Journal of Database Management, 15(2), 39-73, April-June 2004 39

A Template for Defining
Enterprise Modelling Constructs

Andreas L. Opdahl, University of Bergen, Norway
Brian Henderson-Sellers, University of Technology, Sydney, Australia

ABSTRACT

The paper explains the need for a standard way of defining modelling constructs
from different enterprise modelling languages and proposes a template for defining
enterprise modelling constructs in a way that facilitates language integration.
The template is based on the Bunge-Wand-Weber (BWW) representation model of
information systems (1S) and has been used on several existing modelling
languages and frameworks. It is illustrated with definitions of constructs from
the Unified Modeling Language (UML). The paper focusses on modelling
constructs that represent concrete problem domains, i.e., that represent materials
rather than concepts, and thus focuses on the concrete parts and aspects of
enterprises.

Keywords: problem domain representation, object-oriented analysis; ontological
analysis and evaluation; Bunge-Wand-Weber (BWW) model; Unified
Modeling Language; UML

BACKGROUND

models, there is a danger that the

Modelling languages and ontologies
for enterprises and their information
systems (IS) are becoming increasingly
important. New and emerging technologies,
such as enterprise application integration,
enterprise content management, domain-
specific languages, intelligent agents and
the semantic web, all rely on models of or
ontologies for enterprises. As more and
more enterprise knowledge is captured in

knowledge is dispersed into many small
,isolated islands because it is represented
in a variety of different modelling
languages. Language standardisation alone
is not sufficient to solve this problem
because different modelling domains,
modelling problems, user communities,
business partners and model-based tools
will require their own dedicated modelling
languages in the future as they do today.

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,
provided the author of the original work and original publication source are properly credited.

40 Journal of Database Management, 15(2), 39-73, April-June 2004

To ensure that knowledge captured in
enterprise models can be integrated and
made availabl e throughout the organi sation,
it is therefore necessary to enable
organisationsto integrate more closely the
different modelling languagesthey use.

Philosophical ontology offers a
common ground for integrating enterprise
and | Smodelling languages. According to
Weber (1997), philosophical ontology isthe
branch of philosophy that deals with
theoriesabout the nature of thingsingenerd,
as opposed to theories about particular
things. In the IS field, one much used
philosophical ontology isthe Bunge-Wand-
Weber (BWW) model of information
systems(e.g., Wand & Weber, 1988, 1993,
1995), which adaptsMario Bunge's (1977,
1979) comprehensive ontology to the IS
field. Bunge's ontology is an example of
scientific r ealism, meaning that it
“identifiesreality with the collection of all
concrete things, [...] postulates the
autonomous existence of the external
world, admitsthat we arelargely ignorant
of it, and encourages us to explore it”
(Bunge, 1999). It is therefore well suited
for integrating modelling constructs that
represent concrete problem domains, i.e.,
that represent materials rather than
concepts. The BWW model isaset of three
models, of which this paper will only use
one: the representation model..

This paper uses the BWW
representation model—called just the
BWW model in this paper—as acommon
ground for defining enterprise and IS
modelling constructs in a way that
facilitateslanguage integration. The paper
thereby focusses on the concrete parts and
aspects of enterprises, and proposes a
template for defining enterprise and 1S
modelling constructs. By “template” we
mean astandard way of defining modelling
constructs by filling in standard set of

“entries’, some of which are complex and
some of which areinterrelated. Figures 1—
6 will introduce the template stepwisein a
series of UML class diagrams. The main
ideaisto provideastandard way of defining
modelling constructsin terms of the BWW
model, in order to make the definitions
cohesive and, thus, learnable,
understandable and asdirectly comparable
to one another as possible. Another
important idea is to provide a way of
defining modelling constructs not only
generally, in terms of whether they
represent “classes’, “properties’ or other
ontological categories, but also interms of
which classes and/or properties they
represent, in order to make the definitions
more clearly and precisely related to the
enterprise. Although most of the paper is
about the concrete parts and aspects of
enterprises, we believe the template and
other results of this paper are sufficiently
general to apply to concrete problem
domainsin general.

The template has been developed
based on practical experience from
analysing, suggesting improvementsto and
providing precise definitions of severd full-
scale integrated modelling languages and
frameworks, including:

e 73 constructsfrom the OPEN Modeling
Language (OML) (Firesmith,
Henderson-Sellers & Graham, 1997) in
Opdahl, Henderson-Sellers & Barbier,
1999; Opdahl & Henderson-Sellers
(2001) and

e 68 constructsfrom theUnified Modeling
Language (UML) (OMG, 2001) in
Opdahl & Henderson-Sellers (2002).

Thetemplatewill beillustrated with
definitions of constructs from the UML
Version 1.4. Next, we will explain the
underlying theory of the paper-the BWW

Journal of Database Management, 15(2), 39-73, April-June 2004 41

model—and then introduce the template
itself, before we present results of using
the template to define constructs from the
UML. Thisisfollowed by adiscussion of
the usefulness of the template, and
conclusions and paths for further work.
The outcome is threefold. Firstly, the
template offersastandard way of precisely
defining modelling constructs and thereby
integrating different modelling languages.
Secondly, the template makes the BWW
model more easy to use for integrating
modelling languages. Thirdly, theillustration
of the template with definitions of
constructsfrom the UML isacontribution
to making the UML more precisely
defined.

The template was preliminarily
outlined by Opdahl, Henderson-Sellersand
Barbier (1999), and is presented in an
extended and much refined form here.

THEORY

The Bunge-Wand-Weber repre-
sentation model (e.g., Wand & Weber,
1988, 1993, 1995)—called the BWW model
in this paper—has already been used to
analyse and evaluate the modelling
constructs of many established IS and
enterprise modelling languages, including:

o dataflow diagrams (Wand & Weber,
1989),

e ER models (Wand & Weber, 1989;
Weber, 1997),

e NIAM (Weber & Zhang, 1996),

e ninelanguages supported by the Upper
CASE-toolset Excelerator (Green,
1996),

o four languages supported by the ARIS
tool set for businessmodelling (Green &
Rosemann, 1999, 2000),

o the OPEN Modelling Language (OML)
(Opdahl & Henderson-Sellers, 2001)

and

¢ theUnified Modelling Language (UML)
(Evermann & Wand, 2001; Opdahl &
Henderson-Sellers, 2002). The BWW
model has also been used for genera
analyses of :

e |Sdesigntheory (Wand, 1989a),

e object-oriented modelling constructs
(Wand, 1989b; Parsons & Wand, 1997),

e systems decomposition (Wand &
Weber, 1990; Paulson & Wand, 1992),

e object-oriented information systems
(Takagaki & Wand, 1991),

e dimensions of data quality (Wand &
Wang, 1996),

e optional properties in conceptual
modelling (Bodart et a ., 2001),

e atwo-layered information modelling
approach where instances are not tied
to particular classes (Parsons & Wand,
2000) and

e whole-part relationships (like UML's
aggregation and composition constructs)
in OO models (Barbier et al., 2000;
Opdahl, Henderson-Sellers & Barbier,
2001).

The BWW model is therefore a
natural starting point for a template for
defining enterprise modelling constructs,
athough alternativesexist bothintheform
of general philosophical ontologies, e.g.,
Chisholm (1996), or special enterpriseand
ISontologies, e.g., the enterprise ontology
(Uschold et al., 1998) and the framework
of information systems concepts
(FRISCO) (Verrijn-Stuart et al., 2001). In
support of the BWW model, Wand &
Weber (1993) have argued that Bunge's
ontology is:

1. better developed and formalised than
aternative philosophical ontologies;
2. based on conceptsthat are fundamental

42 Journal of Database Management, 15(2), 39-73, April-June 2004

to the computer science and information
systems domains; and

3. productive, inthe sensethat it hasgiven
useful results.

Space does not permit a full
presentation of the BWW model, but this
section will present the most important
BWW concepts that we will use. Table 1
givesdefinitions of a/l/ the BWW concepts
used in the paper.

Things and Properties: According
to Bunge' sontology and the BWW model,
there isaworld that exists independently
of human observers, and it consists of
things that possess properties. Examples
of BWW-thingsare"“atoms, fields, persons,
artifacts and social systems” (Bunge,
1999), whereas“ properties of things(e.g.,
energy) changes in them, and ideas
considered in themselves’ are non-things
(Bunge, 1999). In particular, concepts are
not BWW-things.

Bunge's ontology and the BWW
model also reminds us that we only know
about thingsviamodels of thingswe create
inour minds, and that we ascribe attributes
to those models of things to stand for the
properties we believe the corresponding
things possess. In the BWW model, an
attribute (that standsfor aBWW-property)
is represented as a property function of
time, which maps the property onto
different property values in a property
co-domain for different pointsin time.

Properties: The BWW model
distinguishes between propertiesin several
different ways. An intrinsic property
belongs to only a single thing, whereas a
mutual property belongs to two or more
things. (BWW-mutual properties are
represented by relationships or similar
constructsin many modelling languages.)
A whole-part relation is a property that
relates an aggregate thing to one of its

component things. A resultant property
belongs to a BWW-aggregate and is
derived from one or more properties of its
components, whereas an emergent
property belongsto aBWW-aggregate but
not to any of itscomponents. A law property
restricts other properties of the samething.
A BWW:-law is either a state law or a
transition law. An individual property (or
property of a particular) isaspecific, e.g.,
“being 25 years old” and “having grey
hair,” whereasthe corresponding general
propertiesare“having anage” and “ having
a hair color.” Bunge (1977) also
distinguishes between BWW-properties
that are permanent and those that are
variable.

BWW-properties may be complex,
i.e., they may have other properties as
constituents. A BWW-property precedes
asecond BWW-property if and only if:

» either (@) the second property is
complex (or compound) and the first
property isone of its constituents,

e or (b) a BWW-law states that all
BWW-things that possess the second
property must also possess the first.

According to (a), “having a ZIP-
code” precedes “having a postal address’
because every postal address includes a
ZIP-code and, according to (b), “being a
human being” precedes“being married,”

Classes: Things with a property in
common form BWW-classes. A class
containsall thethings, and only thosethings,
that possess one or more characteristic
properties for the class. In other words,
every BWW-class is defined by a non-
empty set of characteristic properties of
the things in the class. The most general
BWW-class is the class off all things,
whichisdefined by the universal property
of being able to associate with other

Journal of Database Management, 15(2), 39-73, April-June 2004 43

things (Bunge, 1977). Because
characteristic properties may be complex,
itissometimes possibleto say that aBWW-
class is defined by a group of
characteristic BWW-properties. One
BWW-class may be defined by agroup of
characteristic properties that is contained
inalarger group of propertiesthat defines
asecond class. Wethen say that the second
BWW-class is a subclass of the first.
Coupling and Systems: A BWW-
thing has time-dependent states that are
determined by the values of the thing's
property functions over time. A change of
BWW-state in athing is an event, hence a
BWW-event can be described as a pair of
BWW-states. Consecutive BWW-events
form complex events, or processes if they
occur in the same thing. The sequence of
consecutive BWW-states undergone by a
thing (or, alternatively, the sequence of
consecutive BWW-events) is called its
history. A BWW-thing acts on a second
thing if and only if the BWW-history of the
second thing would have been different had
thefirst thing not existed. Thefirst thingis
called an active thing. Two BWW-things
are coupled if and only if (at least) one of
them acts on the other. BWW-couplings
are caused by certain BWW-mutual
properties that are said to be binding. A
BWW-aggregate whose BWW-
components are coupled is asystem.

THE TEMPLATE
Overview
The template is used to define each
modelling construct separately by fillingin
four types of top-level entries, some of

which have sub-entries:

e The instantiation level entry type is

used to define whether the modelling
construct represents the enterprise at
the type level, at the instance level or
at either level. Thisisthe simplest type
of top-level entry.

e The class entry type is used to define
which class of things (or classes of
things) in the enterprise that the
modelling construct may represent. We
will seelater that amodelling construct
may be defined by multiple class entries,
each of them with several sub-entries.

e The property entry type is used to
define which property (or properties)
in the enterprise the construct may
represent. We will see that it too may
be repeated and may have several sub-
entries.

e Thelifetime entry typeisusedto define
whether the modelling construct
represents events in, states of,
processes in or the whole lifetime of
one or morethings.

We will now discuss each type of
top-level entry separately using constructs
from the UM L—and sometimesfrom other
languages—as examples. Although the
UML is not primarily an enterprise or IS
modelling language, it is relevant here
because it is often used to represent
concrete problem domains in the early
stages of systems development. It is also
a natural example language because it is
widely known.

Instantiation Level

The first and simplest entry type is
used to define the instantiation level of
amodelling construct. The construct is at
thetype level if it represents BWW-classes
(or their characteristic properties, etc.) and
it is at the instance level if it represents
BWW-things (and/or their properties,

44 Journal of Database Management, 15(2), 39-73, April-June 2004

Table 1: Basic concepts in the BWW model

BWW concept
BWW-thing

Concept definition

“The elementary unit in our ontological model. Thereal
world is made up of things.” (Wand & Weber, 1995)

BWW-property of a thing

“Things possess properties’ (Wand & Weber, 1995). “We
know about things in the world via their properties’ (Weber,
1997).

BWW-complex property

A complex BWW-property consists of other properties,
which may themselves be complex.

BWW-property function

“A property is modeled via a function that maps the thing
into some value” (Wand & Weber, 1995). A BWW-property
function represents how some BWW-property changes over
time. BWW-property functions are also called state functions
(Weber, 1997) or state variables (Parsons & Wand, 1997).

BWW-property co-domain

“The set of values into which the function that stands for the
property of athing mapsthe thing” (Weber & Zhang, 1996).

BWW-class of things

“A set of things that can be defined by their possessing a
particular set of properties” (Weber & Zhang, 1996). 1) A
BWW-classis defined by a*characteristic set” of properties.
2) All groups of BWW-properties that are possessed by at
|east one BWW-thing defineaBWW-class.

BWW-subclass of things
two or more things

“A set of things that can be defined via their possessing the
set of propertiesin aclass plus an additional set of
properties’ (Weber & Zhang, 1996). (Hence, aBWW-
subclassisitself aBWW-class.)

BWWe-intrinsic property of a thing

“A property that is inherently a property of an individual
thing” (Wand & Weber, 1995).

BWW-mutual property of

“A property that is meaningful only in the context of two or
morethings’ (Wand & Weber, 1995).

BWW-state of a thing

“The vector of values for al property functions of a thing”
(Wand & Weber, 1995).

BWW-state law of a thing

A property that “[r]estricts the values of the property
functions of athing to a subset that is deemed lawful because
of natural laws or human laws” (Wand & Weber, 1995).

Journal of Database Management, 15(2), 39-73, April-June 2004 45

Table 1, Continued: Basic concepts in the BWW model

BWW-event in a thing “A change of state of athing. It is affected viaa
transformation (see below)” (Wand & Weber, 1995).

BWW-process in a thing “Anintrinsically ordered sequence of events on, or states
of, athing” (Green, 1996). Processes may be either chains
or trees of events (Bunge, 1977).

BWW-transformation of a thing | “A mapping from a domain comprising states to a co-
domain comprising states’ (Wand & Weber, 1995).

BWW-transformation “Events are governed by transformation laws that define
law of a thing the allowed changes of state” (Parsons & Wand, 1997).
(Wand & Weber, 1995) and other papers on the BWW
model instead introduce BWW-lawful transformations,
which define “which eventsin athing that are lawful”. The
term “transformation law” instead of “lawful
transformation” is chosen here to emphasise that a
transformation law — like a state law — is a property of a
particular thing.

BWW-law property of a thing “Properties can be restricted by laws relating to one or
several properties’ (Parsons & Wand, 1997). 1) A law is
either a state law or atransformation law of a particular
thing. 2) A law iseither anatural law or ahuman law (see
below.)

BWW-natural law “Natural laws are established by nature” (Weber, 1997).
For example, alaw of physics.

BWW-human law “Some laws are human-made artifacts” (Weber, 1997), i.e.,
they are socially constructed and enforced by humans.
Events and processes may sometimes violate human laws,
but not natural ones.

BWW-natural kind of things “A natural kind is defined by a set of properties and the
laws connecting them” (Parsons & Wand, 1997). 1) Hence,
aBWW-natural kind isitself aBWW-class, but all its
characteristic properties must be BWW-laws. 2) In this
paper, we refer to the “subclasses’ of BWW-natural kinds
as BWW-sub-kinds.

BWW-conceivable state “The set of all states that the thing may ever assume”
(Wand & Weber, 1995).

BWW-possible state “[T]he space of states that are possible given our

space of a thing understanding of the laws of nature” (Weber, 1997).

BWW-lawful state space of a thing | “[T]he set of states of a thing that comply with the state
space of a thing laws of thething” (Wand & Weber, 1995). Hence, lawful
states satisfy both human and natural state laws, whereas
possible states may violate human ones.

BWW-conceivable event “The set of all possible events that can occur in the thing”
space of a thing (Weber & Zhang, 1996).

46 Journal of Database Management, 15(2), 39-73, April-June 2004

Table 1, Continued: Basic concepts in the BWW model

BWW-lawful event space of a thing

“The set of all eventsin athing that are lawful” (Wand &
Weber, 1995). Weber (1997) adds “[...] because (a) nature
permits them to occur, and (b) there are no human laws that
denote them as unlawful”.

BWW-composite thing

“A composite thing may be made up of other things
(composite or primitive)” (Wand & Weber, 1995). “Things
can be combined to form a composite thing” (Parsons &
Wand, 1997).

BWW-component thing

Any BWW-thing that is in the composition of a composite
thing.

BWW-—whole-part relation

The property of being in the composition of another thing
or, complementary, of having another thing as a component
(according to Bunge, 1977)).

BWW-resultant property of a
composite thing

“A property of acomposite thing that belongs to a
component thing” (Wand & Weber, 1995).

BWW-emergent property of a
composite thing

A property of acomposite thing that does not belong to a
component thing (adapted from (Wand & Weber, 1995).)

BWW-history of a thing

“The chronologically ordered states that athing traversesin
time” (Weber & Zhang, 1996).

BWWe-acting on another thing,
BWW-coupling of things

“A thing acts on another thing if its existence affects the
history of the other thing. The two things are said to be
coupled[...]" (Wand & Weber, 1995).

BWW-direct acting on,
BWW-binding mutual property

A thing acts directly on one or more other things when the
former thing changes a BWW-binding mutual propertythey
all possess. Changing the binding mutual property isan
internal event in the former thing and an external eventin
each of the latter things.

BWW-system of things

“A set of thingsis a system if, for any bi-partitioning of the
set, couplings exist among thingsin the two subsets’ (Wand
& Weber, 1995). 1) A BWW-system isitself aBWW-thing.
2) BWW-system things belong to BWW-system natural
kinds.

BWW-system composition

“The things in the system” (Wand & Weber, 1995), i.e., its
component things.

BWW-system environment

“Things that are not in the system but interact with things
in the system” (Wand & Weber, 1995).

BWW-system structure

“The set of couplings that exist among things in the system
and things in the environment of the system” (Wand &
Weber, 1995).

BWW-subsystem

“A system whose composition and structure are subsets of
the composition and structure of another system” (Wand &
Weber, 1995).

Journal of Database Management, 15(2), 39-73, April-June 2004 47

Table 1, Continued: Basic concepts in the BWW model

BWW-system decomposition

“A set of subsystems such that every component in the
system is either one of the subsystemsin the
decomposition or isincluded in the composition of one of
the subsystems in the decomposition” (Wand & Weber,
1995).

BWWe-level structure

“Defines a partial order over the subsystemsin a
decomposition to show which subsystems are
components of other subsystems or the system itself”
(Wand & Weber, 1995).

BWW-external event in a thing,
subsystem or system

“An event that arises in a thing, subsystem or system by
virtue of the action of some thing in the environment of
the thing, subsystem or system. The before-state of an
external event is always stable. The after-state may be
stable or unstable” (see below) (Wand & Weber, 1995). 1)
Stable and unstable states will be defined below. 2) We
have not defined the subsystem-concept because we do
not need it in this paper.

BWWe-internal event in a thing,
subsystem or system

“An event that arises in a thing, subsystem or system by
virtue of lawful transformations in the thing, subsystem
or system. The before-state of an internal event is always
unstable. The after-state may be stable or unstable” (see
below) (Wand & Weber, 1995).

BWW-unstable state of a thing

“A state that will be changed into another state by virtue
of the action of transformation in the system” (Wand &
Weber, 1995).

BWW-stable state of a thing

“A state in which athing, subsystem or system will remain
unless forced to change by virtue of the action of athing
in the environment (an external event)” (Wand & Weber,
1995).

states, events, histories, etc.).

either logical processes that can occur

An obviousexampleisthedistinction
between UML-types at the type level and

UML-objectsat theinstance level.! (Table
2 will later show template-based definitions
of all the modelling constructs from the
UML that were considered in this paper.
As can be seen from this table, the
definitionsof UML-objectsand —typesonly
differ in their instantiation level entries.)

Some constructs can even be used

to represent either level. For example,

processes in some dialects of traditional
dataflow diagrams (DFDs) can represent

several placesin aninformation system —
and are therefore at the type level — or
physical processes that can occur only at
a specific place — and therefore belong
at the instance level.

Figure 1 shows the first part of a
UML class diagram for the template,
according to which a
“ConstructDefinition” has a
“constructName” and an “instLevel” as
attributes. (Inthe UML, when multiplicities
are not shown for attributes, the default is
[1,1], so each “ ConstructDefinition” has
exactly one “instLevel* attribute. In this

48 Journal of Database Management, 15(2), 39-73, April-dune 2004

Figure 1: A UML class diagram of the
instantiation level entr y.

ConstructDefinition

canstructMame © String
instLewel : set of {instance, type}

and later UML class diagrams, we allow
attributes with set value types .)

Class

The second type of entry is used to
definewhich class of thingsthe modelling
construct may represent. For a modelling
construct at the type level, this meansthat
the construct may only represent
subclasses of the specified class. For a
modelling construct at the instance level,
this means that the construct may only
represent thingsthat bel ong to the specified
class.

For example, at the type level, the
UML has constructs that may only
represent subclasses of the BWW-class
of “ActiveThings”, defined by the
characteristic property of acting on other
things. The UML also has constructs that
may only represent subclasses of other
important BWW-classes, such asthe class
of “ActedOnThings” or the class of
“CompositeThings”. (Figure 7 will later
show a generalisation hierarchy of all
the BWW-classes that are represented by
modelling constructs from the UML)
Accordingly, at the instance level, the
UML has constructs that may only
represent active BWW-things, other
constructs that may only represent things
that are acted on and still other constructs
that may only represent composite things.

Theserestrictionsareimportant parts
of the semanticsof themodelling constructs

in question. The class entry type is
particularly important for defining domain-
specific languages, which are often
organised as deep specialisation
hierarchies.? The entry typeis also useful
when comparing and analysing multiple
models, becauseit makesit clear that some
modelling constructs may never be used
to represent the same classes or thingsin
the problem domain.

Figure 2 extends the UML class
diagram to show that a
“ConstructDefinition” consists of one or
more “ RepresentedClasses”, each of
which is defined, according to the BWW
model, by one or more
“CharacteristicProperties’.

According to Figure 2, the template
allowsrepeated class entriesfor modelling
constructs that may represent several
different classes of things (at the type

Figure 2: The UML class diagram extended
to show the class entry.

ConstructDefinition

constructMame © String
instLevel : set_of {instance , type}

1.7
RepresentedClass

classMarme ; Strng
raleflame : String=""
minCard : Integer =1
maxCard : Integer=1

1.7

1“*
CharacteristicProperty
propertyMame ; String

Journal of Database Management, 15(2), 39-73, April-June 2004 49

level) or several thingsof different classes
(at the instance level). For example, for
the moment, a UML-aggregation (at the
type level) represents one “composite (or
whole) class” and one “component (or
part) class”.

Whenever aconstruct definition has
more than one class entry, they must be
distinguished by “roleNames’, as shown
inFigure2. UML-aggregationistherefore
defined by two “ RepresentedClasses’,
one with the “roleName” “whole” and
one with the “roleName” “part”. In this
example, the two “ RepresentedClasses”
represent different BWW-classes
(because they have different
“CharacteristicProperties”), but a
construct definition may even have more
than one “ RepresentedClasses’ for the
same BWW-class as long as they have
different “roleNames’.

Even when the class entry is not
repeated, a modelling construct may
represent several subclasses of the same
classinthesamerole (at the type level) or
several things of the same class in the
samerole (at theinstance level). In Figure
2, “RepresentedClass” therefore has
minimum and maximum cardinalities,
“minCard” and “maxCard”, that default
to 1. For example, a UML-link (at the
instance level) represents two or more
“AssociatedThings” and is therefore
defined by a single “ RepresentedClass’,
but one with “minCard’ =2 (because the
link connects at least two UML-objects)
and “ maxCard” = -1 (because —1 is used
toindicate no upper limit on the number of
objects.)

Properties
The third type of entry is used to

define which properties of things the
modelling construct may represent because,

sometimes, different modelling constructs
may represent the same class of things but
not the same properties of those things.
For example, inthe UML the BWW-class
of “ActiveThings” can be represented by
UML-operations and UML—pre- and -
postconditions, but each UML construct
nevertheless represents dlightly different
properties of active BWW-things. An
additional exampleisfoundin Conallen’s
(1999) extension of the UML for
developing web applications. Hisextension
introduces several stereotypes of UML-
associations, one of them for representing
web “hyperlinks’, i.e, linksthat changethe
content of the web-browser frame that the
links themselves are in, and another one
for representing “target links’, i.e., links
that change the contents of other web-
browser frames. These two stereotypes
have identical class entries because they
both represent pairs of web pages, but they
have different property entries because
they represent different properties of those
pairs.

Figure 3 extends the UML class
diagram to show that a
“ConstructDefinition” also consists of
zero or more “ RepresentedProperties’,
which specialise the “ Properties’ that
characterise “ RepresentedClasses’. (In
Figure 2, we have therefore changed the
name of the “ CharacteristicProperty”
class to “Property” and instead added
“characteristic’ as a role of the
“Property” class.) The template allows
“ConstructDefinitions” with zero
“ RepresentedProperties’” because there
are modelling constructs that may not
represent properties at all. For example,
genera constructs like UML-object and -
type do not have property entries because
they do not themselves represent BWW-
properties (although in the UML
metamodel they are associated with other

50 Journal of Database Management, 15(2), 39-73, April-June 2004

.S8uy 11y, J0 ssejaqns 4ado.d

uoneZI[eIIUI

ounyry, © pue , s3uy L]y, Jossejdns v dAg, diysuoirepl pupigns/puy neN -TINN

LAWY, .S3uty[]1y, Josseqns ado.d Qd4g, punians | 2dAygns-TINN
puians

LWy, .S3ury 11y, J0Ssejogns v dAT, esey eyl pup| pINreU-pAMG | ddKraadns-TIAN

oIy, (SSulyjy, Josseoqns v odAg, pupy eInEU-pMAG ad&)-TINN

QulpdyI

_ssad044, | SSuny p3uisuny), 10 89URISUI UY _ddue)suy, Ao Iy-mg e Jo Juswibes v 13(qo-TINN
, wapsAgpasodoagay [uQ3unoyssuty], Buiy) weisAs pssodo.d

AW, Josduelsul Uy ,ddue)suy, a1 uo spov eyl Bup-pMMg 1039e-TINN
sbup

,Ssdd0., | S8uty J2anoy, JOoaduelsul Uy ,aoue)suy, JBYI0 Uo §30D Teyl mc_r_y->>>>m_ QuB[WIMS-TIAIN

sbuiyy 19lqo

LW, ,$3uny 24119, 10 90URISU| Uy ,ddue)suy, Jayio uo spv eyy Buiyl-pmmg AANIe-TIAN

AuImdpI, ,S8ury]y, JOaoUelsul uy ,dueysu, BuUILI-MME 3lqo-TIAN

\ﬁhtm \ﬁﬁtm \ﬁhtm \ﬂkN:N Lere| ANOONV SB|[PS-UcsBpus H 19N JISU0D
Juswies, fedoud, ssep, uomenuesul, | % |yepdo Aq uorreRidBlu| LRI

TN 2Y3 wof S1on.43suod 3uijjapoud Jo suoniulfop pasvq-aipjduway @ 7 ajquf

Journal of Database Management, 15(2), 39-73, April-June 2004 51

uoirep Led-ajoyme 10u
s1 eyr Aledoud me|-uou
J8U LU OIS LB1JR YD

uonouny

,AWInoIY, B JO urewopod Auy | S8unyJ1y, J0sseqns v JadA, Aedoid e jo urwopod-mMg | 2dSyerep-TINN
ssassod ued Buiyy
ay1 sasedoud-pang 'ssassod ued Buwyie eyl
Auew moy 1noce ve| sansedoid-pang Auew moy Inoge Ldpmux
LownaIy, aes JIs1eeRYD AUY ,S3uy 11y, 10SSejogns v AdAY, Me| aels J1is Lis1dereyd-MMg “TINN
wabewa Jo JUelnsal JByie aq
uolep. Led-ajoym ued eyl INg ‘uoiep. Led-ajoym
e Jou si ey Auedoud B J0 Me|e fous| eyl [pue pury
Ae|-Uou JI1su iUl fednreu e sauljep eyy] Aledoid [ssefd e jo]
AumnayI, ansuelzeryd Auy ,S3uty 1y, Jossepgns v LdAL, J18ULIUI d1ISLBIdRRUD- MG | dINqLINE-TIAIN
(edAranniwnd
-uou e sey Avedoud-TAN
ay J1) Auedoud xajduios 9suLIUI
-MMG sbBwe 1o Juelnsal
uoiep. Hed-ajoym BUIR 80 Ueo Teyl Ing ‘uoie Rl Led
e Jou s| eyl Avedoud -ajoyme Jo Me|e jous| eyl [Buiyy [393[qo ue jo]
,OUIONIT, Mg]-Uou o1suLiul Auy ,S3uy 1]y, JOa0uUelsU| Uy ,ddue)suy, e Jo] Auedoud osului-png | Kaedoad-TIAN
sBuiy Jeyio uo 19e ssepd
ounapT, .S3uty[2a110y, JO SSeOgNS v QdAL, Teyy sBuiyy Jo puiy feaneu-pMME 2ABIE-TINN
, wasAgpasodo.igay Ju)3unoys3uly |, Bu Yy weisAs pasodoud ayy uo 1o SSed
oumnI, jossejpgns v ALY, ey sbuiy Jo puy feinfeu-mma 1030e-TIAN

TN Y} wio4f S1onsuod Suijjapout Jo suoniulfop pasvq-avjduway : juo)) ‘¢ ajqng

52 Journal of Database Management, 15(2), 39-73, April-June 2004

Auedoid mej-uou ernwi | SSuty [pap1o0ssy, Aedoud UONRIIOSSE
,aunapy, asLeeRY Auy JO S35S2[0gNS 9.J0W 10 OM | AdAL, [enINW 2 S LY LD~ MME -TINN
('sme|amls yons ou ale asey)
OuI-1AN eY) Jussaludal osfe Aew pus Mul|
© Se pejuesaldal 1 eyl) ayl) ‘uoiepidieiulanoge ay Ul
Avadoud emnuwie 1noge Auedoud eninw-paAng BU) Inoge
ownayI, Mg| 93 osuLIul AUy , S8uty [pajp1o0ssy, 0 80URISUI UY ,dduejsuy, SnVe|arels- MG alow 1o auQ pud JUuI[-TIAN
Ayedoud _sSuny [pap1o0ssy, sfu iy aiow
9es, Mg|-uou ennuw Auy O S9oURISUI 8J0W IO OM | duejsuy, 1o om1 Jo Auedoud eminwi-paANg NUI-TIAIN
TINN 8Y1 Ul SONURWSS Meam ABA [ssepd & o]
ynm ng ‘Auedoud ve| xedwiod Lypqisuodsaa
AW, Me| Xa|dwiod Auy | s8uy [3u1ov.121u], 10 SSe[ogNS Y LdA, onsLeIze.RYI-MMG Jo adAigns TN
ne|
uoIfewojSue] 91SU LU | “Me| UoITewojsuel] d1sulLiul|l uonpuodysod
AunayIT, ansLeIseRY AUy ,S8upy 124112y, JOSSeOONS DAY, onsLeIRRYI- MG J0 8dAIgns -TINN
| 9IS d1sU LI Ave| 9IS d1sU LI uonipuoddad
K101 i ansteIREYD AUy .$3uty [aazoy, J0SSe[O0ns v QdAY, osLeIzR.RUYI-MMG J0 2dAgns -TIANN
e[uoIfeuliosue)
aUo pue Mme|
a1e1s auo Jo Busisuoo
Me| d8U LU X3 |dwod
LownyI, aiseIzRReYD AUy ,SSuny 4112y, 10 SSePNS v dAT, uoewosueN-MAMg | uonerddo-TIAIN

T YD wof Sjonsuod Suijjapout Jo Suoniulfop pasnq-aijduwa] : juo)) ‘z 2jquy

Journal of Database Management, 15(2), 39-73, April-June 2004 53

, s8uy pjuauoduio)),

uoirep. Led-ajoym Jossegns e pue weIsAs e jou S| ajoym ayl uonesdI3se
LRI, snsteIeRY AUy .$8uty Jayisoduio), 10 SSeOgNs v dAg, dRyM uorepI ved-8joym—AAG -TINN
uolep. ted-ajoym sbuiy ssep
ounayry, ansueIzeRY Auy . S8ury [apsoduio), Jo sseogns v dAL, 811500W00 Jo pupy feineu-pAMG | edarsde-TINN
LouIdIy, uoieps Yed-ajoym Auy | |, sSunygansoduwo), Jo aoueSUl 4y ,douesuy, Buyy @1s0dwod-MAMG | 1830183 e-TIAN
sasse[ogns uoneosse
ayl |e Jo Auedoud feninwi | s8urypajdno), Auedoid pminw | wonEdIUNWIIOD
oI, Buipuiq onsieIRERYD Vv JO ssssejogns 40w 10 3UO dAg, Suipurq ons1eRRYO-MMA -TINN
sasse |0 Jusuodwiod
ayl [Jo Auedoud
feninw o1Ise1eReYD
© pue uoirpl 1ed-ajoym Aedoud eninw onsLLIcRRYD
oIS 18R ReYD BI0W (sse|o a1sodwiod ay awes ay) Aq (1red ui) paulpp
10 8uo ‘ssep aysodwod | Jo sued are 1Y) | sSurypawioossy, aJe spuy Juauodwod asoym Jo |e
ay1 Jo sansedoud pup , s3uty jjusuoduio)), ‘sansedoud osULIUL OIS LIBITR YD
JsULIUI OISR RYD JO S35Se |0gNS 8.J0W IO 3UO pue aJow Josuo yyim (sbuyy | ssepd uonerdosse
Wy, alow Joaup | s8uy fapisoduio), 10 sseOqns v JadAy, a1sodwod Jo) puiy jeineu-pmAng -TINN
sBuiy3 weuodwiod
ay1 [Jo Auedoud (Joy1oUe BUO Y11M pateIoosse
[eninw e pue suoiepl a.e ey pue Buiyr susodwioo sy
ved-ajoymalow | Jo Ledale Y)) , s3uty [paividossy, Auedoud eninw awes ayl
1o omy ‘Buiyy arsodwiod pup , s3uny jjusuoduio)), ssassod sBu 1Y) Jusuodwod asoym
ay) Jo sanedoud 1O S30URISU1 9J0W IO OM] pue 10 | ‘ssnuedoud disuliul aJow Jo 13[qo
LAy, 215U LUl 8I0W 0 BUO ,s3unyfarsoduio, JO aoURISUI U ,dduesuy, 3U0 Yim Buiyy a1sodwiod-pmmg Mull-TIAN

T 2Y? wo.f s)on.asuod uijjapout fo Suoniulfop pasnq-aijduwa] @ o)) ‘z a]quj

54 Journal of Database Management, 15(2), 39-73, April-June 2004

M| 9IS J5U LI Me| aRls- MMMG dsU LUl uonIpuod

JEL1E) i 8 aIsLBIzRRYD AUY . Sutypaaidy, Jo ssejoqns odLg, pue ons LIz .RYD Jo 8dAIgnS prens-INN
ne|

uolfewlojsues} dsU LIl "JUs/Ad B |BUIS B $3q 110Sap

,AundIY, ansLeIereyd Auy ,s8uyJoa110y, 0 SSejpqns v adAg, eyl Me| Uoilewlo suell-p\Mg | uonisue)-TIAIN
sansedoud

JudAT, Mg|-UoU 3Jow 10 8UQ | s8uny [Suiduvy), J0 3dURISUI Uy due)suf, Wane-MMY JUIA-TIAN
Buiyy eyioue jo

AMe| Uofewlojsuelie Aq sBuiyy Jeyio aow Jo auo Aq

pabueyo s1 ey Aedoud | sSuny [parporunuuo), uo p23ov S111 UBYM BuIy-pMg 3je)s Mofy

9IS, feninw Buipuig v jodouesuluY | eduwsup, e Joaris-MMg Jo adAigns wa3lqo-TINN
sanJedoud

Les, Mg|-UoU 3Jow 10 8UQ | s8upy [Suisuvy), J0 3dURISU| Uy due)suy, arIs-MMNg ANeIs-TINN

| s8uny juauoduo)uasAg, WI)SAS

LowmdI, JO S30URISUI 810W 0 OM | _duejsuy, uonsodwod wesAs-pmmg [earsAyd-TIAN

()

ommdyIy, ,S8upyL1ourpjuo), JoSOURKUIUY | dduepsul, Buiyi-pmg Jo 8dAigns | JdureIu0d-TINN

uonesaIsge

| s3uy [juauodulo)uiaIsAg, soduwod

uolrpl ed-ajoym Jossejogns wes/se s1ajoym ayl ‘uonisodwod

oumnpyI, ansueIdeeyd AUy | e pue , sSuy [uaisdg, Jo ssejoqns v adA, aBym ol Hed-8 joym—pME -TINN

TN Y} WoLf $)on.43su0d uljjapout Jo suoiulfap pasnq-aypjdua] : juo)) ‘7 ajquy

Journal of Database Management, 15(2), 39-73, April-June 2004 55

sBuiy eyo [390fqo]
,oundyI, ,$3uly [uOpaY, JO soUeISUl Uy ,dduejsuy, Aq uo pa3ov S| ey) BuIy-pang JIAIII-TIAIN
sbuiy [10alqo]
QWIIHIT, ,S3upy [aaoy, JO 80URISUl Uy ,ddue)suy, Jay1o uo spov eyl Buiy-pmg JIPUIS-TIAN
Aedoud ,S3uryJuOpa1oy, Jo ouelsu| ue
Juaag, eninw Buipuig v | pue, s8uty[2auoy, JO30uesul Uy ,dduejsuy, Auedoud eninw Bulpuig-pmang Jdessaw-TIA N
Buiyy leyioue ui W
[euB1xe Ue sasred Agaiay) pue
Auedoud eninwi Bulpuig-pmang
Auedoud ,$3uly [uOpadY, J0 3dURISU| Ue e sabueyd Bu iy suo ul Juens ue uondBIAUI
LJUdA, eninw Buipuiq Auy | pue ., sSury[aaioy, JO adURISUI UY ,aouejsuy, usym “9°1 ‘1ens pa (dnoo-pg -TINN
,$592044, Me| Uo[few o sue (®@auenbas e s1 uonle-JAN Y}
1o yuaay, osuLuI Uy | s8uy [Sursuny), 10 9oURISUl Uy ,eouejsuj, 11) Ss3004d-AANG WBAS-MMEG | TonRADdE-TIAIN
Me] uorewlojsuen $s900.d & saq 1Iosap 92udnbas
ey, | dsuLuldsLeIde R VY | S3ury [Suisuvy), JOssejogns v LadA, eyl M2| Uo Ilewio jsues-pANg uondB-TAN
e[uo w0 SuUe) a3 3|BuIs e S8q 110Sap
Awnyry, | dsUlUldNsLeIzREeY vV . s8uy [5usuny), 10 Ssejaans adAY, eyl Me| Uofewlosuen-pMMMg uonde-TIAN
e[uoieulio sue)
a3 Aq pabueyo
ale Tey) ssiadoud
AR [-UOU 3J0oW 10 U0
,ssadoud, pue me| uoijewojsue) (3113~ 10) Surary
10 juaAg, osuLUI . SBury[2aoy, J0SSePANS Y/ | ,duesul, $5800.d- MG “IUBAS-MMG | uoBIsuUERD-TIA

TN 2Y) Wo.f sjonsuod uijjapout fo Suoiufap pasvq-aipjdway @ o) ‘z a]quf

56 Journal of Database Management, 15(2), 39-73, April-June 2004

saiedoud

L waysAgpasodogay [JOsualsAsqng,
JO 10 , s3uty Juwapsdspasodo.,

joe.eU)
wieisAsgns e ul Jo Buiy) wais/is

,$830014, A |-UoU 3JoW 10 3UQ JO 3oURISUI Uy ,9duesuy, pasodoud ayy ursseooid-pAAG | OLIBUIIS-TIAIN
(suoiepl 1ed
-9]0yM Jussaidal 01 pasn aq Ajuo
pInous pusixe-TAIN eyl asodoud
(pasodoud) 8M) “TINN 8Y1 Ul SO NURWBS
| S3uny [juauoduio)uaisAg, eam AA yrim Inq ‘Avedoud
(pasodo.d) uoirepi 1ed Josse[ogns feninw Buipuiq Jo uoirpl
oIy, B[oYM JlIS1eIIRIRYD VY | B pUe , sSuty[uasds, JoSSeaqns v d4y, Ved-sjoym—pAng Jo adAans apnpPu-TINN
(suoiepl 1ed
-9j0ym Jussaidal 01 pasn aq Ajuo
pInous pusixe- AN eyt asodoud
(pesodoud) M) “TINN Y} Ul SO NURWRS
| s8uny [jusuoduio)wasAs, Meam KA ynim ng ‘Auedo.ad
(pasodo.ud) uoirepi 1ed Josse[ogns feninw Buipuliq Jo uolrpl
AWnINT, Sloymonsieisereyo v | e pue , s3utyjuaises, Jossejogns v dAy, ved-sjoym—Mg Jo adAigng PUdIXI-TIAN
saedoud , wapsAgpasodo.gay [JOsuaisAsqng, Joa.Jey) wesAsans
Me|-Uou 23S Lis1Je.eyd 10, s3ury Juajsdgpasodo., e u1 Jo Buy) wess/s paesodoud SSe[d
,$5900.14, alow Jo sup jossejpgns v LdAYL, a1 u1 sassa00.4d-pMMG Jo dnolb v 358 ISN-TIAIN
, wapsAgpasodo.igay [JOsuaisAsqng, J0ai/y}
sonedoud 1o, s3uy [uaisdgpasodoad, wesAsgns e ul Jo Buiy weshs JduB)sul
,$8300.14, A |-UoU 3JoW 10 3uQ JO 3oURISUI Uy ,dduesuy, pasodoud ay3 ui ssaoo.d-pAANg 3sBI ISN-TIAIN
souedoud Buipe u [013U0d
,$83204, Mg |-UOU 8l0oW 10 3UQ , s8uty J Sursuvy?), 10 adURISUI Uy ,due)su, saess a|gesun- MG Jo aousnbas JO sSnd0J-TIANN

TN 2Y) WoLf $)on.43suod uljjapout Jo suoniulfap pasnq-aypjdua] : juo)) ‘7 ajquy

Journal of Database Management, 15(2), 39-73, April-June 2004 57

uoirep. Led-ajoym

elousli eyl Aedoud QWL LYODA[IDY [SSUIY], JUIA

AT, Me|-uou osuLul Auy JosoueIsUl UY Jouesuf, Wwere-MMg Jo adAigns own-TINN
uolepl 1ed-ajoyme jou
sI ey Auedoud mej-uou

JiSUlUl Ue Jo urewop |21 [2IN]OSqMOUYIDY [SSUTY], uonouny Ausdoid-pmmng yJaeuwr

LAuIndJIY, 9yl ul JueuB p >c< Jo3duesul uy ,dduejsuy, Aue JO Urewop ayl ul jJusue |3 MEEEHEZ n

TN 2Y) wof sjonasuod Suijjapout fo Suoyiulfop pasnq-aipjdway : juo)) ‘z a]quf

58 Journal of Database Management, 15(2), 39-73, April-June 2004

Figure 3: The UML class diagram extended to show the property entry.

ConstructDefinition

constructMame : Sthing
instLevel : set_of {instance, type}

RepresentedClass

classMame : String
roleMame : String=""[_1.7

RepresentedProperty
g+ |roleMame @ String =""

minCard ; Integer=1
maxCard : Integer =1

o

+characteristic [1+

Property
propertyMarne : String

constructs that do so).

However, most modelling constructs
have at least one property entry. In the
languages we have studied, many of the
property entrieswe encountered were not
very restrictive and might represent any
regular property, i.e., any intrinsic non-
law BWW-property that is not a whole-
part relation. We expect to find more
examples of more restrictive property
entries in less general, domain-specific
modelling languages.

As for classes, the template allows
repeated property entries for modelling
constructs that may represent several
characteristic properties of classes (at the
type level) or several properties of things
(at the instance level). Whenever a
“ ConstructDefinition” has morethan one
property entry, they must be distinguished
by “roleNames’, asshownin Figure 3. A
“ConstructDefinition” may have more
than one “ RepresentedProperty” that
specialises the same “ Property”, as long
as they have different “roleNames”.

minCard : Integer = 1
maxCard ; Integer=1

Because the class entry may also be
repeated, each “ RepresentedProperty”
is associated with one or more
“RepresentedClass’ to specify exactly to
which class the property belongs in the
definition.

Even when the property entry isnot
repeated, a modelling construct may
represent the same property several times
in the same role. In Figure 3, each
“RepresentedProperty” therefore has a
minimum and maximum cardinality,
“minCard” and “maxCard” that default
to 1.

In the BWW model, a property may
bemutual,i.e., it may belong to morethan
one thing. In the template, the
corresponding “ RepresentedProperty”
would be associated with more than one
“RepresentedClass’ . In fact, thiswasthe
casein severa of the earlier examples. In
the web application example, both
“hyperlinks’ and “target links’ represented
(different) mutual properties, each of them
belonging to two “web-page” things, one
playing the role of “source” and the other

Journal of Database Management, 15(2), 39-73, April-June 2004 59

playing “target”. Inthe UML-link example,
UML-linksrepresented amutual property
that belonged to two or more BWW-things.
Finally, inthe UML-aggregation example,
the aggregation represented aproperty (the
whole-part relation) that belonged both to
the aggregate (whole) class and the
component (part) class. The two
“RepresentedClasses” used to define
UML-aggregation, i.e., the“whol€” and the
“part” class, weretherefore both linked to
the same “ RepresentedProperty” with
“propertyName” “whole-part relation”.

This concludes the discussion of
property entriesin thetemplate. Together,
the class and property entries form the
core of the template. The two types of
entriesfit nicely with Bunge'sview of the
world as composed of things and
properties, in terms of which the other
BWW concepts are defined.

Ontological Descriptions of Properties

The BWW model has concepts that
describe properties in even greater detail
and that are also used in the template.
Figure 4 extends the UML class diagram
to show the additional attributes of
“Properties” and
“ RepresentedProperties’.

Most importantly, according to the
BWW model, a “ RepresentedProperty”
has an attribute that defines whether the
modelling construct represents (a) the
property per se , i.e., the BWW-property
itself; (b) the property datatype, i.e., the
BWW-property co-domain; () aproperty
value, i.e., avalue in the BWW-property
co-domain; or (d) some combination of
these. For example, this attribute
distinguishes between constructs like
UML-attribute and -datatype, which are
both at the type level and may represent
any subclass of “AllThings” and any

characteristicintrinsic property that is not
a whole-part relation, because UML-
attributes represent properties per se ,
whereas UML-datatypes of course
represent datatypes. Accordingly, this
attribute al so distinguishes between UML -
property and -value. UML-datatypes and
-values are the only UML constructs we
have encountered that represent property
datatypes and values, but the attribute may
be useful for languageswith datatypesthat
canonly beused in connection with certain
modelling constructs. We have not found
a use for identifying constructs that
represent BWW-property functions
explicitly, leaving thisas apossible future
extension.

A “Property” has an attribute that
defines whether the modelling construct
represents a non-law, a state law or a
transition law according to the BWW
model. For example, whereas a UML-
attribute represents a non-law, a UML-
operation represents alaw. A “ Property”
that is a law is described by an
“oclExpression”. A “Property” aso has
an attribute that defines whether the
modelling construct represents a whole-
part relation or not according to the BWW
model. For example, whereas a UML-
association cannot represent a whole-part
relation, a UML-aggregation must do so.

Figure 4 also shows the additional
attributes of the
“ClassPropertyAssociation” class. The
first of these defines whether the
“ RepresentedProperty” is intrinsic, non-
binding mutual or binding mutual with
respect to a particular

“RepresentedClass’. To see why it is
necessary to define this attribute in an
association class, rather than in the
“ RepresentedProperty” class, consider
the following hypothetical example. A

60 Journal of Database Management, 15(2), 39-73, April-dune 2004

uoissaldxg|a0 ; me|

{uedajoym} 07185 | HEJA|OYAMSI

{1 [e|uoINSUR] ejElRlS) 10 185 METSI

Buis : awepApadosd
Auadaig

1 |2ususloelEy24

{ved 'ajoym]} jo71as | pEgE0YAAS!
{usfiiaws "eynsall jo 18 waliawginueynseHs]
{INWipuIg ' INWpUQUoL "aIsUUUL J0T 188 |ENINAUOIDISULU|S) + 0

uolelaossyAuadoigsse|n
{anjes 'adiielep 'asiad) jo 188 Ausdoigsuasaldal ; | = aBa : piedxew
| = 48fa : piegxew| 0 = L| | =48Bau : piegu
| = Jaliau) : paenuL = HUN1S aWEpE
o = AULLS C aLEpE0 .l Buas : awepssea
Auadoligpeiuasaiday - sse|qpaasalday

{adiy 'aouejsul} JoT1as o jasaisul
fius ¢ awep3ansuod

(LT VTE=Tg) ey R} E={O lg]

‘son1adoad fo suondiidsap [po130]01UO dY] MOYS 0] PaPUIXd WDASDIP SSD]D TIN) dY] - 24N31]

Journal of Database Management, 15(2), 39-73, April-June 2004 61

modelling construct represents a property
that belongs to three things. Two of these
things are parts of the third. The property
ismutual between the two part things and
is also aresultant property of the whole.
In this case, the property isintrinsic with
respect to the whole thing, but it is mutual

with respect to the two part things. This
explains why the “isl ntrinsicOrMutual”

attribute must be defined in an association
class. Although theexampleishypothetical,
the situation it describesis not uncommon
anditisnotimpossiblethat somemodelling
language may have a dedicated construct
forit.

A “ClassPropertyAssociation” has
another attribute that defines whether the
“RepresentedProperty” is resultant,
emergent Of neither With respect to the
“RepresentedClass”. A final attribute
applies only to “ RepresentedProperties’
that are whole-part relations and defines
whether the “ RepresentedClass’ is the
whole or the partintherelation or neither.

We need further experience with the

template to determine how useful these
ontologically motivated attributes of
“Properties” and
“ClassPropertyAssociations’ are. Also,
the template does not make use of Bunge's
(1997) distinction between permanent and
variable BWW-properties, leaving thisas
apossiblefuture extension.

Lifetimes

The fourth type of entry is used to
definewhich part of thelifetime of athing
that the modelling construct may represent
because, sometimes, different modelling
constructs may represent the same class
of things and the same properties of those
things but different segments of the
lifetimes of those things. For example, one
construct may represent an event, another
astate and athird a process, although all
three constructs represent the same
property of the same thing. This becomes
obvious when we see that constructs that
are as different as UML-state and UML-

Ficure 5: The UML class diagram extended to show the lifetime entry.

ConstructDefinition

constructMame : String
instLevel : set_offinstance, type}

1 1

o.x

RepresentedProperty

roleMame : String = ""

minCard : Integer = 1

maxCard : Integer =1

representsProperty © set_of {perse, datatype, value}

1.%

a.r

1

RepresentedSegment

segmentType : {lifetime, process, state, event}

1 1

RepresentedState

invariant : OclExpression

0. o+
,L/\-\D”_ Represent ed
+HromState +exitEvent Event
1 o.*
+oState +entryEvent

62 Journal of Database Management, 15(2), 39-73, April-June 2004

event have identical instantiation level,
class and property entries. Both
constructs represent the type level, may
represent any subclass of the class of
“ChangingThings’ and may represent
any non-law properties of those subclasses.
However, they are distinguished by their
lifetime entries.

Figure 5 extends the UML class
diagram to show
“ RepresentedSegments’ of the lifetimes
of things and classes. A
“ConstructDefinition” has exactly one
“ RepresentedSegment”, which is either
the whole “lifetime” of the thing or class,
a “process’, a “state” or an “event”.
“RepresentedSegments” that are
“states” or “events’ must also have a
“ RepresentedState” and/or a
“RepresentedEvent” as parts. A
“RepresentedState” is described by an
“oclExpression” that involves
“RepresentedProperties”. A
“ RepresentedEvent” is defined in terms
of its “from-" and “toStates”. BWW-
processes are represented as chains of
“ RepresentedStates” and “-Events’.

Building Taxonomies

Asthe template is used to define an
increasing number of constructs from
different modelling languages, the number
of “RepresentedProperties” and
“Properties” used to characterise
“RepresentedClasses’ will grow large.
Inthissituation, it isessential that the same
classes and properties are not represented
independently several times using the
template. Should this happen, thetemplate
would nolonger aid inidentifying modelling
constructs that can be used to represent
the same BWW-classes and -properties

The template should therefore be
supported by atool for defining modelling

constructs, atool that would also support
building and maintaining a taxonomy of
BWW-classes and -properties. Whenever
anew modelling construct is defined using
the template, this tool should provide
overviewsof the classesand propertiesthat
have been used in previous definitions so
they can be reused. Whenever the new
modelling construct necessitates defining
new BWW-classes or -properties, they
should be entered into the taxonomy.

Figure 6 extends the UML class
diagram to show the taxonomy of
“Classes’ and “Properties’ that can be
reused in “ConstructDefinitions”.
Because “Classes’ and “ Properties’ in
the taxonomy are stored independently
of “ ConstructDefinitions’, they are now
connected to “ RepresentedClasses’ and
“ RepresentedProperties’ viaassociation
rather than via generalisation/
specialisation.

In order to make the taxonomy more
easy to use, both “Classes” and
“RepresentedClasses’ are organised in
“generalisation” hierarchies, whereas
“Properties” are organised through
“precedence” relationsand hierarchies of
“complexProperties” and
“subProperties’, all according to the
BWW model. A “ propertySet” association
isdefined for “ ConstructDefinitions” that
may represent a choice of more than one
“Property”.

Figure 6 also showsthat “ States” and
“Events” have been added to the
taxonomy. Although less critical than
classes and their properties, states and
events also make the template easier to
use, because the lifetime entries of new
modelling constructs can sometimes be
defined by reuse, and more useful, because
the construct definitions become easier to
compare.

Journal of Database Management, 15(2), 39-73, April-June 2004 63

= fulng ¢ awep juaas

wangAqua+ EIS0H
JUsAgHHE+ alels 00+

uaag

uolssad g 20 | MELEAUI
= fulls © awepalels

L

alels

P

wasgpauasalday

alelgpa Juasalday

-0

uolesedads+

=0

=0

Apadoigxeadwoos lagAuadoid+
Apadoidgns+ .0 .0 ‘eqwaias+
-0 unissaidiga ey« 0
{uedajoym} jo 185 © Hedajoyaast| DNSUBIORIELYI+
.0 L | imeunsUR e jalels) jo 1as © ameTs) 1 = 1
BuLs : awepAuadad| " I
huadoug T .
| <0 | papanasdy Buipanaids .v

P

fuuis © awepsse
s5E|7)

{ued 'ajoym} jo7 195 T Hega|ayms!
{uabiawa "ueynsai} jo 1es waliawguouensays!
{INLIPLIG " INLWPUIGUOL T DISULIUG J0TIES T [ERINpAO IS ULIU)S]

unlelaos Sy Apadoidsse))

uoljeIn0s sy Aladoig
ssE|Jpajuasalday

{uana 'alels 'ssaaoud 'awnay} adiuawbas

wawhaspajuasalday

L

{anjes 'adiieiep ‘asiad) JoTes = Apadoigsuasaidal

| = Jabau] paeoxeLw

®

uolesi|eaads+

| = Jakia © pesuL
= BULES © BepE0d

Auadoigpajuasaiday

0

{adi] 'aduelsul} jo"1as

LR =]
Buuis © awepiansuod

UoIIULeIInIsU0s

+

| = 1aBa| © presxew
| =Jakiaqu) @ pesULI

uoljes |edauabiv

=Bulls © awepa

sse|apauasaday

uoges|jeiauabi+

64 Journal of Database Management, 15(2), 39-73, April-June 2004

RESULTS

Modelling constructsfrom the Object
Management Group’s (OMG) standard
Unified Modeling Language (UML)
(OMG, 2001) were used in several
examplessofar. In part, the exampleswere
based on experience from analysing the
UML in terms of the BWW model in
(Opdahl & Henderson-Sellers, 2002) and
from analysing a variant of UML, the
OPEN Modelling Language (OML)
(Firesmith, Henderson-Sellers & Graham,
1997), in Opdahl, Henderson-Sellers and
Barbier (1999) and Opdahl and Henderson-
Sellers (2001). On the one hand, the UML
is similar to the BWW model because it
provides constructs that match key
ontological concepts such asBWW-things
(UML-objects), BWW-properties (many
UML-features) and BWW-classes (UML-
concrete classes).® On the other hand, a
closer look at the UML definitionin (OMG,
2001) reveals numerous problems, many
of which areresolved by thetemplate. This
section will present results of using the
template to define constructs from the
UML. Of course, the most important result
of using the template on the UML, that of
integrating the UML with other modelling
languages, cannot be illustrated at this
stage of our work (because the UML is
thefirst language we have presented results
of analysing inthisdetail).

The Generalisation Hierarchy
of UML Constructs

An important outcome of using the
template on the UML is a generalisation
hierarchy of BWW-classes that has

emerged from the class entries for the

UML constructs we have analysed, as
shown in Figure 7. This hierarchy shows
which BWW-classesin concrete problem

domainsare recognised by the UML. Each
BWW-classin Figure 7 has been annotated
with a list of those UML constructs that
represent the class. The lists are based on
the analysis by Opdahl & Henderson-
Sellers (2002), which interpreted 68 UML
constructs that were relevant for
representing concrete problem domainsin
terms of the BWW model. In this paper,
58 of these constructs have been defined
using thetemplate, asindicatedin Table 2,
athoughit isnot the purpose of this paper
to present our definitionsin full detail. Ten
UML constructs from Opdahl and
Henderson-Sellers (2002) were left out
because they, on closer inspection, turned
out to be less relevant for modelling
concrete problem domains or becausethey

were subtypes of other constructs.* Also,
because the UML has weak semanticsin
relation to concrete problem domainstoday,
many of the definitions areinterpretations
and proposals that must be evaluated in
further work.

Generalisation hierarchies is a new
and interesting approach to analysing,
evaluating and comparing modelling
languages. Asacontributiontotheanalysis
of the UML, Figure 7 showsclearly which
types of model elementsthat may overiap
with one another and may therefore be
inconsistent. As a contribution to the
evaluation of the UML, Figure 7 presents
a generalisation hierarchy that is an
aternative to the onein OMG (2001) and
to which the UML metamodel may
therefore be compared.

As pointed out by Opdahl &
Henderson-Sellers (2002), the modelling
constructs in the UML have been defined
to play several different roles, often at the
same time, such as representing proposed
software solutions, supporting the
development process and matching with
other modelling constructsto createawell-

Journal of Database Management, 15(2), 39-73, April-June 2004 65

apnjaul- "puUagE-
‘wagsis |eolshyd-

uose dw oo -y

e}
LETEE R T

shuy)
palEIUnLILIOg

wajshgpasodag
sy uDAunryshuy

v

= sBunyjuaundwos
wajs g

alu|] an|osgy
o iey | sBuny |

v

........ BLUI HIRI]
ey sbuy)

Jaue N

[s=e p]iogaE N

Japuas- ‘afiEssail- "unjagagl-

OUEUSIE "SRR |2

BEED B50-

'BIUEIEU|

a5ED SN[

waishgpasodoig
ay]jnswalsisgng

‘unjeMpPE- [Fauanbaz]
aSmpasl UO2E- Uoljipuns prEnk-
_ afiessaw- mm:_r_._. mm:_r_._.m__;:u{ Buny] weiisueny- A gisu edsa -
UORAE BTN Uopally + i ‘uoppuooised- 'uopusasid-
‘ungelado- tauewime-
'SSE[2 RANSE- 'REIG0 BARETNA
SEE|2 U0|JEIQ0S5E - |0IU 0D L0 w00 -
palge - shuy |----m-eeee uoneLesse FUCTCRIEES
‘uonebaififie qmn _u_m._u_._ao U ES T UR WL 0a -] auE pRlgenn
shiu [ssej2'pua] uogeoosse - sfiu
SBULL a m_n_M.Wm Be3190 "puBlMITAN m:_mcm._.
wauodwoy palel k4 IBUE LT
anjen-
shul " ‘adijEpep- o dyinw- ‘a0 qupe-
ML mm:_s._.__ra._ “ipadod- ‘uogezielauab- ‘adipgns-
dauleu0g ‘addpadns- ‘adiy- ‘palqgoqpn

v

shuly | walshs
pasodoid

CLTTITIN
walshg

v

sBuy |
ausodwog

PN - pUapE-
‘[z=E 2] apsodwoa-
‘wopEod oa-

SEF|D UDIJE|20S5E -
‘parge -
‘[s=E|2] =3EGRIGEE-

| ‘unnebaififie qmn

"PASAIDUD 2ADY 20 SIONISUOD TIN[) Y] A0f Sa1.43ud SSD]O 2] Ul J]1f 01 pashn Sauo oy}
24D UMOYS SISSDD Y ["TIN[] Y} WOLf $1oN3s1u00 Suljjapouts £q pajuasaidas i jpy) sassvio-» Mg a2yl 1Jp JO Ayoun.a1y uonvsyn.iouas ./ a4n31]

66 Journal of Database Management, 15(2), 39-73,

defined, compact and tightly integrated
modelling language. Thisattempt to satisfy
many different roles at the same time has
made the generalisation hierarchiesin the
UML metamodel very hard to comprehend.
Figure 7 offers a clear-cut alternative
based on the constructs semantics in
relation to concrete problem domains. As
a contribution to comparing modelling
languages, we have already informally
compared Figure 7 to generalisation
hierarchies that have emerged from other
languages we have analysed, such as the
OML (Opdahl, Henderson-Sellers &
Barbier, 1999; Opdahl & Henderson-
Sdlers, 2001). Thesehierarchieshave many
similarities and point towards a common
generalisation hierarchy that can serve as
a common ground for semantic language
integration and which can be extended
gradually as more languages are defined
using thetemplate. Asinthe BWW model,
the generalisation hierarchy islikely to be
a multi-inheritance graph rather than a
single-inheritancetree.

Precise Definitions of UML Constructs in
Terms of Concrete Problem Domains

Among the different roles mentioned
in the previous section, we have found that
UML constructs are often defined in terms
of the proposed software system and not
in terms of the problem domain (Wand &
Weber, 1989; Parsons & Wand, 1997), i.e.,
the definition has given priority totherole
of representing proposed software solutions
over the role of representing the problem
domain. For example, the UML glossary
(OMG, 2001, appendix B) definesaUML-
action as “The specification of an
[executable statement] that forms an
abstraction of a [computational
procedure.] Anactiontypically resultsina
changein the state of the system, and can

April-June 2004

be realized by [sending a message] to an
object or modifying alink or avalue of an
attribute.” (The [brackets] and emphases
are ours.) In this definition, the bracketed
terms al refer to the proposed software
solution and not to the problem domain. As
with many constructs in the UML, the
construct thereby becomes harder to use
in practical modelling situations and the
resulting models become less precise.
Using the template, UML-action can be
precisely defined in terms of concrete
problem domains, asrepresenting the type
level, the class of “ ChangingThings’, any
property that is a characteristic and
intrinsic BWW-transformation law that
describes a single event and the lifetime
of the “ChangingThings’. (It describes
thelifetime because the things possessthe
transformation law for aslong asthey exist,
even though the law itself only describes
an event.)

Inthe above definition, thereareeven
emphasised terms that all support the
development process and do not refer to
the problem domain. Definitions that mix
software, devel opment and problem domain
issues are confusing and detrimental to the
learnability and usability of the language.
Mixed definitions also weaken the
semantics of the language, because when
unrelated terms are mixed in the same
definition, theresult is several incomplete
definitionsinstead of asingle coherent one.
For example, a UML-object is defined
using a mixture of software (our
[brackets]) and problem domain (our
{braces}) issues as “An [{ entity}] with a
well—defined {boundary} and [identity]
that [encapsulates] [{state}] and
[{ behavior}].” Thisdefinitionisincoherent,
because it isnot at all clear what a“well-
defined boundary” or the concept of
“encapsulation” (at least in the likely
interpretation of it asmeaning information

Journal of Database Management, 15(2), 39-73, April-June 2004 67

hiding) mean in relation to concrete
problem domains. Again, this problem is
avoided using the template, according to
which UML-object isprecisely defined as
representing the instance level, the class
of “AllThings”, not representing
properties of those things but representing
their whole lifetimes.

For another example, the glossary
defines UML-reception as a “declaration
that a classifier is prepared to react to the
receipt of a signal”, but it is unclear
whether this “declaration” is static or
dynamic, because “declaration” is left
undefined. The template would have
avoided this ambiguity, because the
lifetime entry explicitly requeststhisto be
defined.

Finally, using the template helps
avoiding circular definitions, which
Castellani (1998) demonstrates to be
common in the UML, because each
construct definitioninvolvesonly filling in
the standard set of entries, and none of the
entries allow referencesto other construct
definitions. The instantiation level,
ontological and lifetime entries are all
specified in terms of alimited number of
attributes with a limited set of possible
valuesfor each. Circularities cannot occur
in class entries either, because “ Classes’
are defined only in terms of “ Properties’
and never refer to other “Classes’. The
only place where circularities can
potentially occur istherefore in property
entries, where “ Properties’ may refer to
other “Properties’ through precedence
relations. However, precedence
circularities can easily be avoided by
manual checking or by simpletool support.

DISCUSSION

The main idea behind the template
wasto provide astandard way of defining

enterprise and IS modelling constructs in
terms of the BWW model, in order to make
the definitions cohesiveand, thus, learnable,
understandable and asdirectly comparable
to one another as possible. When all
construct definitions are directly
comparable, it becomes easier to translate
models from one language to another. It
also becomes easier to detect models and
model elements, possibly expressed in
different languages, that may overlap with
one another and may therefore be
inconsistent. Another important idea was
to provide a way of defining modelling
constructs not only generally in terms of
whether they represent “classes”,
“properties’ or other ontological concepts,
but aso in terms of which classes and/or
properties they represent. As we have
seen, this additional level of detail was
necessary to differentiate important
modelling constructs in the UML. The
additional level of detail also made the
definitions more clearly and precisely
related to the enterprise.

Clearly and precisely defined
model ling constructs better support several
of the quality features discussed in
Lindland, Sindre and Sglvberg (1994) and
Krogstie, Lindland and Sindre (1995), and
languages become easier to learn,
comprehend and use. Also, semantic
overlaps (Spanoudakis& Finkelstein, 1998,
1999) (or construct redundancies (Wand
& Weber, 1993)) and semantic omissions
in languages (or construct deficits (Wand
& Weber, 1993)) can be detected more
easily and more precisely, along with
redundant constructs, i.e., constructs that
do not refer to anything in the problem
domain. Atthemodel level, inconsistencies,
conflicts and omissions in models can be
detected more easily and precisely. There
isalso less scope for misunderstanding of
the resulting requirements.

68 Journal of Database Management, 15(2), 39-73,

The template supplements other
contributions that make the BWW model
more precise and useful: 1) Wand and
Weber (1995) have provided a tabular
description of the main concepts in their
model, from which Table 1 in this paper
was derived. 2) Wand and Weber (1990)
have also provided a set-theoretic
formulation of the BWW model. 3)
Recently, Rosemann and Green (2002)
have proposed an extended ER model of
the main concepts in the BWW model.
These contributions each make the BWW
model more precise, but they do not 1)
provide an obvious standard way of
defining modelling constructs so that
different definitions are directly
comparable, nor do they 2) provide away
of saying that a modelling construct
represents, e.g., a specific class or a
specific property.

Thetemplate hasbeenillustrated with
definitionsof constructsfromthe UML and,
thereby, also supplements other
contributions that use the BWW model to
analyse the UML. Evermann and Wand
(2001) present ontology-based rules for
using the UML to model the real world,
whereas Opdahl & Henderson-Sellers
(2002) usethe BWW model to analyseand
evaluate the UML as a language for
representing concrete problem domains.
However, in contrast to this paper, neither
contribution addressesin detail the question
of how to define modelling constructs in
relation to the BWW model.

CONCLUSIONS AND FURTHER
WORK

The paper has explained the need for
a standard way of defining modelling
constructs from different enterprise
modelling languages and has proposed a

April-June 2004

template for defining enterprise modelling
congtructsinaway that facilitateslanguage
integration. Thetemplate wasbased onthe
Bunge-Wand-Weber (BWW)
representation model of information
systems (I1S)—called just the BWW model
in this paper—and was illustrated with
definitions of constructs from the Unified
Modeling Language (UML). The paper
focussed on modelling constructs that
represent concrete problem domains, i.e.,
on representation of materials rather than
concepts. The main idea behind the paper
wasto provide astandard way of defining
modelling constructsin terms of the BWW
model, in order to make the definitions
cohesive and, thus, learnable,
understandable and asdirectly comparable
to one another as possible. Another
important idea was to provide a way of
defining modelling constructs not only
generally, in terms of whether they
represent “classes’, “properties’ or other
ontological categories, but al'so in terms of
which classes and/or properties they
represent, in order to make the definitions
more clearly and precisely related to the
enterprise. Although most of the paper was
about the concrete parts and aspects of
enterprises, We believe the template and
other results of this paper are sufficiently
general to apply to concrete problem
domains in general.

An important outcome is that the
template encouragesthorough analysesand
precise definitions of enterprise, 1S and
other problem domain modelling constructs
and languages. In particular, it assists in
identifying semantical overlaps
(Spanoudakis & Finkelstein, 1998, 1999)
at a detailed level between seemingly
unrelated modelling constructs and their
languages. The templateisalso useful for
identifying constructsthat aretoo complex
or too vaguely defined. Thereby, the

Journal of Database Management, 15(2), 39-73, April-June 2004 69

template paves the way both for more
precise and tightly integrated enterpriseand
ISmodelsand for better completeness and
consistency checking of models. However,
wedo not meantoimply that al enterprise
and | Smodelling languages and all models
should necessarily be integrated or even
defined interms of astandard template. In
many situations, e.g., to foster creativity
when a new opportunity isidentified or a
new |ISisto be conceptualised, there will
be a need for modelling languages and
constructs that challenge the commonly
accepted ground. The important issue is
that problem domain modelling languages
that areintegrated and defined in terms of
a standard template should be available
when they are called for. Also, we do not
mean to imply that all enterprise and IS
modelling languages and models should
necessarily be as precisely defined as
possible. Whereas in some situations,
models (and thus languages) should be
precise, other situations might call for less
precise models and languages, e.g., to
represent early ideas of the problem domain
during initial development. Again, the
important issue is that problem domain
modelling languages should support precise
modelling when this is called for. Further
work isneeded to investigate how to define
languages that provide more and less
precise semantics for different stages of
development.

Another important outcome is the
identification of the generalisation
hierarchy that isinherentinthe UML. This
type of generalisation hierarchy is a new
way of analysing and comparing modelling
languages and constructs. It offers both a
new way to clarify and explain the
semantics of the UML and introduces a
new perspectivefromwhichthe UML can
be constructively criticised.

Thetemplate demonstrates again the

applicability and usefulness of the BWW
model as the foundation for work that
addresses the semantics of enterprise and
ISmodelling languages. Thetemplate also
makes the BWW model more applicable
and useful in practice. Rosemann and
Green (2002) point out that although the
BWW model has produced important
research results, it is large and complex
and therefore difficult tolearn and use. The
template makes the BWW model simpler
to use by decomposing construct definitions
into five entries that are largely
independent and that each are simpler than
the BWW model or the template as a
whole. At the sametime, the template does
not deviate much from the BWW model.
Although at first sight, the template does
not account for all the BWW-concepts
presented in other papers (e.g., Wand &
Weber, 1988, 1993, 1995), it accounts for
all the basic ones, so that modelling
constructsdefined in terms of thetemplate
should also beimplicitly related to the rest
of the BWW model. However, this needs
to be verified in further work.

Further work is needed to validate
and refine the proposal made here, both
by relating thetemplate to other ontologies
and other mathematical formalismsand by
using it on additional modelling languages
and constructs. For example, it would be
interesting to use the template to define
the congtructsinthe ARIS language (Green
& Raosemann, 1999) for business process
modelling and to defineintentional modelling
constructs such as goals and speech acts.
The current version of the metamodel has
been developed to be clear and
understandable but, especially when it
comes to the ontological descriptions of
properties, it has some redundancies that
need to be sorted out.

Further work is also needed on tool
support for thetemplate. Such atool would

70 Journal of Database Management, 15(2), 39-73, April-June 2004

assist definition of modelling constructsin
termsof thefivetypesof entriesand would
manage dependencies between entries. If
would also assist in maintaining the

taxonomy of “ Classes’, “Properties’,

“States” and “ Events’. The tool could
also support analysis of modelling
languages, e.g., by automatically generating
generalisation hierarchies and identifying
overlapping modelling constructs.

The template presented in this paper
focusses on modelling constructs that
represent concrete problem domains, i.e.,
that represent materials rather than
concepts. Further work should extend the
templateto account for modelling constructs
that represent social constructsand mental
concepts. Also, as pointed out by Opdahl
and Henderson-Sellers (2002), representing
problem domains—bethey material, socia
or mental—is only one of several roles
played by enterprise and 1S modelling
constructs, which must also sometimes
represent proposed software solutions,
support modellersand software devel opers
,and match other modelling constructs to
create awell-defined, compact and tightly
integrated modelling language. The current
version of the template only deals with
material problem domainsand offerslittle
hel p with managing these additional roles.

ACKNOWLEDGMENTS

Thisis Contribution number 02/17 of
the Centre for Object Technology
Applications and Research.

ENDNOTES

! Following an observation made by
Opdahl and Henderson-Sellers (2002),
UML-classisnot prominent in thispaper
because UML-type, a stereotype of
UML-classinUML Version 1.4, ismore

specific to representing concrete
problem domainslike enterprises.

2 Here, we make a distinction between
general ontology, such as the BWW
model, and special or domain-specific
ontology, whichisahigh-level, generic
and often reusable model of a problem
domain. Bunge (1999) makes asimilar
distinction between general ontology,
which“studiesall existents’, and special
ontology, which “studies one genus of
thing or process.”

3 Table 2 in Opdahl and Henderson-
Sellers (2002) gives a full list of 14
ontological matches or near matches
between the UML and the BWW model,
whereas Opdahl and Henderson-Sellers
(2001) summarise key ontological
differences between OO-modelling in
genera and the BWW model.

4 The 10 constructs left out were UML-
class (because UML-types are more
relevant, seefootnote 1), UML-send and
-receive, UML-action, -cdl, -subactivity,
-synch and -final stateand UML-signal
and -stimulus.

REFERENCES

Barbier, F., Henderson-Sellers, B.,
Opdahl, A.L. & Gogolla, M. (2000). The
whole-part relationship in the Unified
Modeling Language: A new approach. In
Halpin, T. & Siau, K. (eds.), Unified
Modeling Language: Systems Analysis,
Design, and Development Issues .
Hershey PA: Idea Group Publishing
(IGP).

Bodart, F., Patel, A., Sim, M. &
Weber, R. (2001). Should optional
propertiesbe used in conceptual modelling?
A theory and three empirical tests.
Information Systems Resear ch, 12(4),
384-405.

Journal of Database Management, 15(2), 39-73, April-June 2004 71

Bunge, M. (1977). Treatise on Basic
Philosophy: Vol. 3: Ontology I: The
Furniture of the W orld. Boston:Reidel.

Bunge, M. (1979). Treatise on Basic
Philosophy: Vol. 4: Ontology 11: A World
of Systems. Boston:Reidel.

Bunge, M. (1999). Dictionary of
Philosophy. Amherst: Prometheus Books.

Castellani, X. (1998). An overview
of theversion 1.1 of the UML defined with
charts of concepts. In PA. Muller and
Bézivin, J. (eds.), Proc. “International
Conference on the Unified Modeling
Language, <<UML>>"98 — Beyond
the Notation”, Mulhouse/France, June 3-
4. LNCS, Springer Verlag.

Chisholm, R.M. (1996). A Realistic
Theory of Categories: An Essay on
Ontology. Cambridge University Press.

Conallen, J. (1999). Modeling Web
Application Architectures with UML.
Communications of the ACM , 42(10).
(Specia Issue on UML, Booch, G. (guest
ed.))

Evermann, J. & Wand, Y. (2001).
Towardsontologically based semanticsfor
UML constructs. In Kunii, H., Jgjodia, S.
& Solvberg, A. (eds.), Proc. “20th
International Conference on Conceptual
Modeling”, ER 2001, Y okohama, Japan,
Nov. 27-30, 2001 .

Firesmith, D., Henderson-Sellers, B.
& Graham, |. (1997). OPEN Modelling
Language — OML Refer ence Manual .
SIGSBooks. Cambridge University Press.

Green, PF. (1996). An Ontological
Analysis of Information Systems Analysis
and Design (ISAD) Grammars in Upper
CASE Tools. PhD thesis, Department of
Commerce, University of Queensland.

Green, P. & Rosemann, M. (1999).
An ontological evaluation of integrated
process modelling. In Proceedings “11th
Conference on Advanced Information
Systems Engineering”, CAiSE*99,

Heidelberg/Germany, 14-18 June 1999.
Springer.

Green, P. & Rosemann, M. (2000).
Integrated process modelling: An
ontological evaluation. Information
Systems, 25(2), 73-87.

Krogstie, J., Lindland, O.I. & Sindre,
G. (1995). Towardsadeeper understanding
of quality in requirements engineering. In
livari, J., Lyytinen, K. & Rossi, M. (eds.),
Advanced Information Systems
Engineering, Pr oc. CAiSE*95,
Jyvdskyld. LNCS 932, Springer Verlag.

Lindland, O.1., Sindre, G. & Sgalvberg,
A. (1994). Understanding quality in
conceptual modeling. IEEE Software,
11(2):42—-49, March.

OMG (2001). OMG Unified
Modeling Language Specification,
version 1.4. Object Management Group.

Opdahl, A.L., Henderson-Sellers, B.
& Barbier, F. (1999). An ontological
evaluation of the OML metamodel. In
Falkenberg, E.D., Lyytinen, K. & Verrijn-
Stuart, A.A. (eds.), Information System
Concepts: An Integrated Discipline
Emerging, pp. 217-232. Kluwer (IFIP8.1).

Opdahl, A.L., Henderson-Sellers, B.
& Barbier, F. (2001). Ontological analysis
of whole-part relationshipsin OO models.
Information and Softwar e Technology,
43(6), 387-399.

Opdahl, A.L. & Henderson-Sellers,
B. (2001). Grounding the OM L metamodel
in ontology. Journal of Systems and
Software, 57(2), 119-143.

Opdahl, A.L. & Henderson-Sellers,
B. (2002). Understanding and improving
the UML metamodel through ontological
analysis. Journal of Softwar e and
Systems Modelling (SoSyM), 1(1):43-67,

Springer.
Parsons, J. & Wand, Y. (1997). Using
objects for systems analysis.

Communications of the ACM , 40(12),

72 Journal of Database Management, 15(2), 39-73,

104-110.

Parsons, J. & Wand, Y. (2000).
Emancipating instances from the tyranny
of classes in information modeling. ACM
Transactions on Database Systems ,
25(2), 228-268.

Paulson, D. & Wand, Y. (1992). An
automated approach toinformation systems
decomposition. IEEE Transactions on
Software Engineering (TSE), 18(3), 174—
189.

Rosemann, M. & Green, P. (2002).
Developing a meta model for the Bunge-
Wand-Weber ontological constructs.
Information Systems, 27, 75-91.

Spanoudakis, G., Finkelstein, A. &
Till, D. (1999). Overlaps in requirements
engineering. Automated Softwar e
Engineering Journal .

Spanoudakis, G. & Finkelstein, A.
(1998). A semi-automatic process of
identifying overlaps and inconsistencies
between requirement specifications. In
Proc. “5th International Confer ence on
Object-Oriented Information Systems”,
OOIS 98, 405-424.

Takagaki, K. & Wand, Y. (1991). An
object-oriented information systems model
based on ontology. In Van Assche, F.,
Moulin, B. & Rolland, C. (eds.), Object
Oriented Appr oach in Information
Systems, pp. 275-296, Amsterdam: Elsevier
(North-Holland).

Uschold, M., King, M., Moralee, S.
& Zorgios, Y. (1998). The enterprise
ontology. The Knowledge Engineering
Review, 13.

Verrijn-Stuart, A.A. (ed.) (2001). 4
Framework of Information System
Concepts — The Revised FRISCO
Report. Web document, draft version.

Wand, Y. & Wang, R.Y. (1996).
Anchoring data quality dimensions in
ontological foundations. Communications
of the ACM, 39(11), 86-95.

April-June 2004

Wand, Y. & Weber, R. (1988). An
ontological analysis of some fundamental
information systems concepts. In DeGross,
JI. & Olson, M.H. (eds.), Proceedings
of the Ninth International Confer ence
on Information Systems, Minneapolis/
USA, November 30—December 3,
1988,213-225.

Wand, Y. & Weber, R. (1989). An
ontological evaluation of systemsanalysis
and design methods. In Falkenberg, E. &
Lindgreen, P. (eds.), Proceedings of the
IFIP WG8.1 Working Conference on
“Information Systems Concepts.: An In-
Depth Analysis”, Namur, Belgium , pp.
79-107, Amsterdam:North-Holland.

Wand, Y. & Weber, R. (1990). An
ontological model of aninformation system.
IEEE T ransactions on Softwar e
Engineering (TSE), 16(11), 1282—1292.

Wand, Y. & Weber, R. (1993). On
the ontological expressiveness of
information systems analysis and design
grammars. Journal of Information
Systems, 3:217-237.

Wand, Y. & Weber, R. (1995). On
the deep structure of information systems.
Information Systems Journal, 5, 203-223.

Wand, Y. (1989a). An ontological
foundation for information systemsdesign
theory. In Pernici, B. & Verrijn-Stuart,
A.A. (eds)), Office Information Systems:
The Design Process. Amsterdam:Elsevier
(North-Holland).

Wand, Y. (1989b). A proposal for a
forma model of objects. In Kim, W. &
Lochovsky, F.H. (eds.), Object-Oriented
Concepts, Databases, and Applications ,
chapter 21, pages 537-559. New
York:ACM Press/Addison-Wesley.

Weber, R. & Zhang, Y. (1996). An
analytical evaluation of NIAM’sgrammar
for conceptual schema diagrams.
Information Systems Journal, 6:147-170.

Weber, R. (1997). Ontological

Journal of Database Management, 15(2), 39-73, April-June 2004 73

Foundations of Information Systems . & Lybrand, 333 Collins Street, Melbourne
Number 4 in Accounting Research Vic3000, Australia.
M ethodology Monograph series. Coopers

Andreas L. Opdahl is Pr ofessor of Information Systems Development in the
Department of Information Science, University of Ber gen, Norway. Dr. Opdahl is
the author, co-author or co-editor of mor e than 30 journal ar ticles, book chapters,
refereed archival conference papers and books on r equirements engineering, multi-
perspective enterprise modelling, softwar e performance engineering and other
areas. He is a member of IFIP WGS.1 on Design and Evaluation of Information
Systems. He ser ves regularly as a r eviewer for pr emier international journals and
on the pr ogram committees of r enowned international confer ences and workshops.
Opdahl can be contacted at postal addr ess: Department of Information Science,
University of Ber gen, P.O.Box 7800, N-5020 Ber gen, Norway, andreas@ifi.uib.no,
http://www.ifi.uib.no/staff/andreas/ .

Brian Henderson-Sellers is Dir ector of the Centr e for Object T echnology
Applications and Resear ch and Pr ofessor of Information Systems at University of
Technology, Sydney (UTS). He is author of eleven books on object technology
and is well-known for his work in OO methodologies (MOSES, COMMA, OPEN,
OOSPICE) and in OO metrics. Brian has been Regional Editor of Object-Oriented
Systems, a member of the editorial boar d of Object Magazine/Component Strategies
and Object Expert for many years and is curr ently on the editorial board of Journal
of Object Technology and Softwar e and Systems Modelling. He was the Founder
of the Object-Oriented Special Inter est Group of the Australian Computer Society
(NSW Branch) and Chairman of the Computerworld Object Developers’ A wards
committee for ObjectW orld 94 and 95 (Sydney). He is a fr equent, invited speaker
at international OT confer ences. In 1999, he was voted number 3 in the Who™ s
Who of Object T echnology (Handbook of Object T echnology, CRC Press, Appendix
N). He is curr ently a member of the r eview panel for the OMG’ s Software Process
Engineering Model (SPEM) standar ds initiative and is a member of the UML 2.0
review team. In July 2001, Pr ofessor Henderson-Sellers was awar ded a Doctor
of Science (DSc) fr om the University of London for his r esearch contributions in
object-oriented methodologies

