and automatic code generation information. That work built a metric model for codes which
is generated by automatic code generation tools. The experimental results show that the metric model
can effectively capture the characteristics of the impact of the interaction behavior information between
programmers and automatic code generation tool. However, the model extracts the convolutional features
of the entire MAST, which not only ignores the feature information of AST changes in the programming
process, but also takes a long time to metric.

To sum up, in the current research on automatic code generation, there is a lack of a unified method
for the metric on the code generated by automatic code generation tool. Most of the research on automatic
code generation methods usually use indicators such as precision, recall, and F1-Measure to measure the
performance of automatic code generation methods. But these indicators ignore the metric for the code
generated by automatic code generation tool. During actual development, the programming process is a
dynamic and continuous process. Programming behavior information is a factor that must be considered
in the automatic code generation measurement. Differing from traditional code quality metrics analysis
methods, the metric for automatic code generation is a dynamic and continuous process. Therefore, the
metric for automatic code generation is an urgent problem to be solved.

This paper comprehensively considers that the metric for automatic code generation is a dynamic
and continuous process. So this paper proposes a metric method for automatic code generation based
on dynamic abstract syntax tree. Specifically, through the interact behavior information between
the programmer and the code automatic generation tool (Zhang & Jiang, 2021), the authors build
a dynamic abstract syntax tree, and then extract metric-related content from the dynamic abstract
syntax tree. Finally, the authors complete the metric for automatic code generation according to the
extracted content.

BUILDING A DAST

In this section, the authors elaborate the method for the construction and implementation of DAST.
This method fully combines the mutual cooperation behavior information between programmers

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

5

and code automatic generation tools. This method feeds back the dynamic changes of programming
behavior information to AST, thus building the basis platform for automatic code generation metric.

According to previous studies, a large number of researchers use AST to represent a program
(Li et al., 2017), and this data structure can reflect the structural and semantic information of code
content. When programmers are coding with the help of automatic code generation tools, the content
of the code is constantly increasing, of that corresponding AST is also constantly growing. This
process is a dynamic and continuous process. The authors employ an open-source Python package
called ast to parse our Python source code into ASTs.

Since the traditional ASTs just include syntax information on every token, they lack the information
to reflect the changeable coding process, such as time information and operation information. These
information are important to construct DASTs. In order to solve this problem, the authors draw on
and modifies the behavior capture plugin tool of programmers and code automatic generation tools
which is published and opened source by X zhang, Y Jiang et al. (2019). The plugin tool can be
obtained from https://github.com/xiaojiangzhang/Generate-the-code-acquisition-plugins. The plugin
tool can not only capture the behavior information of programmers, but also capture information of
automatic code generation tool.

In order to build a DAST, the information attribute of the tokens on the AST must be expanded.
The authors define that the information attribute of token consists of type value, source, operation
and time. As is shown in Table 1.

Figure 1 illustrates the attribute state of token.
As Figure 1 shows, every token on a DAST gets 4 attributes. The attribute of type value is

obtained by the code contents. The attribute of token source is used to distinguish the token whether
comes from programmer or automatic code generation tool. When the code is completely typed by
the programmer, the token source attribute of this token is “programmer”, which is abbreviated as
“PG”. When the code comes from the recommendation of automatic code generation tool, the token
source attribute of this token is “tool”. The attribute of token operation is derived from the appearance

Table 1. Information dimension of token

Name Attribute Description

Information
dimension

type value Type value in token

token source Distinguish whether the token is typed by the programmer individual or recommended
by an automatic code generation tool

token operation Addition, deletion and modification etc. operation in token

token time Time in token operation

Figure 1. Token’s attribute state

https://github.com/xiaojiangzhang/Generate-the-code-acquisition-plugins

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

6

style of code. When the code first time appears, the attribute of token source is “addition”, which
is abbreviated as “ADD”. When the code is modified by the programmer, the attribute of this token
source is “modification”, which is abbreviated as “MOD”. The attribute of token time is the time
that the token’s operation attribute is changed.

Then A DAST can be represented by a two-tuple {V, E}, where V represents the token data set,
token Vi=<valuei,sourcei,operationi,timei>, indicating that token Vi owns attributes, such as the type
value, token source, token operation and token time. E represents the set of connection relationships
between tokens. E = {<m,n> | m,n ∈V and p(m,n), <m,n> represents the connection edge from
token m to token n. p(m,n) defines the connection property of the connection edge <m,n>}. The
assignment of p(m,n) is as follows:

p m n
Addition token connection edge EAmn n is a newly a

,
,

() =
 ddded token

Modification token connection edge EMmn n is a

 , modified token








	

Algorithm 1 describes a method for building a DAST. Its input is a standard of abstract syntax
tree. Its output is a DAST.

In the algorithm 1, two while nested loops are designed. The second while loop is used to
determine that if the programmer does not press the Enter key, the new captured code will be parsed
into a subtree. Then this subtree is linked to the baseTree. After that, baseTree got a new state. This
new state is updated to the baseTree. When the programmer stops programming, the baseTree is
updated to DAST. Finally the DAST is returned. The time complexity of the algorithm for building
a DAST is O(n2). Figure 2 and Figure 3 use a simple example to illustrate how a DAST is built.

First in time t1, a programmer types the codes as shown in Figure 2(a). These codes are parsed
into a benchmark tree baseTree, as shown in Figure 3(a). Then in time t2, the programmer types the
new codes “k = 2”, as shown in Figure2 (b). The new codes are parsed into a subtree. Since the new
code is in a parallel relationship with codes “i=1”, the subtree is linked as the child node of token
“While”. Besides, for the sake of the operation in token “While” is addition, the connecting line
between token “While” and token “j” is a solid line. This process is shown in Figure 3(b). Finally in
time t3, the programmer modifies the code “while” into “if”, as shown in Figure2 (c). The modified
code “if” is parsed into a new subtree. Since the code’s operation attribute is modification, the new
subtree is linked to token “While” with a dotted line. That is, the dotted edge connecting token “While”
and token “If” is shown in Figure 3(c).

EXTRACTING METRIC CONTENT ON A DAST

Since the process for coding is dynamic and continuous changeable, the metric for automatic code
generation is a dynamic and continuous process. Building DASTs can represents all the process of
dynamic change of program semantics within a certain time range and all the behavior information of
the programmer and the automatic code generation tool. But the metric for automatic code generation
must be set in a certain time to metric. Applying DASTs directly could not complete the metric for
automatic code generation. It is necessary for the metric to extract content on a DAST.

This section will introduce in detail the method of extracting content on a DAST for automatic
code generation metric. This method first defines the extraction rules on a DAST, and then traverses
DAST to extract content for automatic code generation metric.

In the process of automatic code generation, sometimes the code automatic generation tool
generates logical code, but does not meet the programmer’s expectations. So the validity in this code
turns to be low when be used. Therefore, a measure of the validity of automatic code generation is
related to the degree to which the generated code conforms to the programmer’s expectations. The

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

7

more codes an automatic code generation tool can generate that meets the programmer’s expectations,
the more valid the snippet will be. In the programming process, the valid generated variable code,
function definition code, and class definition code usually meet the programmer’s expectations. So
these codes are extracted as the measurement reference of the validity index.

Algorithm 1. Building a DAST

Input: A base abstract syntax tree namely baseTree

Output: A DAST

1:while Programmer does not stop programming do

2: while True do

3: if Programmer does not press enter key then

4: Capture the code typed by the programmer (codeP) and behavior information (Pinfo) = {Ptime, Psource, Poperation,
Pscope}

5: Capture the code which is recommended by the automatic code generation tool (codeT) and then selected by
programmer, and tool’s behavior information (Tinfo)

6: Merge codeP and codeT into code = {codeP, codeT}

7: Merge Pinfo and Tinfo into info = {time,source,operation,scope}

8: else

9: Parse code into sub-AST, namely subTree

10: Find the Pnode node on the baseTree according to the scope

11: if operation == “addition” then

12: Link subTree as child node of Pnode

13: else

14: Link subTree as shadow node of Pnode

15: end if

16: Update the AST of the current moment to baseTree

17: break

18: end if

19: end while

20: end while

21: DAST = baseTree

22: return DAST

Figure 2. A sample for coding process

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

8

In the process of mutual cooperation between the programmer and the automatic code generation
tool, the programmer enters a number of characters. And the automatic code generation tool predicts
the variable name, function name, class name and code fragment in the code fragment to be generated
according to the characters typed by the programmer. The automatic code generation tool generates
a list of recommended codes for programmers. In this process, if the programmer can perform fewer
operations, such as inputting shorter characters, the automatic code generation tool can generate the
recommended code list. The programmer does not have to perform frequent complicated operations
on the recommended code list, such as typing up and down keys on the keyboard to select the
recommended code. The generated code is easier to be obtained for the programmers. Therefore,
the generated code that is easy to be obtained by programmers can be extracted as a measurement
reference for usability indicators.

The type of recommended code determines how reliable it is in the context of the code after
programmers select the recommended code from the code generation tool. Generated code with high
reliability exhibits a lower error rate. Codes with judgment branches, loop branches or fragments
of function definitions in the programming language usually bring potential errors. Because these
code snippets contain 2 or more branch codes. And the fewer branches of a code snippet, the lower
the error rate. Therefore, the judgment branch, loop branch or function definition fragment in the
generated code greatly affects the reliability of the generated code.

In the code context, the thing that whether the generated code conforms to the program language
syntax determines the generated code is normalization or not. The higher normalized with code
generated by automatic code generation tool, the higher the quality of this generated code. Therefore,
the degree to which the generated code conforms to the program language syntax determines its
normalization.

Sometimes programmers would make some changes to the results that the code generated by
automatic code generation tool. The difficulty in maintaining the code generated process affects
the quality of the code generated to a certain extent. The judgment branch, loop branch or program
statement with complex syntax is often not easy to be modified, and it takes longer than coding work
as usual. Therefore, the judgment branch, loop branch or program statement with complex syntax
directly affects the correction degree of in generated code, which is related to the maintainability in
the generated code.

Automatic code generation tool produces code recommendations in the list based on the
semantic environment of the code context and the programmer’s typing characters. The time it takes
programmers to select recommended code reflects the rate at which code is generated in the code
context. The speed of code generation directly affects the development efficiency of programmers. So
the rate at which code is generated determines the measurement result of the time efficiency indicator.

Figure 3. A sample to build a DAST

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

9

Throughput refers to the space occupied by the generated code during the automatic code
generation process. The larger the generated code, the higher the throughput. The space efficiency
is directly related to the size of the throughput rate. Therefore, the throughput rate is selected as the
space efficiency index measurement reference for the generated code.

In the process of using the automatic code generation tool, assistance indicates the improvement
of the scale of generated code to the development speed of programmers. In actual development, the
size of code generated according to the code context will greatly improve the development speed of
programmers. Therefore, the code generated by the automatic code generation tool directly affects
the development speed of programmers.

Generally, the values of the above metrics indicators are usually set the number between 0 to 1.
The closer the value of metric indicator gets to number 0, the less obviously the result of the metric
indicator for automatic code generation performs. The closer the value of metric indicator gets to
number 1, the more obviously the result of the metric indicator for automatic code generation performs.

In summary, this paper defines the extraction rules of automatic code generation metrics on a
DAST, as shown in Table 2.

Algorithm 2 describes methods for extracting metric content on a DAST. Its input is a DAST
and the output is a sequence of tokens.

In the Algorithm 2, sentence 2 to sentence 9 illustrates a breadth-first manner to traverse on a
DAST for finding the tokens within the evaluation time range. Sentence 11 to sentence 41determine
whether the accessed tokens conform to the rules. If it is, it will be extracted, and if it does not match,
it will continue to access and traverse. Finally, the extracted sequence is returned. The time complexity
of the content extraction algorithm on the DAST is O(n2). Figure 4 uses a simple example to illustrate
how metric content extraction is done on a DAST.

First, according to the set measurement time range, the token “For” is obtained through the
breadth-first traversal method and assign it to Pnode, which its time information is within the metric
time range and is first be visited. Then, starting from the Pnode, the depth-first pre-order traversal
method is used to determine the sequence of visited nodes. Judging each node accessed whether meets
any one of the extracting rules in Table 2. If it meets, then it is extracted. For example, as shown in
Figure3(c), although the time in token “j” is within the metric time range, token “j” does not meet any
one of the extraction rules in Table 2. So it would not be extracted. Finally, the extracted tokens are
combined as the way with their connection on the DAST. In the Figure 4, token “k” and “return” do
meet the extracting rule, and the token “if” is not within the metric time range. So the final extracted
token sequence is: “for, while, return, k”.

Table 2. Extraction rules on a DAST

Indicator Extraction rule

validity token of valid generated variable name, function definition name, and class definition name.

usability token generated that requires less programmer operations.

reliability token generated for judgment, loop and function definition.

normalization token generated for function definitions and class definition that conform to program language syntax.

maintainability token generated for judgments, loop and their child token.

time efficiency token generated of which the generation takes less time.

space efficiency token generated occupied much space.

assistance tokens generated of which takes the large scale

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

10

Algorithm 2. Extract metric content on a DAST

Input: A DAST
Output: A sequence of tokens.
1: set start time, end time for metric, initialize queue=[DAST], stack, sequence
2: while queue not empty do
3: pop the top element of the queue and assign it to node
4: if the time information dimension of node is in the interval [start time, end time] then
5: assign node to Pnode,break
6: else
7: push the node’s child nodes into the queue in turn
8: end if
9: end while
10:assign Pnode to sequence and push it to the stack
11: while stack not empty or Pnode != null do
12: while Pnode != null do
13: if Pnode is not leaf node then
14: update the first child node of Pnode to Pnode and push it into the stack
15: else
16: Pnode = null
17: end if
18: end while
19: while True do
20: pop the top element of the stack and assign it to Pnode
21: if Pnode meets any one of the extraction rules in Table 2 and the node time information is within the metric time
range then
22: put the Pnode into the sequence
23: if Pnode has sibling node then
24: Assign the sibling node of Pnode to Pnode and push it to the stack,break
25: else
26: if stack is empty then
27: Pnode = null,break
28: end if
29: end if
30: else
31: if Pnode has sibling node then
32: Assign the sibling node of Pnode to Pnode and push it to the stack, break
33: else
34: if stack is empty then
35: Pnode = null, break
36: end if
37: end if
38: end if
39: end while
40: end while
41: return sequence

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

11

AUTOMATIC CODE GENERATION METRIC

In this paper, the automatic code generation metric model constructed by the TBCNN deep learning
method is used to complete the metric for the code generated by automatic code generation tool.
The metric model based on TBCNN (Zhang, 2021) is mainly divided into four parts. The first part
converts the processed token tag vector into a fixed-length high-dimensional vector. The second part
is information capturing. The key information of the input sequence is obtained through the TBCNN
deep learning network. The third part is code representation. The extracted features are synthesized
to form a vector representing the features of the generated code model. The fourth part is the output
layer. Automatic code generation predictions for metric is based on characterization vector output.
The authors sent the content extracted into this metric model and finally get the metric result for
automatic code generation.

EXPERIMENT

This section will conduct an empirical study on the effectiveness of metric method for automatic code
generation based on dynamic abstract syntax tree. The performance of the method will be considered
from various sides. The data sets, performance evaluation indicators, experimental procedures and
parameter settings used in the experimental research will be introduced. In the experiment, tensorflow
frame is selected to build the TBCNN deep learning model, which runs under the Windows 10
operating system, i7-9850H, 2.60GHz processor, and 32G memory.

Research Question
The purpose of metric method for automatic code generation based on dynamic abstract syntax tree is
to complete the code quality measurement generated by the automatic code generation technology. In
order to verify the effectiveness of the metric method for automatic code generation based on dynamic
abstract syntax tree, two research questions (RQs) are need to be answered as follows:

Figure 4. A sample to extracting content on a DAST

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

12

RQ1: Compared with the metric for automatic code generation built by the MAST method, do the
DAST method get better performance?

RQ2: How reliable is the DAST method when it is used to measure the code generated by automatic
code generation tool?

Experiment Dataset
In this paper, the plugin tool capturing programmer behavior and code automatic generation tool
behavior is opened source by Zhang et al. (2019). The authors capture nearly 82,000 programing
behavior information as a training set. In addition, the authors type 12 files with less than 100 lines of
code (id ranges 1.1 to 1.12), 12 files with 100 to 200 lines of code (id ranges 2.1 to 2.12), and 12 files
with more than 200 lines of code (id ranges 3.1 to 3.12) with the help of automatic code generation
tool. In this process, the authors use plugin tool to capture programmer behavior and code automatic
generation tool behavior as a test dataset.

The features in test dataset are shown in Table 3.
Although typing 12 files with different class of lines, every behavior information in typing 12

files corresponds to the same 12 kinds of metric indicator combinations. Among the 12 kinds of
metric indicator combinations, 5 of them are set to meet the extraction rules in Table 2, the other 5
combinations are set to not meet the extraction rules for every indicator. The last 2 metric indicator
combinations are set to no indicator meet the extraction rules and all indicators meet the extraction
rules. As is shown in Table 4.

The id in Table 3 and Table 4 contains all the ids of files with 3 different levels of code lines.
Specifically, the feature whose id is x (ranges 1 to 12) in Table 3 represents three files 1.x, 2.x, and
3.x with different levels of code lines. For example, the feature file with an id of 5 in Table 3 indicates
an id of 1.5 in a file with less than 100 lines of code, an id of 2.5 in a file with with 100 to 200 lines
of code, and an id of 3.5 in a file with more than 200 lines of code.

Table 3. The features in test dataset

ID Proportion for Valid
Variable Name

Quantity in
Programmer

Operation

Nested
Statement

Time for
Programmer
Operations

Proportion for Tokens
Generated by Tool in

Codes

1 low small more less low

2 low large more more low

3 low small more more high

4 low large more less high

5 low small more less high

6 high large less more high

7 high small less less high

8 high large less less low

9 high small less more low

10 high large less more low

11 low small less less low

12 high large more more high

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

13

Evaluation Metric for Performance
Evaluating the performance of a deep learning method can use model performance metrics and
model generalization capabilities. The automatic code generation metric method based on dynamic
abstract syntax tree in this paper uses the deep learning method of TBCNN. So the convergence
times of the loss function of the training model and the time spent in the automatic code generation
metric prediction are selected as the performance comparison of the model. The difference value of
the metrics indicator is analyzed as the generalization ability of the model.

Loss function refers a function that maps an event or values of one or more variables onto a real
number intuitively representing some “cost” associated with the event. The authors choose the square
loss function as the loss function:

Square loss L Y f X Y f X : , ()() = − ()()
2

	

where X and Y are the variables defined on the input space χ and output space γ, and f is the decision
function.

Experiment Result
When measuring the metric for automatic code generation, the authors choose the MAST method to
compared with our DAST method.

First, nearly 82,000 programming behavior information records were used as the training set
to train MAST method model and DAST method model. Then, the authors send all the test dataset
to MAST model and DAST model. Finally, the authors get the predictions of results with different
metric method model.

Table 5 lists the comparison of the times of iterations of the MAST method training code automatic
generation metric model and the DAST method training model loss function.

Table 4. Metric indicator combinations

ID Validity Usability Reliability Normalization Maintainability Time
Efficiency

Space
Efficiency

Assistance

1 no meet no meet meet no meet meet no meet no meet meet

2 no meet meet meet no meet meet meet no meet no meet

3 no meet no meet meet no meet meet meet meet meet

4 no meet meet meet no meet meet no meet meet meet

5 no meet no meet meet no meet meet no meet meet no meet

6 meet meet no meet meet no meet meet meet no meet

7 meet no meet no meet meet no meet no meet meet meet

8 meet meet no meet meet no meet no meet no meet no meet

9 meet no meet no meet meet no meet meet no meet no meet

10 meet meet no meet meet no meet meet no meet meet

11 no meet no meet no meet no meet no meet no meet no meet no meet

12 meet meet meet meet meet meet meet meet

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

14

Table 5 shows that using the MAST method requires 4 times than using DAST method for
iterations before the training model converges. Besides, the MSE value of the MAST method is
greater than the DAST method.

Table 6 to Table 8 list behavior information captured by typing 12 kinds of code files at 3 different
code line levels are sent to MAST method model and DAST method model to predict the results of
automatic code generation metric.

Table 6 lists the measurement results of automatic code generation for coding within 100 lines
of code. Each serial number in the table represents the comparative experimental group number of
each group using the MAST method and the DAST method to do the automatic code generation
measurement. The last column represents time cost for doing the metric predictions. Table 6 shows
the values of 8 indicators predicted by MAST method and DAST method respectively when doing
code automatic generation metrics. In terms of time cost, the time used by the MAST method is in
the range of 0.021 seconds to 0.178 seconds, and the time used by the DAST method is in the range
of 0.023 seconds to 0.103 seconds.

Table 5. Comparison model training performance

Method Times of iterations MSE

MAST method 750 0.01

DAST method 150 0.0062

Table 6. Result of metric for automatic code generation by typing less than 100 lines of code

ID Method Validity Usability Reliability Normalization Maintainability Time
Efficiency

Space
Efficiency

Assistance Time Cost
(Seconds)

1.1 MAST method 0.24 0.23 0.6 0.28 0.63 0.21 0.29 0.69 0.067

DAST method 0.14 0.17 0.56 0.2 0.52 0.11 0.2 0.62 0.04

1.2 MAST method 0.27 0.6 0.69 0.29 0.66 0.63 0.23 0.25 0.069

DAST method 0.18 0.51 0.63 0.2 0.55 0.62 0.13 0.21 0.037

1.3 MAST method 0.29 0.25 0.66 0.29 0.67 0.6 0.64 0.7 0.024

DAST method 0.22 0.19 0.57 0.22 0.65 0.56 0.56 0.63 0.025

1.4 MAST method 0.3 0.62 0.69 0.27 0.61 0.28 0.66 0.61 0.084

DAST method 0.2 0.57 0.59 0.18 0.58 0.22 0.57 0.61 0.043

1.5 MAST method 0.22 0.26 0.67 0.21 0.69 0.23 0.61 0.25 0.153

DAST method 0.19 0.23 0.63 0.2 0.61 0.15 0.51 0.17 0.053

1.6 MAST method 0.67 0.66 0.24 0.63 0.21 0.69 0.66 0.22 0.178

DAST method 0.65 0.59 0.17 0.6 0.15 0.61 0.65 0.19 0.103

1.7 MAST method 0.62 0.27 0.29 0.69 0.23 0.28 0.66 0.66 0.021

DAST method 0.54 0.23 0.26 0.62 0.13 0.2 0.63 0.62 0.023

1.8 MAST method 0.63 0.68 0.22 0.69 0.26 0.21 0.21 0.28 0.063

DAST method 0.53 0.6 0.19 0.59 0.19 0.16 0.18 0.2 0.037

1.9 MAST method 0.63 0.29 0.26 0.65 0.23 0.67 0.29 0.22 0.151

DAST method 0.56 0.23 0.21 0.54 0.2 0.56 0.22 0.18 0.067

1.10 MAST method 0.66 0.7 0.28 0.61 0.21 0.66 0.26 0.64 0.116

DAST method 0.63 0.65 0.18 0.51 0.16 0.64 0.22 0.61 0.069

1.11 MAST method 0.27 0.23 0.27 0.2 0.21 0.25 0.22 0.24 0.137

DAST method 0.19 0.19 0.24 0.19 0.17 0.14 0.12 0.23 0.067

1.12 MAST method 0.69 0.62 0.63 0.66 0.63 0.65 0.7 0.65 0.068

DAST method 0.63 0.56 0.54 0.56 0.61 0.57 0.68 0.55 0.034

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

15

Additionally, in Table 6, there is little difference between the indicator values predicted by the
DAST method and the MAST method. In the same group of comparative experiments, the predicted
value of a certain indicator by the DAST method and the MAST method showed a trend of being both
high or low. For example, in the first group of comparative experiments with id 1.1, the difference
values of the eight indicators predicted by the MAST method and the DAST method are all within
0.1, indicating that the differences are not large. On the other hand, the metric values predicted by
the two methods all appear to be high or low together.

Table 7 lists the metric results of automatic code generation when typing 100 to 200 lines of
code. The table shows the values of 8 indicators predicted by MAST method and DAST method
respectively when doing code automatic generation metric. In terms of time cost, the time used by the
MAST method is in the range of 0.22 seconds to 0.69 seconds; the time used by the DAST method
is in the range of 0.064 seconds to 0.428 seconds.

Besides, in Table 7, the measurement values of indicators predicted by DAST method and MAST
method are not significantly different. In the comparative experiment of the same group, the predicted
values in indicators of DAST method and MAST method for a certain indicator are both high or
low at the same time. For example, in the fourth group of comparative experiments with id=2.4, the
difference between the eight indicator values predicted by the MAST method and the DAST method
is within 0.1, indicating that the difference is small. On the other hand, the indicator values predicted
by the two methods are both high or low at the same time.

Table 8 lists the metric results of automatic code generation when typing more than 200 lines
of code. The table shows the values of 8 indicators predicted by MAST method and DAST method

Table 7. Result of metric for automatic code generation by typing 100 to 200 lines of code

ID Method Validity Usability Reliability Normalization Maintainability Time
Efficiency

Space
Efficiency

Assistance Time Cost
(Seconds)

2.1 MAST method 0.3 0.24 0.62 0.21 0.69 0.27 0.2 0.61 0.349

DAST method 0.24 0.14 0.61 0.2 0.66 0.23 0.16 0.6 0.243

2.2 MAST method 0.27 0.63 0.64 0.23 0.66 0.64 0.28 0.22 0.401

DAST method 0.2 0.56 0.58 0.12 0.62 0.53 0.22 0.12 0.221

2.3 MAST method 0.24 0.28 0.63 0.28 0.67 0.65 0.62 0.63 0.517

DAST method 0.22 0.26 0.52 0.17 0.63 0.61 0.57 0.54 0.297

2.4 MAST method 0.29 0.64 0.62 0.25 0.69 0.26 0.6 0.68 0.575

DAST method 0.28 0.54 0.58 0.21 0.69 0.2 0.58 0.62 0.379

2.5 MAST method 0.24 0.22 0.67 0.24 0.64 0.25 0.7 0.28 0.69

DAST method 0.19 0.16 0.57 0.14 0.61 0.18 0.68 0.2 0.428

2.6 MAST method 0.67 0.65 0.25 0.66 0.3 0.65 0.64 0.22 0.22

DAST method 0.59 0.64 0.2 0.62 0.25 0.62 0.58 0.19 0.079

2.7 MAST method 0.62 0.21 0.2 0.65 0.22 0.23 0.68 0.69 0.298

DAST method 0.61 0.16 0.11 0.6 0.11 0.23 0.68 0.59 0.125

2.8 MAST method 0.7 0.65 0.25 0.61 0.28 0.28 0.22 0.3 0.362

DAST method 0.64 0.64 0.2 0.55 0.23 0.23 0.17 0.24 0.349

2.9 MAST method 0.67 0.2 0.23 0.68 0.23 0.62 0.28 0.21 0.339

DAST method 0.62 0.13 0.18 0.65 0.15 0.54 0.27 0.19 0.17

2.10 MAST method 0.67 0.61 0.28 0.67 0.3 0.69 0.22 0.63 0.253

DAST method 0.57 0.54 0.23 0.64 0.25 0.65 0.12 0.6 0.064

2.11 MAST method 0.25 0.29 0.25 0.24 0.3 0.24 0.26 0.23 0.344

DAST method 0.23 0.2 0.2 0.22 0.24 0.23 0.18 0.13 0.168

2.12 MAST method 0.69 0.62 0.64 0.66 0.69 0.67 0.69 0.6 0.6

DAST method 0.59 0.56 0.62 0.56 0.64 0.59 0.67 0.5 0.284

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

16

respectively when doing code automatic generation metric. In terms of time cost, the time used by
the MAST method is in the range of 0.743 seconds to 2.551 seconds; the time used by the DAST
method is in the range of 0.177 seconds to 1.076 seconds.

Furthermore, in Table 8, there is little difference between the indicators predicted by the DAST
method and the MAST method. In the same group of comparative experiments, both DAST method
and MAST method show a tendency of both high and low predicted values of an indicator. For
example, in the tenth group of comparison experiment with id 3.10, the difference between the eight
measurement index values predicted by the MAST method and the DAST method is all within 0.1,
indicating that the difference is not large. On the other hand, the values of measurement indexes
predicted by the two methods are both high or low.

Analysis

1. 	 Comparison between DAST method and MAST method when doing automatic code generation
metric (RQ1).

For the comparison of training model performance, the authors select nearly 82,000 programming
behavior information record data as the training set to train the metric model. Table 5 lists the training
results of the MAST method and the DAST method to train automatic code generating metric model.
In Table 5 the loss function converges in training MAST model after running 750 epochs, while the
loss function converges in training DAST model after running 150 epochs. It shows that the DAST

Table 8. Result of metric for automatic code generation by typing more than 200 lines of code

ID Method Validity Usability Reliability Normalization Maintainability Time
Efficiency

Space
Efficiency

Assistance Time Cost
(Seconds)

3.1 MAST method 0.2 0.26 0.64 0.25 0.67 0.25 0.21 0.67 2.551

DAST method 0.19 0.24 0.53 0.23 0.57 0.24 0.13 0.65 0.82

3.2 MAST method 0.28 0.68 0.7 0.28 0.65 0.63 0.29 0.24 1.348

DAST method 0.27 0.58 0.7 0.26 0.59 0.59 0.26 0.15 0.979

3.3 MAST method 0.26 0.25 0.63 0.21 0.61 0.64 0.64 0.7 0.777

DAST method 0.22 0.23 0.55 0.16 0.53 0.57 0.59 0.62 0.332

3.4 MAST method 0.26 0.68 0.63 0.21 0.63 0.27 0.69 0.61 1.194

DAST method 0.23 0.65 0.54 0.15 0.59 0.25 0.6 0.52 0.648

3.5 MAST method 0.29 0.29 0.66 0.28 0.65 0.23 0.7 0.26 0.965

DAST method 0.23 0.21 0.6 0.26 0.65 0.18 0.64 0.26 0.597

3.6 MAST method 0.64 0.68 0.24 0.64 0.26 0.63 0.69 0.23 0.865

DAST method 0.62 0.63 0.19 0.54 0.23 0.54 0.64 0.15 0.389

3.7 MAST method 0.6 0.2 0.26 0.65 0.22 0.23 0.68 0.65 0.875

DAST method 0.57 0.1 0.23 0.61 0.21 0.2 0.67 0.6 0.177

3.8 MAST method 0.65 0.64 0.23 0.6 0.25 0.29 0.25 0.22 1.617

DAST method 0.61 0.55 0.23 0.55 0.19 0.25 0.21 0.11 0.765

3.9 MAST method 0.62 0.29 0.3 0.66 0.29 0.61 0.23 0.3 1.472

DAST method 0.59 0.24 0.26 0.55 0.26 0.55 0.13 0.28 0.718

3.10 MAST method 0.63 0.69 0.27 0.67 0.21 0.67 0.25 0.69 0.743

DAST method 0.6 0.68 0.22 0.63 0.15 0.64 0.15 0.64 0.156

3.11 MAST method 0.25 0.27 0.25 0.2 0.28 0.3 0.23 0.27 0.776

DAST method 0.23 0.18 0.17 0.19 0.21 0.24 0.19 0.23 0.273

3.12 MAST method 0.68 0.66 0.78 0.71 0.74 0.7 0.71 0.71 1.512

DAST method 0.65 0.63 0.67 0.61 0.65 0.67 0.64 0.69 1.076

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

17

method converges faster when training a model for automatic code generation metric. Therefore, the
DAST method can improve the convergence speed by 80% compared with the MAST method in the
training model. In addition, the MSE value of the DAST method training metric model is smaller,
indicating that the DAST method training metric model has a higher degree of fit.

When using the trained automatic code generation metric model to predict the indicators, the
authors select the test dataset described as section EXPERIMENT. The purpose of this is to prove that
when a metric is automatically generated by code, at least when a certain metric exhibits a higher or
lower value, there can be at least 5 other combinations of experiments to observe its value volatility.
In addition, it illustrates that it is not by chance that the DAST metric is superior to the MAST metric.

According to Table 6 to Table 8, the average time cost in predict 12 groups of comparative
experiments with 3 level of typing codes when using the MAST method and the DAST method for
automatic code generation metrics is shown in Figure 5.

In Figure 5, the average time cost in DAST method is less 46% in MAST method when measure
automatic code generation metric in the 3 levels of lines of code typed. Moreover, more lines of code
typing, the average time cost reduction of using the DAST method for code automatic generation
metrics is greater than that of using the MAST method.

But not in each group of comparative experiments, the time cost of DAST method is shorter than
that of MAST method. In the control group that typed the content of code files with less than 100
lines as the automatic code generation metric, there were some cases where the DAST method metric
model took longer than the MAST method measurement model. Taking Table 6 as an example, in the
3rd control group and the 7th control group experiment, the DAST method took longer to measure
the model metric than the MAST method. The reason is that in the 3rd and 7th groups in Table 6,
the code typed by the programmer and the automatic code generation tool does not exceed 20 lines.
But the DAST method occupies most of the time spent in building a DAST. So the DAST method
takes longer time than the MAST method when do the metric. In the control group experiment with
more than 100 lines of automatic code generation, the DAST method takes an average of 46% less
time than the MAST method to generate automatic code metric. It proves that the automatic code

Figure 5. The average time cost in predict indicators

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

18

generation metric model constructed by the DAST method has higher efficiency than MAST method
when doing automatic code generation metric prediction.

On the other hand, as more and more lines of code are typed, the time required to do the automatic
code generation metric prediction becomes higher and higher. For example, the prediction time
required to automatically generate metrics for code written in 100 to 200 lines of code is longer than
for code written in 100 lines or less. This may be due to the increasing width and depth of MAST
and DAST as code typing increases.

To sum up, compared with the MAST method, the DAST method not only has better performance
when training the code to automatic generation metric model, but also has better performance when
doing the code automatic generation metric prediction.

2. 	 The reliable in DAST method when it is used to measure the code generated by automatic code
generation tool (RQ2).

In order to analyze the results of the DAST method in the prediction of automatic code
generation indicators are persuasive, the authors set up a comparative group experiment with 12
kinds of measurement indicators performance combinations. Each metric indicator gets at least 5
other combinations of experiments to observe whether meet the extracting rule in Table 2 or not. In
addition, the authors also separately set metric indicator combinations of which no indicator meets
the extraction rules and all indicators meet the extraction rules.

In Tables 6 to 8, the mean gap value in the predicted indicators when using the MAST method
and the DAST method for automatic code generation metric is shown in Figure 6.

In Figure 6, the mean gap value in the automatic code generation metric between the DAST
method and the MAST method using to predict 8 indicators lies 0.03 to 0.07. Furthermore, the mean
gap value between the DAST method and the MAST method predicting the value of the same indicator
is within 0.1. However, in some comparative experiments, such as the control experiment of the 10th
group in Table 7, the gap value of the space efficiency indicator between the DAST method and the

Figure 6. The mean gap value in the predicted indicators

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

19

MAST method in the automatic code generation metric prediction reached 0.1. The reason for this
phenomenon may be that some tree structures or token information were not taken into consideration
when designing the DAST extraction rules (ie Table 2) for automatic code generation metrics. This
led to the problem that the indicator value predicted by DAST method would loss some value.

Further analysis shows that in the experiment of the same comparative groups, the indicator value
predicted by DAST method is smaller than that predicted by MAST method. The reason may be that
the original tree structure of DAST is destroyed when extracting the content on DAST, resulting in
the loss of measurement indicator value.

To sum up, the DAST method in Table 6 to 8 is close to or almost the same as most of the code
automatic generation indicator values predicted by the MAST method, indicating that the indicator
values predicted by the DAST method in code automatic generation metric have much degree of
reliability.

CONCLUSION

In this paper, the authors propose a metric method for automatic code generation based on dynamic
abstract syntax tree, of which comprehensively considers the behavior information of the interaction
between programmers and automatic code generation tools in the process of automatic code generation.
The metric method firstly builds the dynamic abstract syntax tree through the interaction in behavior
information between the automatic code generation tool and programmer. Then it extracts the
measurement contents on the dynamic abstract syntax tree for code automatic generation metric.
Finally, code automatic generation metric is completed with measurement contents extracted. However,
when extracting content on a AST, some tree structures or token information were not taken into
consideration. It would miss some information related with the metric. Future work will further
explore the association between tokens and extraction rules on a DAST. In addition, the work in this
paper only verifies the generated code quality analysis of the Python code automatic generation tool,
so the next step will apply the method to verify the generated code quality metric analysis of the Java
code automatic generation tool.

ACKNOWLEDGMENT

This research is supported by the National Natural Science Foundation of China under Grant (Nos.
62162038, 61462049, 60703116 and 61063006), the National Key Research and Development
Program of China (2018YFB1003904), Key Project of Yunnan Applied Basic Research (2017FA033),
and Open Foundation of Yunnan Key Laboratory of Computer Technology Application (2020101).

International Journal of Digital Crime and Forensics
Volume 15 • Issue 1

20

REFERENCES

Bo, Y., Neng, Z., Li, S., & Xin, X. (2020). A Survey of Smart Code Completion Research. Journal of Software,
31(5), 1435–1453.

Bruch, M., Monperrus, M., & Mezini, M. Learning from Examples to Improve Code Completion Systems.
in Joint Meeting of the European Software Engineering Conference & the Acm Sigsoft Symposium on the
Foundations of Software Engineering. 2009.

Ding, Y. (2022). CoCoMIC: Code Completion By Jointly Modeling In-file and Cross-file Context. arXiv preprint
arXiv:2212.10007.

Jian, L., He, P., Zhu, J., & Lyu Michael, R. (2017). Software defect prediction via convolutional neural network.
2017 IEEE International Conference on Software Quality, Reliability and Security (QRS). IEEE.

Liu, F., Li, G., Wei, B., Xia, X., Fu, Z., & Jin, Z. (2022). A unified multi-task learning model for AST-level and
token-level code completion. Empirical Software Engineering, 27(4), 1–38. doi:10.1007/s10664-022-10140-7

Liu, Y. (2022). Improving Code Completion by Sequence Features and Structural Features. Proceedings of the
4th World Symposium on Software Engineering.

Kim, S. Zhao, J., Tian, Y., & Chandra, S. (2021). Code prediction by feeding trees to transformers. in 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE.

Lu, S. (2022). ReACC: A Retrieval-Augmented Code Completion Framework. arXiv preprint arXiv:2203.07722.
10.18653/v1/2022.acl-long.431

Miltiadis, A., Barr, E. T., Christian, B., & Charles, S. (2015). Suggesting accurate method and class names. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. IEEE.

Mou, L., Ge, L., Zhi, J., Lu, Z., & Tao, W. (2014). TBCNN: A tree-based convolutional neural network for
programming language processing. arXiv preprint arXiv:1409.5718.

Nguyen, A. T., Yadavally, A., & Nguyen, T. N. (2022). Next Syntactic-Unit Code Completion and
Applications. In 37th IEEE/ACM International Conference on Automated Software Engineering. IEEE.
doi:10.1145/3551349.3559544

Rahman, M., Watanobe, Y., & Nakamura, K. (2021). A bidirectional LSTM language model for code evaluation
and repair. Symmetry, 13(2), 247. doi:10.3390/sym13020247

Xing, H., Ge, L., Fang, L., & Zhi, J. (2019). Research progress of program generation and completion technology
based on deep learning. Journal of Software, 30(5), 1206–1223.

Yang, K., Yu, H., Fan, G., Yang, X., & Huang, Z. (2022). A graph sequence neural architecture for code completion
with semantic structure features. Journal of Software (Malden, MA), 34(1), e2414. doi:10.1002/smr.2414

Zhang, X., Jiang, Y., & Wang, Z. (2019). Analysis of Automatic Code Generation Tools based on Machine
Learning. In 2019 IEEE International Conference on Computer Science and Educational Informatization (CSEI).
IEEE. doi:10.1109/CSEI47661.2019.8938902

Zhang, X. (2021). Research and Implementation of Quality and Efficiency Evaluation Method for Automatic
Code Generation Based on TBCNN. Kunming university of science and technology.

Zhang, X. J., & Jiang, Y. (2021). A semi-supervised learning method for automatic code generation performance
evaluation. Journal of Chinese Computer Systems, 42(3), 8.

Zhao, H., Min, L. I., Qing-kui, C. H. E. N., & Jian, C. A. O. (2020). Code Review in Open Source Software
Development. Journal of Chinese Computer Systems, 41(4), 861–867.

http://dx.doi.org/10.1007/s10664-022-10140-7
http://dx.doi.org/10.1145/3551349.3559544
http://dx.doi.org/10.3390/sym13020247
http://dx.doi.org/10.1002/smr.2414
http://dx.doi.org/10.1109/CSEI47661.2019.8938902

