A Two-Tuple Linguistic Model for the Smart Scenic Spots Evaluation Li Tang, School of Business, Minnan Normal University, Zhangzhou, China* #### **ABSTRACT** The evaluation on the level of smart scenic spots is crucial in the planning and development of smart tourism destinations. However, existing evaluation approaches for smart scenic spots lack scientific rigor and practical applicability. To address this issue, this study proposes a comprehensive evaluation method that combines qualitative analysis and quantitative calculation to establish a weighted index system for assessing the level of smart scenic spots. The approach utilizes a fuzzy comprehensive evaluation model, integrating linear weighted comprehensive evaluation methods, fuzzy mathematics, and the concept of two-tuple. Moreover, the concept of level eigenvalue is introduced to facilitate the evaluation of smart scenic spots. The proposed two-tuple model and evaluation method demonstrate strong operability, applicability, and promotional potential, as evidenced through example calculations and analysis. #### **KEYWORDS** Evaluation on the Smart Level, Fuzzy Comprehensive Evaluation, Smart Scenic Spots, Two-Tuple Linguistic ## INTRODUCTION Smart scenic spots play a crucial role in serving tourists and promoting sustainable development in scenic areas; evaluating these spots is essential for the successful planning and development of smart tourism. Although the term *smart scenic spot* is less common outside China, it has a significant historical background that has captured considerable academic attention regarding the technical advancements and applications of smart technology in scenic areas (Dimitrios Buhalis, 2008; Owaied et al., 2011; Borràs et al., 2014; Taehyee & Namho, 2019). Studies in China have primarily concentrated on the intrinsic concept of smart scenic spots, the development of smart tourism systems, the tourists' spatial behaviors, and investigations into the willingness of using the smart tourism systems (Dang et al., 2011; Ruan, 2017, Li et al., 2019; Xu & Huang, 2018). However, there is a noticeable lack of research on evaluating the smart level of these sites. Such evaluations aim to identify the factors contributing to the development of smart scenic spots, establish a weighted index system, and calculate corresponding grades. For instance, Tang (2014) developed an index system encompassing management, service, marketing, and support, and employed the analytic hierarchy process (AHP) to assign weights to the indices. Through a multi-factor comprehensive evaluation method, Tang DOI: 10.4018/IJFSA.329959 *Corresponding Author Volume 12 • Issue 1 conducted an empirical study on Nanjing Zhongshan Mausoleum (Tang, 2014). Similarly, Li and Shi (2017) constructed an index system for Lanzhou smart scenic spot, considering dimensions like environmental monitoring, intelligent security, energy management, traffic management, scenic spots public release platform, and intelligent management service. They used the analytic hierarchy process to weigh the indices, established an evaluation model, and proposed policy suggestions for the Lanzhou smart scenic spot (Li & Shi., 2017). Pan (2018) and Chen et al. (2019) developed a concise evaluation system that includes infrastructure, service smartness, marketing smartness, and management smartness, the CRITIC and AHP methods are employed to determine index weights and extended the application to evaluate the smart level of scenic spots above 4A in Jiangsu province. Moreover, Guo et al. (2022) utilized the entropy method to assess navigation, guide, and shopping in China's first and second batches of smart scenic cities above 3A, providing a crucial evaluation of their smart level. Many researchers have treated the evaluation of smart level and level of smart scenic spots as interchangeable problems to solve. In this context, the comprehensive evaluation value of the smart scenic spots is obtained, and the associated smart level is determined by comparing the value against a predefined threshold. However, it is important to recognize that, conceptually and methodologically, the ranking evaluation of smart scenic spots differs from the ranking evaluation of the degree of smart. To address this issue and enhance the quality and credibility of evaluation on the smart level of scenic spots, this paper clearly defines the smart level evaluation on scenic spots. Additionally, a general model for conducting an evaluation on the smart level is developed with a rational, mathematical methodology. By differentiating the two types of evaluations, this approach aims to refine the assessment process and ensure accurate results for evaluating the smart level of scenic spots. As a theoretical application piece, this paper incorporates the two-tuple linguistic mode with the evaluation of smart scenic spots. Therefore, our research differs in two ways from previous methods, which are both the contributions of this article and the core points that need to be demonstrated. First, in the existing literature, the old-fashioned approach to scenic spot evaluations mainly focused on the AHP, Delphi method, entropy method, and fuzzy comprehensive evaluation. Many of these methodologies rank scenic spot smartness as the grading of the smartness. Specifically, after obtaining a comprehensive evaluation score for a smart scenic spot, its smart level will be determined according to the grade thresholds, assessing whether the overall smartness score meets the criterion. A major flaw of these methods is that they can only judge the hierarchical level between objectives and cannot weigh the pros and cons of multiple objectives at the same level. With the help of the two-tuple linguistic model, ranking within the level becomes possible for smart scenic spot evaluations. Second, in contrast to the two-type fuzzy sets, which obtain the advantages in the hierarchical structure analysis, the two-tuple linguistic model not only captures preferences with quantitative representations during decision-making, but also extracts information behind the uncertainty of language using and terminology in evaluations. It mitigates information loss and hence builds a more accurate and robust result, and our conclusions support this point of view. #### **EVALUATING THE SMART LEVEL OF SCENIC SPOTS** This study implemented a comprehensive methodology to ensure the applicability of smart level evaluation. First, a weighted index system was constructed, considering various factors contributing to scenic spots' smartness. Next, the grade of smartness was calculated using fuzzy comprehensive evaluation, which allows for a more nuanced and precise assessment. To optimize the evaluation results further, the study introduced the concepts of level characteristic value and two-tuple linguistic. These additions not only aid in determining the smart level of a scenic spot but also enable the ranking of smart degrees within each level. This approach significantly enhances the applicability of evaluating and comparing different smart scenic spots. By combining these elements, the methodology presented in this paper ensures a more accurate, reliable, and practical evaluation of the smart level of scenic spots. This comprehensive approach is well-suited for guiding the development and improvement of smart scenic spots, promoting sustainability, and offering a valuable tool for decision-makers in the tourism industry. # Indices on Evaluating the Smart Level of Scenic Spots Following the "Beijing Smart Scenic Spot Construction Guidelines (for Trial Implementation)" (2012), "Fujian Province Classification and Accreditation for Smart Tourism Destinations" (2022), and other relevant literature (Tang, 2014; Wang et al., 2015; Li & Shi, 2017; Chen et al., 2019), we built the index system of smart scenic spots evaluation by expert interview and field research. The system is organized into three levels. The primary level has four evaluation indicators: smart management (O_1) , smart services (O_2) , smart marketing (O_3) , and smart support (O_4) . The secondary level encompasses nine indicators, including intelligent security (O_{11}) and environmental monitoring (O_{12}) . The tertiary level consists of 30 indicators, such as the scope of video surveillance coverage (O_{111}) and the development level of emergency response systems (O_{112}) . Details are shown in Table 1. ## Standards for Smart Scenic Spots Level and Weights of the Index System ## Standards for Smart Scenic Spots Level The smart level of kth scenic spot is represented by e_k ($k=1,2,\ldots,h$) with the partial order $e_1>e_2>\ldots e_h$, it follows that the smart level of kth scenic spot is superior to the (k+1)th one, this specific partial order gives the level set of smart scenic spots evaluation such that $V=\left\{e_1,e_2,\ldots e_n\right\}$. Moreover, the ground bases for us to construct smart level are "Beijing Smart Scenic Spot Construction Guidelines (for Trial Implementation)" (2012), "Fujian Province Classification and Accreditation for Smart Tourism Destinations" (2022), and Tang (2014), and according to the evaluation standards and grade thresholds in each smart scenic spot, the smart level is set to h=5, and e_1-e_5 indicate levels I–V, respectively. Specifically, e_1 denotes a very high smart level, e_2 denotes the high one, e_3 denotes the ordinary one, e_4 denotes the poor one, while e_5 is the worst-case scenario. The details can be seen in Table 2. ## Weights of the Index System On the data and level indices of smart scenic spots, we gauge the impact on the benefits of these spots and the challenges of their implementation. We sought insights from industry experts and employed the AHP method. Using a 1–9 scale, we pairwise assessed the relative significance of the smart level indices. Based on these comparisons, we formulated judgment matrices for
each tier, utilized Excel to determine the maximum eigenvalue and its associated eigenvector, and performed a consistency check. In the end, we established the weights for the index system of the smart scenic spots, details are shown in Table 1. #### The Grade Membership Function of the Evaluation Indices The evaluation indices can be divided into two categories: the quantitative one and the qualitative one. # The Membership Degree of the Qualitative Evaluation Indices On the actual characteristics and requirements of the smart scenic spots, the grade membership function of the qualitative evaluation indices $O_{ijl}\left(l=1,2,...L_{ij}\right)$ of smart scenic spot $A_{t}\left(t=1,2,...N\right)$ can be defined as follows: Table 1. Evaluation indices and weight of smart scenic spots for the goal: Comprehensive development level of smart scenic spots | System | Weight | Element | Weight | Indicator | Weight | |------------------------------------|--------|---|--------|---|--------| | Smart management (O ₁) | | | 0.36 | Video surveillance coverage (O ₁₁₁) | 0.46 | | | 0.30 | Intelligent security (O ₁₁) | | Emergency response system construction level (O_{112}) | 0.33 | | | | | | Fully functional command and control center (O ₁₁₃) | 0.21 | | | | | 0.39 | Real-time statistics and analysis of tourist flow (O_{121}) | 0.45 | | | | Environmental monitoring | | Environment monitoring content (O ₁₂₂) | 0.23 | | | | (O ₁₂) | | Modern scientific management level of landscape resources (O ₁₂₃) | 0.32 | | | | | 0.25 | Proficiency in professional financial management software (O_{131}) | 0.39 | | | | Daily operations (O ₁₃) | | Automatic office function (O ₁₃₂) | 0.42 | | | | | | Content of resource management (O ₁₃₃) | 0.19 | | Smart service (O ₂) | | | 0.33 | Portal website establishment and operation (O_{211}) | 0.43 | | | 0.40 | Portal information (O ₂₁) | | Reasonableness of touch screen multimedia terminal (O_{212}) | 0.28 | | | | | | Tourism information release form (O ₂₁₃) | 0.29 | | | | | 0.67 | Electronic ticket form (O ₂₂₁) | 0.11 | | | | | | Comprehensive functions of electronic access control system (O ₂₂₂) | 0.08 | | | | | | Coverage of digital virtual scenic area (O ₂₂₃) | 0.07 | | | | Interactive Experience | | Authenticity and convenience of virtual travel (O ₂₂₄) | 0.19 | | | | (O ₂₂) | | Coverage of self-guided tour system (O ₂₂₅) | 0.23 | | | | | | Customized service of personalized tourist line (O_{226}) | 0.13 | | | | | | Multimedia display (O ₂₂₇) | 0.12 | | | | | | Construction of tourist complaints service platform (O_{228}) | 0.07 | | Smart marketing (O_3) | | | 0.67 | Sales channels of tourism products (O ₃₁₁) | 0.43 | | | 0.17 | E-commerce (O ₃₁) | | Payment (O ₃₁₂) | 0.26 | | | | | | New promotion for tourism products (O ₃₁₃) | 0.31 | | | | | 0.33 | Online communication (O ₃₂₁) | 0.42 | | | | Brand promotion (O_{32}) | | Development of derivative tourism product (O_{322}) | 0.36 | | | | | | Monitoring of tourism public opinion (O ₃₂₃) | 0.22 | | Smart support (O_4) | 0.12 | Communication network | 0.5 | Coverage of wireless communication network (O_{411}) | 0.5 | | | 0.13 | (O ₄₁) | | Coverage of wireless broadband (O ₄₁₂) | 0.5 | | | | Planning (O ₄₂) | 0.5 | Construction planning of smart tourism scenic spots (O_{421}) | 0.5 | | | | 7.5 | | Input of security (O ₄₂₂) | 0.5 | $$\mu_{tijlk} = \begin{cases} 1 & O_{ijl} \text{ of } A_t \text{ satisfies } e_k \\ 0 & \text{otherwise} \end{cases} \tag{1}$$ If the index O_{ijl} $(l=1,2,...L_{ij})$ of A_t satisfies the benchmark value of e_k , then the grade membership function μ_{tijlk} is equal to 1. On the contrary, if the index O_{ijl} does not meet the benchmark Table 2. Reference values and criteria of smart scenic spots | | | | Evaluation Rating | | | |---|---|---|--|---|---| | Evaluation Indices | e ₁ I | $e_2 \mathrm{II}$ | e ₃ III | e ₄ IV | e, V | | Surveillance cover rate | Covering all scenic spots, full monitoring on important spots, tourist centralized location and areas with frequent accidents | Covering 80% of
scenic spots, key
monitoring on
important spots,
tourist centralized
location and areas
with frequent
accidents | Covering more than 50% of scenic spots, effective monitoring on important spots, tourist centralized location and areas with frequent accidents | Covering more
than 30% of
scenic spots,
monitoring on
tourist centralized
location and areas
with frequent
accidents | Covering Less
than 30% of
scenic spots | | Emergency response system construction level | Very high, travel consultation and complaints being received in time according to the emergency plan with modern communication tools and calling system | High, providing comprehensive command and coordinate rescue for tourism emergencies according to the emergency plan | Ordinary, broadcast
being immediately
converted to
emergency use while
it is under the unified
control of the control
center of the scenic
spot | Poor, broadcast only | Very poor, no
emergency
response system | | Fully functional command and control center | Very highly functional, in addition to emergency command, control center can acquire comprehensive tourism information from municipal and district, and release them quickly and effectively | Highly functional, effective organization, coordination, management and control of emergency resource | Ordinary, conducting
personnel and vehicle
command and
dispatch | Not functional,
only conducting
personnel
command and
dispatch | Very poorly
functional, no
command and
control center | | Real-time statistics and analysis of tourist flow | Very high, real-
time statistics and
monitoring the
entrance and exit
and the total number
of tourists with
automatic alarm
mechanism for
visitor limit | High, real-time
statistics and
monitoring the
entrance and exit,
the total number of
tourists and tourist
centralized location | Ordinary, monitoring
tourist flow of
entrance and exit and
real-time statistics of
total tourist number | Poor, tourist
flow statistics
management of
entrance and exit | Very poor, only
entrance tourist
flow statistics
management | | Environment monitoring | | g content is divided into
ironment, biological envi | six categories: natural land
ronment and noise | dscape, cultural landsc | ape, atmospheric | | content (quantitative indices) | ≥5, with five or more items above | 4-with 4 items above | 3-with 3 items above | 2-with 2 items
above | 1-with 1 item
above | | Modern scientific
management level of
landscape resources | Very high,
information
and digitization
measurement control,
record, preservation,
repair, maintenance,
search, analysis, and
public display with
modern scientific
management tools | High, information
and digitization
measurement
control, record,
preservation, repair,
maintenance, search,
and analysis with
modern scientific
management tools | Ordinary, information
and digitization
measurement
control, record,
preservation, repair,
and maintenance with
modern scientific
management tools | Poor, information
and digitization
measurement
control and
record with
modern scientific
management tools | Very poor,
without any
modern scientific
management
tools | | Proficiency in professional financial management software | Very high, not only
the skilled usage of
methods for element
management, but
also innovation
software functions
combined with the
actual enterprise | High, using financial
forecasting, decision-
making, budgeting,
control, and other
methods to manage
the corresponding
elements | Ordinary,
management of assets,
financing, investment,
operating income, etc. | Poor, only
management
of assets and
operating income | Very poor,
playing a
relatively small
role | continued on following page Table 2. Continued | Familian I. P. | Evaluation Rating | | | | | | | |---|--|---|---|--
--|--|--| | Evaluation Indices | e, I | e ₂ II | e ₃ III | e ₄ IV | e ₅ V | | | | Automatic office content | Process management, E-mail, document management, document transmission, approval management, work calendar, personnel dynamic display, financial settlement management, announcement, news, notice, personal information maintenance, meeting management, attendance management | | | | | | | | | ≥ 10, with ten or more items above | ≥ 8, with7–9 items above | ≥ 6, with 5–6 items above | ≥ 4, with 3–4 items above | ≥ 2, with 1–2 items above | | | | Content of resource | Including commercial resources deployment, shop management, operating supervision, contract management, property standards, etc. | | | | | | | | management | 5, with 5 items above | 4, with 4 items above | 3, with 3 items above | 2, with 2 items above | 1, only with 1 item above | | | | Portal website establishment and operation | Very well, rich
content and
functions, providing
self-service tour
guide software,
audio, video, maps
and other download
services | Well, complete
functions and strong
interactivity, building
an official microblog
with links and
multiple language
services | Ordinary, with
basic functions
such as tourist route
recommendation
and travel planning,
promotion services,
traffic navigation | Poor, only basic
information
browsing and
query | Very poor, only
basic information
browsing | | | | Touch-screen multimedia terminal | Quite reasonable,
with adequate
quantity of touch-
screen multimedia
terminal, reasonable
layout and
functionalities | Reasonable, with
adequate quantity
of touch-screen
multimedia terminal
and reasonable layout | Ordinary with
adequate quantity
of touch-screen
multimedia terminal | Unreasonable,
only with some
touch-screen
multimedia
terminal | Very
unreasonable,
only small
amount of
touch-screen
multimedia
terminal | | | | Tourism information release | Tourism information release through LED screen, self-service guided tour terminal, touch-screen multimedia terminal, SMS, MMS, public broadcasting | | | | | | | | form | 5-with 5 items above | 4-with 4 items above | 3-with 3 items above | 2-with 2 items
above | 1-with 1 item
above | | | | Electronic ticket form (quantitative indices) | ≥4, in addition to
paper (printed with
barcode or QR code),
SMS(MMS) and
RFID, other forms
of electronic ticket
being used | 3-with paper (printed
with barcode or QR
code), SMS(MMS)
and RFID | 2-with paper (printed
with barcode or
QR code) and
SMS(MMS) | 1-only paper
(printed with
barcode or QR
code) | 0-no electronic
ticket, only
traditional printed
hand-torn ticket | | | | | Electronic access control system has all access tickets control management such as ticket selling, ticket checking, inquiry, summary, statistics and statement, as well as the omni-directional real-time monitoring and management | | | | | | | | Functionalities of electronic access control system | Very comprehensive,
realizing automatic
identification ticket,
ticket checking
information network
and remote query | Comprehensive,
realizing the
automatic
identification and
ticket checking
information network | Ordinary, with
electronic access
control, automatic
identification and
ticket checking | Incomplete,
having handheld
mobile terminal
equipment
and automatic
identification and
ticket checking | Very incomplete,
no electronic
access control
system | | | | Coverage of virtual scenic spot | Virtual tourism refers to the use of 3D panoramic real scene mixed reality technology, 3D modeling and simulation technology, 360-degree real scene photos or videos and other technologies to build a virtual scenic spot to achieve virtual tourism and enhance the public attributes of the scenic spot | | | | | | | | - | ≥ 70% | ≥ 50% | ≥30% | ≥ 20% | ≥ 10% | | | | Authenticity and convenience of virtual travel | Very high, adopting
3D panoramic real
scene mixed with
reality technology,
clicking any point on
the ground to real-
time scene switching,
and sharing links
of tour content or
Weibo forwarding | High, using the computer graphics image technology to construct the 3D panoramic space based on the images obtained from the real scene | Ordinary, adopting
virtual 3D modeling
and simulation
technology to
reproduce real scenes | Low, only using
360-degree real
scene photos or
videos | Very low, failed
to implement
virtual travelling | | | Table 2. Continued | | | | Evaluation Rating | | | | |--|--|---|---|--|--|--| | Evaluation Indices | e, I | e ₂ II | e ₃ III | e ₄ IV | e ₅ V | | | Coverage of self-guided tour system | Self-guided tour is popular. Scenic spots should establish a modern self-service tour guide system based on wireless communication, global positioning, mobile Internet, Internet of things and other technologies. The hardware equipment can display the tourist map, support wireless Internet as well as global positioning system, complete the self-guided tour explanation. | | | | | | | | Achieve 100% | ≥ 80% | ≥ 50% | ≥ 30% | < 30% | | | Customized service of personalized tourist line | Very high, not only
supporting a variety
of field and advance
customization, but
also downloading
mobile terminal
applications and
customizing anytime
and anywhere | High, supporting portal website, on-site touch-screen customization and the electronic guide tool provided by the scenic spot for the entire area | Ordinary,
with advance
customization,
on-site touch-screen
multimedia terminal
set up in the scenic
spot for customization | Low, customizing
the travel routes
on portal website | Very low, paper
guidebooks
provided only | | | Multimedia display | dimensional projection | system, digital audio syst | arc curtain system, circula
tem, VR system, spherical
ystem, interactive game sy | projection system, des | sktop projection | | | | ≥ 8, using 8 or more tools above | ≥ 6, using 6 to 7 tools above | ≥ 4, using 4 to 5 tools above | ≥ 2, using 2 to 3 tools above | 1, only using 1 tool above | | | Construction of tourist complaints service platform | Very high,
supporting complaint
forms like service
centers, telephone
and network, touch-
screen multimedia
terminals online
messages, and being
connected with
the 12301-tourism
hotline platform | High, supporting
complaint forms
like service centers,
telephone and
network, touch-
screen multimedia
terminals online
messages | Ordinary supporting
complaint forms
like service centers,
telephone, and
network | Low, supporting
complaint forms
like service
centers and
telephone | Very low, only
supporting
telephone
complaint | | | | Scenic spot tickets and other tourism products are no longer limited to on-site sales, such as: offline travel agency group distribution, official website, QR code, WeChat direct sales and Taobao, Qunar, Ctrip, Tuniu and other major tourism e-commerce distribution | | | | | | | Sales channels of tickets and other tourism products | ≥ 5, Supporting
all forms of
direct selling and
distribution, and
innovating sales
channels | 4, Supporting field sales, offline travelling agency group distribution, official website, QR code, WeChat and Taobao direct sales, Qunar, Ctrip, Tuniu and other major tourism e-commerce distribution | 3, Supporting
field sales, offline
travelling agency
group distribution,
official website, QR
code, and WeChat
direct sales | 2, Supporting
field sales, offline
travelling agency
group distribution | 1, Supporting field sales only | | | | It is divided into cash p | ayment, POS card payme | ent, wire transfer, bank tran | nsfer, mobile payment, | and online payment | | | Payment | ≥ 5, supporting five or more methods above | 4, supporting four methods above | 3, supporting three methods above | 2, supporting two methods above | 1, supporting one method above | | | N | At present, new promot
e-card and travel full ex | | up-buying, travel consump | otion coupons, complir | mentary e-ticket, | | | New promotion for tourism products | ≥ 5, using 5 and
more promotions
above | 4, using 4 promotions above | 3, using 3 promotions above | 2, using 2 promotions above | 1, using 1 promotion above | | continued on following page Table 2. Continued | | Evaluation Rating | | | | | | | |--|--
---|---|--|--|--|--| | Evaluation Indices | e, I | e ₂ II | e ₃ III | e ₄ IV | e ₅ V | | | | | Tourism forum, officia | l website, official microbl | og, official WeChat, mob | ile client software, QQ | , MSN, E-mail | | | | Online communication platform | ≥ 5, using 5 and
more platforms
above | 4, using 4 platforms above | 3, using 3 platforms above | 2, using 2 platforms above | 1, using 1
platform above | | | | Development of derivative tourism product | Very high, the
development of
physical and service
derivative products,
and combining with
tourism marketing
for commercial
operation | High, with physical
products and
developing service
derivatives, such as
compiling tourism
stories and game
software related to
scenic spots | Ordinary, developing
a certain number
of products and
service derivatives,
and having a certain
popularity among
tourists | Low, developing
a small number
of physical and
service derivatives | Very low, only
developing a
small number
of physical
derivatives | | | | Monitoring of tourism public opinion | Yes | | | | No | | | | Coverage of wireless communication network | Achieving 100%,
receiving mobile
phone signals
anywhere | More than 80% of the area receiving mobile phone signals | More than 50% of the area receiving mobile phone signals | More than 30% of
the area receiving
mobile phone
signals | Less than 30% of
the area receiving
mobile phone
signals | | | | Coverage of wireless broadband | 100% WLAN
covering the whole
scenic area basically | ≥ 80% WLAN
covering 80% of
scenic area WLAN | ≥ 50% WLAN
covering the entrance
and exit of scenic
spots, tourist service
center and tourist
concentrated areas | ≥ 30% WLAN
only covering the
entrance and exit
of scenic spots
and tourist service
center | < 30% WLAN
only covering the
entrance of scenic
spots and tourist
service center | | | | Construction plan of smart scenic spots | Very high,
establishing a
comprehensive
construction plan
for smart scenic
spot, and has passed
the evaluation and
certification | High, establishing
a detailed and
professional
construction plan of
smart scenic spot | Ordinary, establishing
a relatively detailed
and professional
construction plan of
scenic spot | Low, only part
of the smart
scenic spot has
construction plan | Very low, only
relevant schemes
for smart scenic
spot but no
construction plan | | | | Input of security | Very high, with
high investment of
capital, manpower
and material
resources, other
factors to support the
construction of the
scenic spot | High, meeting the
needs of smart scenic
spot construction
with investment of
capital, manpower
and material
resources | Ordinary, meeting the needs of smart scenic spot construction with capital input and relevant personnel responsible | Low, only the
majority part of
the budget for the
construction of
smart scenic spot | Very low, only
a small part of
the budget for
construction of
smart scenic spot | | | value of $e_{_k}$, then the grade membership function $\mu_{_{tijlk}}$ is 0. In the above equation, $\mu_{_{tijlk}}$ indicates the membership of the lth three-level evaluation index (qualitative) $O_{_{ijl}}$ of the jth two-level evaluation index $O_{_{ij}}$ (i=1,2,...m) of the ith first-level evaluation index $O_{_i}$ (i=1,2,...m) that belongs to the kth smart level $e_{_k}$. Considering three smart scenic spots, denoted as $A_{_1}$, $A_{_2}$, and $A_{_3}$ (N=3), and based on the information provided in Table 1, the associated values and parameters are: $$\begin{split} m &= 4, n_{_{\! 1}} = 3, n_{_{\! 2}} = 2, n_{_{\! 3}} = 2, \\ L_{_{\! 11}} &= 3, L_{_{\! 12}} = 3, L_{_{\! 13}} = 3, L_{_{\! 21}} = 3, L_{_{\! 22}} = 8, L_{_{\! 31}} = 3, L_{_{\! 32}} = 3, L_{_{\! 41}} = 2, L_{_{\! 42}} = 2 \end{split}$$ Moreover, Equation 1 represents the hierarchical membership function for the three-level evaluation indices, and it can also be applied to determine the grade membership functions of two-level and first-level qualitative evaluation indicators. This methodology allows us to assess the smartness of scenic spots across multiple levels and indicators, providing a comprehensive and effective evaluation approach. # The Membership Function of the Quantitative Evaluation Indices To obtain an efficient evaluation index system, the membership function of the quantitative evaluation index $O_{i,i}$ of smart scenic spot A_i can be selected as follows: $$\mu_{tijl1} = \begin{cases} 1 & \left(y_{tijl} \ge a_{ijl1}\right) \\ \frac{y_{tijl}}{a_{ijl1}} & \left(0 \le y_{tijl} < a_{ijl1}\right) \end{cases}$$ (2) $$\mu_{tijlk} = \begin{cases} \frac{a_{ijl,k-1}}{y_{tijl}} & \left(y_{tijl} \ge a_{ijl,k-1}\right) \\ 1 & \left(a_{ijlk} \le y_{tijl} < a_{ijl,k-1}\right) \\ \frac{y_{tijl}}{a_{ijlk}} & \left(0 \le y_{tijl} < a_{ijlk}\right) \end{cases}$$ (3) $$\mu_{tijl5} = \begin{cases} \frac{a_{ijl4}}{y_{tijl}} & \left(y_{tijl} \ge a_{ijl4}\right) \\ 1 & \left(a_{ijl5} \le y_{tijl} < a_{ijl4}\right) \\ \frac{y_{tijl}}{a_{ijl5}} & \left(0 \le y_{tijl} < a_{ijl5}\right) \end{cases}$$ $$(4)$$ In the preceding functions, y_{tijl} represents the value of the lth three-level (quantitative) evaluation index O_{ijl} of smart scenic spot A_t , a_{ijlk} denotes that O_{ijl} belongs to level $e_k\left(k=1,2,...h\right)$ where h=5 in such case (similarly for other cases). Moreover, O_{tijlk} indicates that at smart scenic spot A_t , the lth three-level evaluation index (quantitative) O_{ijl} of the jth two-level evaluation index $O_{ij}\left(j=1,2,...,n_j\right)$ of the ith first-level evaluation index $O_i\left(i=1,2,...,m\right)$ is assigned to kth smart level e_k . When the grade reference value (Or division value) of the quantitative evaluation indices is the same or falls within the same interval, the level membership function of the quantitative evaluation index O_{iil} of smart scenic spot A_i can be selected as follows: $$\mu_{iijlk} \begin{cases} 1 & O_{ijl} \ of \ A_{t} \ satisfies \ e_{k} \\ 0 & otherwise \end{cases} \tag{5}$$ The above approach is also capable of determining the membership functions of second-level and first-level qualitative evaluation indicators. By using these membership functions, the smartness level of scenic spot A_t can be accurately assessed based on the quantitative evaluation indices and their relationship to the established benchmark values for each level. # Comprehensive Model and Two-Tuple Linguistic Method for Evaluating the Smart Level Based on the characteristics of the smart scenic spots, the membership function μ_{tijlk} for the evaluation index O_{ijl} can be calculated using Equations 1–5 with both qualitative and quantitative evaluation indices. This calculation results in the membership matrix $\hat{\mu}_{tij} = \left(\mu_{tijlk}\right)_{L_{ij} \times h}$, which provides the basic data for the smart level evaluation. Similarly, the weights of the first, second, and third level evaluation indices presented in Table 1 can be expressed as the following weight vectors: $$\boldsymbol{\omega} = \left(\omega_{1}, \omega_{2}, ..., \omega_{m}\right)^{T} \cdot \boldsymbol{\omega}_{i} = \left(\omega_{i1}, \omega_{i2}, ..., \omega_{in_{i}}\right)^{T} \cdot \boldsymbol{\omega}_{ij} = \left(\omega_{ij1}, \omega_{ij2}, ..., \omega_{ijL_{ij}}\right)^{T}$$ # Fuzzy Comprehensive Model of Smart Scenic Spots Evaluation Our fuzzy comprehensive evaluation model based on the fuzzy linear weighted comprehensive evaluation method. This model is designed to meet the inherent requirements of evaluation on the smart level and its three-layer evaluation index structure characteristics. To calculate the comprehensive membership degree of smart scenic spot A_t with respect to the three-level evaluation index O_{ijl} for level e_k , the fuzzy linear weighted comprehensive evaluation method is employed. The calculation is as follows: $$u_{tijk} = \frac{\omega_{ij}^{T} \mu_{tijk}}{\sum_{k=1}^{h} \omega_{ij}^{T} \mu_{tijk}} \qquad (k = 1, 2, ..., h)$$ (6) In the preceding equation, $\hat{\mu}_{tijk} = \left(\mu_{tij1k}, \mu_{tij2k}, ..., \mu_{tijLijk}\right)^T$ represents the kth column vector of μ_{tij} in the membership matrix. By arranging these column vectors, the comprehensive membership vector u_{ij} of smart scenic spot A_t for all levels e_k can be obtained as $\hat{u}_{tij} = \left(u_{tijk}\right)_{1 \times h}$. By using the comprehensive membership vector, the membership matrix $\hat{\mu}_{ti} = \left(\mu_{tijk}\right)_{n_i \times h}$ can further be derived for the two-level evaluation indices of A_t . The same model can determine the comprehensive membership vector and membership matrix for the second-level and first-level evaluation indices. In the general evaluation on the smart level, the principle of maximum membership is commonly applied. This means that the smart scenic spot is rated according to the level of membership it belongs to. However, relying solely on the principle of maximum membership can be unreasonable at times. To address this, we introduce the concept of level eigenvalue (Li, 2023). ## Decision Value of the Smart Level The subscript k of the intelligence level e_k is called the level variable;
therefore, the level characteristic value of the smart scenic spot A_k can be defined as: $$v_{t} = (1, 2, ..., h)(\hat{u}_{t})^{T} = \sum_{k=1}^{h} k u_{tk}$$ (7) Note that $u_{tk} \in \left[0,1\right]$ and $\sum_{k=1}^h u_{tk} = 1$, then there is: $$1 = \sum_{k=1}^{h} u_{tk} \le \sum_{k=1}^{h} k u_{tk} \le \sum_{k=1}^{h} h u_{tk} = h$$ Indeed, as mentioned in Equation 7, the level eigenvalues $\left(v_{t}\right)$ of smart scenic spot A_{t} provides a dimensionless quantity indicator that lies between the 1st level $\left(e_{1}\right)$ and the hth level $\left(e_{h}\right)$. The level eigenvalues convey two critical pieces of information: the comprehensive membership degree and the scenic spot smart level (level location). The value $\left[v_{t}\right]$, represented as the maximum integer not greater than v_{t} , is used to determine the smart level of A_{t} . If $\left[v_{t}\right]$ equals q, it indicates that A_{t} is at the qth degree of smart level. Obtaining the maximum integer value from the level eigenvalues v_{t} is generally considered more comprehensive and objective than relying solely on the principle of maximum membership. However, there are some limitations in this approach. Different levels of eigenvalues may yield the same maximum integer value, leading to some unreasonable evaluations of the smart level of scenic spots. Additionally, this method may fail to clearly distinguish the difference in the degree of smart construction among the scenic spots (Liu & Li, 2016). To address these challenges and ensure a more accurate and nuanced evaluation of the smart level of each scenic spot, our paper introduces the concept of two-tuple linguistic (Yu et al., 2018; Yu et al., 2016; Herrera & Martinez, 2000; Martinez & Herrera, 2012; Yu & Li, 2022), aiming to refine the assessment process and enhance the distinction between the smart levels of different smart scenic spots. By incorporating the two-tuple linguistic method, we aim to provide a more robust and valuable evaluation on the smart level, considering both the comprehensive membership degree and the variations among smart scenic spots. ## Two-Tuple Linguistic Method for the Evaluation of Smart Level If the level eigenvalue v_t of smart scenic spot A_t is met: $$s - 0.5 \le v_t < s + 0.5 \tag{8}$$ then the smartness rating of A_t is the sth level (e_s) . To depict the difference degree of smart level of different smart scenic spots within the same level, deviation value between level eigenvalue and its corresponding smart level s (subscript s of level e_s) is denoted as $\alpha_{ts}=\upsilon_t-s$ (see Figure 1). Obviously, $-0.5\leq\alpha_{ts}<0.5$. The basic idea of two-tuple linguistic method for the evaluation on the smart level of smart scenic spots as follows. First, level eigenvalue v_t of smart scenic spot A_t is denoted Figure 1. Relation between two-tuple linguistic and grade eigenvalue as a two-element ordered group $\left(e_s,\alpha_{ts}\right)$, and e_s is the evaluated smart level of A_t , while α_{ts} expresses the deviation value of v_t and its smart level $s,\alpha_{ts}\in\left[-0.5,0.5\right)$. Second, by assessing the smart level of scenic spot A_t — given the size of e_s in $\left(e_s,\alpha_{ts}\right)$, it adjusts and determines the relative difference of the smart scenic spots (that is, determines the priority of the smart scenic spots within a smart level). Obviously, α_{ts} serves as a regulatory signal in the smartness grade rating, implying whether the smart level s is larger or smaller than v_t . Therefore, we call $\left(e_s,\alpha_{ts}\right)$ the two-tuple linguistic pair, and α_{ts} is semantic symbol. To facilitate the computation of the two-tuple linguistic evaluation on the smart level, the size of the two-tuple is specified as follows: - 1. If $e_s > e_d \left(s < d \right), \left(e_s, \alpha_{ts} \right) > \left(e_d, \alpha_{rd} \right)$, the smart level of scenic spot A_t is higher than that of A_r , that is $\left(e_s, \alpha_{ts} \right)$ and $\left(e_d, \alpha_{rd} \right)$ are the two-tuple linguistic of level eigenvalue v_t and v_r of smart scenic spots A_t and A_r . - 2. If $e_s=e_d(s=d)$, the smart level of scenic spots A_t and A_r is the same, they can be adjusted according to the linguistic symbol to determine the degree of difference. The specific measures are as follows: - a. If $\alpha_{ts}=\alpha_{rd}$, $\left(e_s,\alpha_{ts}\right)=\left(e_d,\alpha_{rd}\right)$, A_t and A_r have exactly the same degree of smartness. - b. If $\alpha_{ts} > \alpha_{rd}$, $(e_s, \alpha_{ts}) < (e_d, \alpha_{rd})$, the smart degree of A_t is inferior to A_r (although they are at the same grade). - c. If $\alpha_{ts} < \alpha_{rd}, \left(e_s, \alpha_{ts}\right) > \left(e_d, \alpha_{rd}\right)$, A_t has more smart grade than A_r , A_t is hence ranked before A_r . Obviously, the preceding two-tuple linguistic ranking method not only assesses the smart level of each scenic spot but distinguishes the difference degree of the smartness within same smart level. # **EMPIRICAL ANALYSIS OF SMART SCENIC SPOT EVALUATION** Three national 5A scenic spots in Fujian Province, denoted by $A_{\rm l}$, $A_{\rm l}$ and $A_{\rm l}$, were selected as the evaluation objects or samples for smartness evaluation. The three scenic spots began their smart tourism construction in year 2012, 2013, and 2003, respectively. They have achieved varying degrees of success in intelligent ticketing, transportation, intelligent resource management, intelligent service, precise marketing, and office automation. We obtained the smart level evaluation in the three smart scenic spots (see Table 3). According to Equations 1–5 and Table 3, the hierarchical membership matrix of smart scenic spot A_1 with respect to the three-level evaluation indices can be calculated, the results are as follows: Table 3. Smart level index and evaluation index values of three smart scenic spots | System | Element | Index | Xiamen Gulangyu | Fuzhou San-Fang Qi-Xiang $A_{\!{}_2}$ | Wuyi Mount A_3 | |-------------|---------------------------|---|--------------------|---------------------------------------|--------------------| | | Intelligent security | Video surveillance
coverage | 85% | 70% | 80% | | | | Emergency response system construction level | High | Ordinary | High | | | | Functional
comprehensiveness for
command- and-control
center | Comprehensive | Comprehensive | Very comprehensive | | Management | | Real-time statistics and analysis of tourist flow | High | Low | Very high | | | Environment
monitoring | Environment monitoring content | 6 | 2 | 6 | | | | Modern scientific
management level of
landscape resources | High | Low | High | | | | Proficiency in professional financial management software | Proficient | Ordinary | Ordinary | | | Daily operations | Automatic office function | 12 | 10 | 10 | | R | | Content of resource management | 5 | 5 | 4 | | | | Portal website
establishment and
operation | Ordinary | Ordinary | High | | Portal info | Portal information | Reasonableness of touch-screen multimedia terminal | Low | Low | Ordinary | | | | Tourism information release form | 5 | 5 | 5 | | | | Electronic ticket form | 3 | 3 | 4 | | | | Comprehensive functions of electronic access control system | Very comprehensive | Not very comprehensive | Very comprehensive | | Service | | Coverage of digital virtual scenic area | 35% | 30% | 40% | | | | Authenticity and convenience of virtual travel | Ordinary | Low | Ordinary | | | Interactive experience | Coverage of self-guided tour system | 85% | 70% | 80% | | | | Customized service of personalized tourist line | Ordinary | Ordinary | Ordinary | | | | Multimedia display | 7 | 4 | 6 | | | | Construction level of
tourist interaction and
complaint linkage service
platform | Ordinary | Low | Ordinary | continued on following page Table 3. Continued | System | Element | Index | Xiamen Gulangyu $ {\it Island} \ A_1$ | Fuzhou San-Fang Qi-Xiang $A_{_{\! 2}}$ | Wuyi Mount $A_{_{\! 3}}$ | |------------|--|--|---|--|--------------------------| | | | Sales channels of tickets
and other tourism
products | 6 | 5 | 7 | | | E-commerce | Payment | 6 | 6 | 6 | | M. I. C | | New promotion for tourism products | 3 | 3 | 5 | | Marketing | Marketing | Online communication platform | 4 | 4 | 4 | | | Brand promotion | Development of derivative tourism product | Low | Low | High | | | | Monitoring of tourism public opinion | Y | Y | Y | | | Coverage of wireless communication netwo | | 100% | 100% | 90% | | Supporting | network C | Coverage of wireless broadband | Wide | Wide | Wide | | | Planning | Construction planning of smart tourism scenic spots | Very high | Very high | Very high | | | | Input of security | High | Ordinary | High | $$\begin{split} \mu_{111} &= \begin{pmatrix} 0.85 & 1 & 0.94 & 0.59 & 0.35 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \\ \mu_{112} &= \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0.83 & 0.67 & 0.5 & 0.33 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \\ \mu_{113} &= \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0.83 & 0.67 & 0.5 & 0.33 \\ 1 & 1 & 0.8 & 0.6 & 0.4 \end{pmatrix} \\ \mu_{121} &= \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0.8 & 0.6 & 0.4 \end{pmatrix} \\ \mu_{122} &= \begin{pmatrix} 0.75 & 1 & 1 & 0.67 & 0.33 \\ 1 & 0 & 0 & 0 & 0 \\ 0.5 & 0.7 & 1 & 0.86 & 0.57 \\ 0 & 0 & 1 & 0 & 0 \\ 0.85 & 1 & 0.94 & 0.59 & 0.35 \\ 0 & 0 & 1 & 0 & 0 \\ 0.88 & 1 & 0.86 & 0.57 & 0.29 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \end{split}$$ $$\begin{split} \mu_{_{131}} &= \begin{pmatrix} 1 & 0.83 & 0.67
& 0.5 & 0.33 \\ 1 & 0.83 & 0.67 & 0.5 & 0.33 \\ 0.6 & 0.75 & 1 & 1 & 0.67 \end{pmatrix} \\ \mu_{_{132}} &= \begin{pmatrix} 0.8 & 1 & 1 & 0.75 & 0.5 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \\ \mu_{_{141}} &= \begin{pmatrix} 1 & 1 & 0.8 & 0.5 & 0.3 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \\ \mu_{_{142}} &= \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \end{split}$$ By using Equation 6 and combining with evaluation index weight in Table 1, the comprehensive membership degree of smart scenic spot A_1 on the second level evaluation index O_{11} for smart grade e_1, e_2, e_3, e_4 and e_5 can be calculated as: $$u_{_{1111}}=0.17, u_{_{1112}}=0.44, u_{_{1113}}=0.19, u_{_{1114}}=0.12, u_{_{1115}}=0.07$$ respectively. It follows that the grade comprehensive membership vector of A_1 with respect to O_{11} is $\hat{u}_{111} = (0.17, 0.44, 0.19, 0.12, 0.07)$. Similarly, the comprehensive membership degree of smart scenic spot A_1 on the second level evaluation indices O_{12}, O_{13} for smart grade e_1, e_2, e_3, e_4 and e_5 can be calculated as: $$\begin{split} u_{\scriptscriptstyle{1121}} &= 0.15, u_{\scriptscriptstyle{1122}} = 0.63, u_{\scriptscriptstyle{1123}} = 0.1, u_{\scriptscriptstyle{1124}} = 0.07, u_{\scriptscriptstyle{1125}} = 0.05; \\ u_{\scriptscriptstyle{1131}} &= 0.24, u_{\scriptscriptstyle{1132}} = 0.37, u_{\scriptscriptstyle{1133}} = 0.17, u_{\scriptscriptstyle{1134}} = 0.13, u_{\scriptscriptstyle{1135}} = 0.09 \end{split}$$ respectively. It further indicates the grade comprehensive membership vector of $A_{\rm l}$ with respect to $O_{\rm l2}$ is $\hat{u}_{\rm l112}=(0.15,0.63,0.1,0.07,0.05)$ and with respect to $O_{\rm l3}$ is $\hat{u}_{\rm l13}=(0.24,0.37,0.17,0.13,0.09)$. The hierarchical membership matrix of smart scenic spot $A_{\rm l}$ with respect to all second-level evaluation indices under the first-level evaluation index $O_{\rm l}$ is: $$\hat{\mu}_{11} = \begin{pmatrix} 0.17 & 0.44 & 0.19 & 0.12 & 0.07 \\ 0.15 & 0.63 & 0.1 & 0.07 & 0.05 \\ 0.24 & 0.37 & 0.17 & 0.13 & 0.09 \end{pmatrix}$$ Similarly, the comprehensive membership degree of smart scenic spot A_1 on the first-level evaluation index O_1 for smart level e_1, e_2, e_3, e_4 and e_5 is given by: Volume 12 • Issue 1 $$u_{111} = 0.18, u_{112} = 0.5, u_{113} = 0.15, u_{114} = 0.1, u_{115} = 0.07$$ The associated grade membership matrix of A_1 with respect to the first-level evaluation indices is: $$\hat{\mu}_1 = \begin{pmatrix} 0.18 & 0.5 & 0.15 & 0.1 & 0.07 \\ 0.19 & 0.19 & 0.37 & 0.18 & 0.07 \\ 0.25 & 0.21 & 0.21 & 0.22 & 0.11 \\ 0.25 & 0.53 & 0.11 & 0.07 & 0.04 \end{pmatrix}$$ Moreover, the comprehensive membership degree of A_1 over smart level e_1, e_2, e_3, e_4 and e_5 is: $$u_{_{11}}=0.21, u_{_{12}}=0.33, u_{_{13}}=0.24, u_{_{14}}=0.15, u_{_{15}}=0.07$$ which gives the comprehensive membership vector $\hat{u}_{_1}=(0.21,0.33,0.24,0.15,0.07)$. Likewise, the other two comprehensive membership vectors concerning $A_{_2},A_{_3}$ are $\hat{u}_{_2}=(0.18,0.20,0.26,0.25,0.1)$, $\hat{u}_{_3}=(0.25,0.31,0.24,0.12,0.08)$. Obviously, the level eigenvalue of A_1 is: $$v_1 = (1, 2, 3, 4, 5)\hat{u}_1^T = (1, 2, 3, 4, 5)(0.21, 0.33, 0.24, 0.15, 0.07)^T = 2.54$$ given Equation 7. Besides scenic spot A_1 , the eigenvalue of A_2 and A_3 is $v_2=2.86, v_3=2.47$. According to Equation 8, the level eigenvalue of A_1, A_2 and A_3 is shown as two-tuple linguistic: $$\upsilon_{_{1}}=(3,-0.46),\upsilon_{_{2}}=(3,-0.14),\upsilon_{_{3}}=(2,0.47)$$ Following the previous specifications, the smart level of A_1 and A_2 should be assessed by e_3 , and A_3 is assessed by e_2 . However, A_1 and A_2 are not at the same smart level and the order for them is given by $A_3 > A_1 > A_2$. From the comparison of each single index of the three smart scenic spots above, all indices of A_3 are higher than those of A_1 and A_2 in general, while the individual index of A_2 states the worst-case scenario. These results are not only consistent with the comparison of single index, but more rigorous, reliable and intuitive. As Table 4 shows, the maximum membership principle claims that both A_1 and A_3 scenic spots are ranked at level 2 in terms of smartness, while A_2 is at level 3. While the level eigenvalue evaluation justifies that all three scenic areas ranked at level 2, showing no clear distinction. By utilizing two-tuple linguistic model, however, the rankings for A_1 , A_2 , and A_3 were 2, 3, and 1, respectively, adhering to a strict ranking criterion. During the smart scenic spot evaluation, both of maximum membership principle and grade eigenvalue evaluation have certain limitations. Although there are slight differences between the results of the smart scenic spots rating, the latter, which is mixed with the two-tuple linguistic method and the two methods above, exhibits a more reasonable, closer fact to the reality. Above all, two-tuple linguistic method, it on the one hand reasonably determines the Table 4. Smart level assessment results of scenic spots | Scenic Spots | A_{1} | A_2 | A_3 | |--|--------------------------------|------------------------------|--------------------------------| | Wisdom level comprehensive membership vector | (0.21, 0.33, 0.24, 0.15, 0.07) | (0.18.0.20, 0.26, 0.25, 0.1) | (0.25, 0.31, 0.24, 0.12, 0.08) | | Wisdom level assessed by the of maximum membership principle | 2 level | 3 level | 2 level | | Level eigenvalue | 2.54 | 2.86 | 2.47 | | Wisdom level assessed by level eigenvalue | 2 level | 2 level | 2level | | Two-tuple linguistic | (3, -0.46) | (3, -0.14) | (2, 0.47) | | Wisdom level assessed by binary semantics | 3 level | 3 level | 2 level | | Order of wisdom degree determined by binary semantics | 2 | 3 | 1 | smart scenic spots level, on the other hand the difference of the smart degree of different scenic spots within the same smart level gets accurately distinguished on the effort of this method. ## CONCLUSION In this study, we developed a weighted index system to evaluate the smart level of scenic spots. By applying this system, we established a fuzzy comprehensive model and introduced a two-tuple linguistic method for evaluation. For the empirical results on the application of evaluation method (see Table 4), we surveyed three 5A-level scenic spots, which are Xiamen's Gulangyu Scenic spot $\left(A_1\right)$, Fuzhou's Sanfang Qixiang $\left(A_2\right)$, and Wuyishan $\left(A_3\right)$, with the exploiting of the maximum membership principle, level eigenvalue evaluation, and two-tuple linguistic model respectively. Our findings revealed that, according to the first method, both A_1 and A_3 scenic spots are ranked at level 2 in terms of smartness, while A_2 is at level 3. The second method claims that all three scenic areas ranked at level 2, showing no clear distinction. By utilizing two-tuple linguistic model, however, the rankings for A_1 , A_2 , and A_3 were 2, 3, and 1, respectively, adhering to a strict ranking criterion. This comparison echoes the efficiency of two-tuple linguistic model on capturing missing information, which should be deemed as a proven method to enhance the accuracy of smart scenic spots evaluations. For the derivative theoretical implications, we find that the two-tuple linguistic model not only captures preferences with quantitative representations during decision-making, but also extracts information behind the uncertainty of language using and terminology in evaluations. It mitigates information loss and builds a more accurate and robust result for the sake of smart scenic spots evaluations. Meanwhile, the results demonstrate that the two-tuple linguistic method aligns with the conceptual requirements for evaluating the smart level of scenic spots and its properties is proven to be a practical, efficient, and applicable approach. Our study offers a novel solution to address the evaluation on the smart level of scenic spots and can be adapted for use in other similar cases. For the management implications, on one hand we offer a viable assessment method for tourism regulatory authorities to determine and evaluate the smart level of scenic spots for a more accurate result. On the other hand, we also provide a foundation of decision-making for scenic spots building, allowing them to discern differences in smart levels to the competitors and further help them to implement several precise business strategies. # **COMPETING INTERESTS** The authors of this publication declare that there are no competing interests. # **ACKNOWLEDGMENT** The research described in this paper is supported by Fujian Province Philosophy and Social Science Planning Project under Grants FJ2023MGCA021, National Social Science Foundation of China under Grants 20XJY011, and Business Big Data Analysis and Key Laboratories Application of Fujian. ## **REFERENCES** Borràs, J., Moreno, A., & Valls, A. (2014). Intelligent tourism recommender systems: A survey. *Expert Systems with Applications*, 41(16), 7370–7389. doi:10.1016/j.eswa.2014.06.007 Chen, B., Lu, Y., Shu, D., Pan, Y., & Ding, Z. S. (2019). Research on the measurement of intelligent development level and spatial distribution difference of scenic areas: A case study of 4A and above scenic areas in Jiangsu Province. *Journal of Nanjing Normal University*, 42(2), 129–135. doi:10.3969/j.issn.1001-4616.2019.02.021 Dang, A. R., Zhang, D. M., & Chen, Y. (2011). Study on the essential concept and general framework of smart famous scenic site. *Zhongguo Yuanlin*, 9, 15–19. Dimitrios Buhalis, R. L. (2008). Progress in information technology and tourism management: 20 years on and 10 years after the Internet—The state of e-tourism research. *Tourism Management*, 29(4), 609–623. doi:10.1016/j. tourman.2008.01.005 Guo, X. X., & Han, R. L. (2022). Comparative study on the level of intelligent
construction of smart tourism city scenic areas. *Green Technology*, 24(11), 198–205. Herrera, F., & Martinez, L. (2000). 2-tuple fuzzy linguistic representation model for computing with words. *IEEE Transactions on Fuzzy Systems*, 8(6), 746–752. doi:10.1109/91.890332 Li, D. F. (2023). Multi-Factor Integrated Assessment and Stability Analysis Method for Target Threats. Beijing: Science Press. Li, J. F., & Shi, S. X. (2017). Construction of evaluation system of Lanzhou smart scenic spot based on AHP. *Journal of Institute of Technology*, 15(3), 93–95. Li, Y., Liu, J. W., Yan, Z. X., & Wang, D. (2019). Study on the spatial behavior patterns of tourists in scenic areas based on satellite positioning and navigation data: A case study of Gulangyu. *Zhongguo Yuanlin*, 35(1), 73–77. Liu, J. C., & Li, D. F. (2016). Construction and application of priority two-tuple linguistic hybrid Einstein operator. *Science and Technology Management Research*, *36*(16), 209–213. Martinez, L., & Herrera, F. (2012). An overview on the 2-tuple linguistic model for computing with words in decision making: Extensions, applications and challenges. *Information Sciences*, 207(11), 1–18. doi:10.1016/j. ins.2012.04.025 Owaied, H. H., Farhan, H. A., Al-Hawamdeh, N., & Al-Okialy, N. (2011). A model for intelligent tourism guide system. *Journal of Applied Sciences (Faisalabad)*, 11(2), 342–347. doi:10.3923/jas.2011.342.347 Pan, Y. (2018). Measurement of the intelligent development level and spatial pattern of scenic areas: A case study of 4A and above scenic areas in Jiangsu Province [Master's thesis]. Nanjing Normal University. Ruan, L. X. (2017). Construction of smart tourism framework of scenic spot based on the demand of stakeholder. *Journal of Nanjing Normal University*, 40(3), 159–165. doi:10.3969/j.issn.1001-4616.2017.03.024 Taehyee, U., & Namho, C. (2019). Does smart tourism technology matter? Lessons from three smart tourism cities in South Korea. *Asia Pacific Journal of Tourism Research*, 26(4), 396–414. doi:10.1080/1 0941665.2019.1595691 Tang, W. F. (2014). Study on the assessment index system and evaluation criteria for the smart tourist attractions [Master's thesis]. Guangxi Normal University. Wang, X., Zhen, F., & Wu, X. G. (2015). Evaluation indices and empirical study of smart tourist attractions from the perspective of tourists: A case study of the Temple of Confucius and Qinhuai Scenic Site of Nanjing. *Progress in Geography*, 34(4), 448–456. doi:10.11820/dlkxjz.2015.04.006 Xu, F. F., & Huang, L. (2018). Tourists' willingness to use smart tourist attractions system: An integrated model based on TAM and TTF. *Luyou Xuekan*, 33(8), 108–117. doi:10.3969/j.issn.1002-5006.2018.08.017 Yu, D. J., Li, D. F., Merigo, J. M., & Fang, L. C. (2016). Mapping development of linguistic decision making studies. *Journal of Intelligent & Fuzzy Systems*, 30(5), 2727–2736. doi:10.3233/IFS-152026 #### International Journal of Fuzzy System Applications Volume 12 • Issue 1 Yu, G. F., & Li, D. F. (2022). A novel intuitionistic fuzzy goal programming method for heterogeneous MADM with application to regional green manufacturing level evaluation under multi-source information. *Computers & Industrial Engineering*, 174, 108796. doi:10.1016/j.cie.2022.108796 Yu, G. F., Li, D. F., Qiu, J. M., & Zheng, X. X. (2018). Some operators of intuitionistic uncertain 2-tuple linguistic variables and application to multi-attribute group decision making with heterogeneous relationship among attributes. *Journal of Intelligent & Fuzzy Systems*, 34(1), 599–611. doi:10.3233/JIFS-17821 Li Tang is an associate professor in the Business School at Minnan Normal University, China, with major fields of research including smart tourism and rural tourism.