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To ensure that knowledge captured in
enterprise models can be integrated and
made available throughout the organisation,
it is therefore necessary to enable
organisations to integrate more closely the
different modelling languages they use.

Philosophical ontology offers a
common ground for integrating enterprise
and IS modelling languages. According to
Weber (1997), philosophical ontology is the
branch of philosophy that deals with
theories about the nature of things in general,
as opposed to theories about particular
things. In the IS field, one much used
philosophical ontology is the Bunge-Wand-
Weber (BWW) model of information
systems (e.g., Wand & Weber, 1988, 1993,
1995), which adapts Mario Bunge’s (1977,
1979) comprehensive ontology to the IS
field. Bunge’s ontology is an example of
scientific r ealism, meaning that it
“identifies reality with the collection of all
concrete things, [...] postulates the
autonomous existence of the external
world, admits that we are largely ignorant
of it, and encourages us to explore it”
(Bunge, 1999). It is therefore well suited
for integrating modelling constructs that
represent concrete problem domains, i.e.,
that represent materials rather than
concepts. The BWW model is a set of three
models, of which this paper will only use
one: the representation model .

This paper uses the BWW
representation model—called just the
BWW model in this paper—as a common
ground for defining enterprise and IS
modelling constructs in a way that
facilitates language integration. The paper
thereby focusses on the concrete parts and
aspects of enterprises, and proposes a
template for defining enterprise and IS
modelling constructs. By “template” we
mean a standard way of defining modelling
constructs by filling in standard set of

“entries”, some of which are complex and
some of which are interrelated. Figures 1–
6 will introduce the template stepwise in a
series of UML class diagrams. The main
idea is to provide a standard way of defining
modelling constructs in terms of the BWW
model, in order to make the definitions
cohesive and, thus, learnable,
understandable and as directly comparable
to one another as possible. Another
important idea is to provide a way of
defining modelling constructs not only
generally, in terms of whether they
represent “classes”, “properties” or other
ontological categories, but also in terms of
which classes and/or properties they
represent, in order to make the definitions
more clearly and precisely related to the
enterprise. Although most of the paper is
about the concrete parts and aspects of
enterprises, we believe the template and
other results of this paper are sufficiently
general to apply to concrete problem
domains in general.

The template has been developed
based on practical experience from
analysing, suggesting improvements to and
providing precise definitions of several full-
scale integrated modelling languages and
frameworks, including:

• 73 constructs from the OPEN Modeling
Language (OML) (Firesmith,
Henderson-Sellers & Graham, 1997) in
Opdahl, Henderson-Sellers & Barbier,
1999; Opdahl & Henderson-Sellers
(2001) and

• 68 constructs from the Unified Modeling
Language (UML) (OMG, 2001) in
Opdahl & Henderson-Sellers (2002).

The template will be illustrated with
definitions of constructs from the UML
Version 1.4. Next, we will explain the
underlying theory of the paper–the BWW
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model–and then introduce the template
itself, before we present results of using
the template to define constructs from the
UML. This is followed by a discussion of
the usefulness of the template, and
conclusions and paths for further work .
The outcome is threefold. Firstly, the
template offers a standard way of precisely
defining modelling constructs and thereby
integrating different modelling languages.
Secondly, the template makes the BWW
model more easy to use for integrating
modelling languages. Thirdly, the illustration
of the template with definitions of
constructs from the UML is a contribution
to making the UML more precisely
defined.

The template was preliminarily
outlined by Opdahl, Henderson-Sellers and
Barbier (1999), and is presented in an
extended and much refined form here.

THEORY

The Bunge-Wand-Weber repre-
sentation model (e.g., Wand & Weber,
1988, 1993, 1995)—called the BWW model
in this paper—has already been used to
analyse and evaluate the modelling
constructs of many established IS and
enterprise modelling languages, including:

• dataflow diagrams (Wand & Weber,
1989),

• ER models (Wand & Weber, 1989;
Weber, 1997),

• NIAM (Weber & Zhang, 1996),
• nine languages supported by the Upper

CASE-toolset Excelerator (Green,
1996),

• four languages supported by the ARIS
toolset for business modelling (Green &
Rosemann, 1999, 2000),

• the OPEN Modelling Language (OML)
(Opdahl & Henderson-Sellers, 2001)

and
• the Unified Modelling Language (UML)

(Evermann & Wand, 2001; Opdahl &
Henderson-Sellers, 2002). The BWW
model has also been used for general
analyses of :

• IS design theory (Wand, 1989a),
• object-oriented modelling constructs

(Wand, 1989b; Parsons & Wand, 1997),
• systems decomposition (Wand &

Weber, 1990; Paulson & Wand, 1992),
• object-oriented information systems

(Takagaki & Wand, 1991),
• dimensions of data quality (Wand &

Wang, 1996),
• optional properties in conceptual

modelling (Bodart et al., 2001),
• a two-layered information modelling

approach where instances are not tied
to particular classes (Parsons & Wand,
2000) and

• whole-part relationships (like UML’s
aggregation and composition constructs)
in OO models (Barbier et al., 2000;
Opdahl, Henderson-Sellers & Barbier,
2001).

The BWW model is therefore a
natural starting point for a template for
defining enterprise modelling constructs,
although alternatives exist both in the form
of general philosophical ontologies, e.g.,
Chisholm (1996), or special enterprise and
IS ontologies, e.g., the enterprise ontology
(Uschold et al., 1998) and the framework
of information systems concepts
(FRISCO) (Verrijn-Stuart et al., 2001). In
support of the BWW model, Wand &
Weber (1993) have argued that Bunge’s
ontology is:

1. better developed and formalised than
alternative philosophical ontologies;

2. based on concepts that are fundamental
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to the computer science and information
systems domains; and

3. productive, in the sense that it has given
useful results.

Space does not permit a full
presentation of the BWW model, but this
section will present the most important
BWW concepts that we will use. Table 1
gives definitions of all the BWW concepts
used in the paper.

Things and Properties: According
to Bunge’s ontology and the BWW model,
there is a world that exists independently
of human observers, and it consists of
things that possess properties. Examples
of BWW-things are “atoms, fields, persons,
artifacts and social systems” (Bunge,
1999), whereas “properties of things (e.g.,
energy) changes in them, and ideas
considered in themselves” are non-things
(Bunge, 1999). In particular, concepts are
not BWW-things.

Bunge’s ontology and the BWW
model also reminds us that we only know
about things via models of things we create
in our minds, and that we ascribe attributes
to those models of things to stand for the
properties we believe the corresponding
things possess. In the BWW model, an
attribute (that stands for a BWW-property)
is represented as a property function of
time, which maps the property onto
different property values in a property
co-domain for different points in time.

Properties: The BWW model
distinguishes between properties in several
different ways. An intrinsic property
belongs to only a single thing, whereas a
mutual property belongs to two or more
things. (BWW-mutual properties are
represented by relationships or similar
constructs in many modelling languages.)
A whole-part relation is a property that
relates an aggregate thing  to one of its

component things . A resultant property
belongs to a BWW-aggregate and is
derived from one or more properties of its
components, whereas an emergent
property belongs to a BWW-aggregate but
not to any of its components. A law property
restricts other properties of the same thing.
A BWW-law is either a state law  or a
transition law. An individual property (or
property of a particular) is a specific, e.g.,
“being 25 years old” and “having grey
hair,”  whereas the corresponding general
properties are “having an age” and “having
a hair color.” Bunge (1977) also
distinguishes between BWW-properties
that are permanent and those that are
variable.

BWW-properties may be complex,
i.e., they may have other properties as
constituents. A BWW-property precedes
a second BWW-property if and only if:

• either (a) the second property is
complex (or compound) and the first
property is one of its constituents,

•  or (b) a BWW-law states that all
BWW-things that possess the second
property must also possess the first.

According to (a), “having a ZIP-
code” precedes “having a postal address”
because every postal address includes a
ZIP-code and, according to (b), “being a
human being” precedes “being married,”

Classes: Things with a property in
common form BWW-classes. A class
contains all the things, and only those things,
that possess one or more characteristic
properties for the class. In other words,
every BWW-class is defined by a non-
empty set of characteristic properties of
the things in the class. The most general
BWW-class is the class off all things,
which is defined by the universal property
of being able to associate with other
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things (Bunge, 1977).  Because
characteristic properties may be complex,
it is sometimes possible to say that a BWW-
class is defined by a group of
characteristic BWW-properties. One
BWW-class may be defined by a group of
characteristic properties that is contained
in a larger group of properties that defines
a second class. We then say that the second
BWW-class is a subclass of the first.

Coupling and Systems:  A BWW-
thing has time-dependent states that are
determined by the values of the thing’s
property functions over time. A change of
BWW-state in a thing is an event, hence a
BWW-event can be described as a pair of
BWW-states. Consecutive BWW-events
form complex events, or processes if they
occur in the same thing. The sequence of
consecutive BWW-states undergone by a
thing (or, alternatively, the sequence of
consecutive BWW-events) is called its
history. A BWW-thing acts on a second
thing if and only if the BWW-history of the
second thing would have been different had
the first thing not existed. The first thing is
called an active thing. Two BWW-things
are coupled if and only if (at least) one of
them acts on the other. BWW-couplings
are caused by certain BWW-mutual
properties that are said to be binding. A
BWW-aggregate whose BWW-
components are coupled is a system.

THE TEMPLATE

Overview

The template is used to define each
modelling construct separately by filling in
four types of top-level entries,  some of
which have sub-entries:

• The instantiation level  entry type is

used to define whether the modelling
construct represents the enterprise at
the type level , at the instance level  or
at either level. This is the simplest type
of top-level entry.

• The class entry type is used to define
which class of things  (or classes of
things) in the enterprise that the
modelling construct may represent. We
will see later that a modelling construct
may be defined by multiple class entries,
each of them with several sub-entries.

• The property entry type is used to
define which property (or properties)
in the enterprise the construct may
represent. We will see that it too may
be repeated and may have several sub-
entries.

• The lifetime entry type is used to define
whether the modelling construct
represents events in, states of,
processes in or the whole lifetime of
one or more things.

We will now discuss each type of
top-level entry separately using constructs
from the UML—and sometimes from other
languages—as examples. Although the
UML is not primarily an enterprise or IS
modelling language, it is relevant here
because it is often used to represent
concrete problem domains in the early
stages of systems development. It is also
a natural example language because it is
widely known.

Instantiation Level

The first and simplest entry type is
used to define the instantiation level  of
a modelling construct. The construct is at
the type level if it represents BWW-classes
(or their characteristic properties, etc.) and
it is at the instance level if it represents
BWW-things (and/or their properties,
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Table 1: Basic concepts in the BWW model

BWW concept Concept definition
BWW-thing “The elementary unit in our ontological model. The real

world is made up of things.” (Wand & Weber, 1995)

BWW-property of a thing “Things possess properties” (Wand & Weber, 1995). “We

know about things in the world via their properties” (Weber,

1997).

BWW-complex property A complex BWW-property consists of other properties,

which may themselves be complex.

BWW-property function “A property is modeled via a function that maps the thing

into some value” (Wand & Weber, 1995). A BWW-property

function represents how some BWW-property changes over

time. BWW-property functions are also called state functions
(Weber, 1997) or state variables (Parsons & Wand, 1997).

BWW-property co-domain “The set of values into which the function that stands for the

property of a thing maps the thing” (Weber & Zhang, 1996).

BWW-class of things “A set of things that can be defined by their possessing a

particular set of properties” (Weber & Zhang, 1996). 1) A

BWW-class is defined by a “characteristic set” of properties.

2) All groups of BWW-properties that are possessed by at

least one BWW-thing define a BWW-class.

BWW-subclass of things “A set of things that can be defined via their possessing the

set of properties in a class plus an additional set of

properties” (Weber & Zhang, 1996). (Hence, a BWW-

subclass is itself a BWW-class.)

BWW-intrinsic property of a thing “A property that is inherently a property of an individual

thing” (Wand & Weber, 1995).

BWW-mutual property of “A property that is meaningful only in the context of two or

more things” (Wand & Weber, 1995).

BWW-state of a thing “The vector of values for all property functions of a thing”

(Wand & Weber, 1995).

BWW-state law of a thing A property that “[r]estricts the values of the property

functions of a thing to a subset that is deemed lawful because

of natural laws or human laws” (Wand & Weber, 1995).

two or more things
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BWW-event in a thing “A change of state of a thing. It is affected via a
transformation (see below)” (Wand & Weber, 1995).

BWW-process in a thing “An intrinsically ordered sequence of events on, or states
of, a thing” (Green, 1996). Processes may be either chains
or trees of events (Bunge, 1977).

BWW-transformation of a thing “A mapping from a domain comprising states to a co-
domain comprising states” (Wand & Weber, 1995).

BWW-transformation “Events are governed by transformation laws that define
the allowed changes of state” (Parsons & Wand, 1997).
(Wand & Weber, 1995) and other papers on the BWW
model instead introduce BWW-lawful transformations,
which define “which events in a thing that are lawful”. The
term “transformation law” instead of “lawful
transformation” is chosen here to emphasise that a
transformation law — like a state law — is a property of a
particular thing.

BWW-law property of a thing “Properties can be restricted by laws relating to one or
several properties” (Parsons & Wand, 1997). 1) A law is
either a state law or a transformation law of a particular
thing. 2) A law is either a natural law or a human law (see
below.)

BWW-natural law “Natural laws are established by nature” (Weber, 1997).
For example, a law of physics.

BWW-human law “Some laws are human-made artifacts” (Weber, 1997), i.e.,
they are socially constructed and enforced by humans.
Events and processes may sometimes violate human laws,
but not natural ones.

BWW-natural kind of things “A natural kind is defined by a set of properties and the
laws connecting them” (Parsons & Wand, 1997). 1) Hence,
a BWW-natural kind is itself a BWW-class, but all its
characteristic properties must be BWW-laws. 2) In this
paper, we refer to the “subclasses” of BWW-natural kinds
as BWW–sub-kinds.

BWW-conceivable state “The set of all states that the thing may ever assume”
(Wand & Weber, 1995).

BWW-possible state “[T]he space of states that are possible given our
understanding of the laws of nature” (Weber, 1997).

BWW-lawful state space of a thing “[T]he set of states of a thing that comply with the state
laws of the thing” (Wand & Weber, 1995). Hence, lawful
states satisfy both human and natural state laws, whereas
possible states may violate human ones.

BWW-conceivable event “The set of all possible events that can occur in the thing”
(Weber & Zhang, 1996).

Table 1, Continued: Basic concepts in the BWW model

law of a thing

space of a thing

space of a thing

space of a thing
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BWW-lawful event space of a thing “The set of all events in a thing that are lawful” (Wand &
Weber, 1995). Weber (1997) adds “[...] because (a) nature
permits them to occur, and (b) there are no human laws that
denote them as unlawful”.

BWW-composite thing “A composite thing may be made up of other things
(composite or primitive)” (Wand & Weber, 1995). “Things
can be combined to form a composite thing” (Parsons &
Wand, 1997).

BWW-component thing Any BWW-thing that is in the composition of a composite
thing.

BWW–whole-part relation The property of being in the composition of another thing
or, complementary, of having another thing as a component
(according to Bunge, 1977)).

BWW-resultant property of a “A property of a composite thing that belongs to a
component thing” (Wand & Weber, 1995).

BWW-emergent property of a A property of a composite thing that does not belong to a
component thing (adapted from (Wand & Weber, 1995).)

BWW-history of a thing “The chronologically ordered states that a thing traverses in
time” (Weber & Zhang, 1996).

BWW-acting on another thing, “A thing acts on another thing if its existence affects the
history of the other thing. The two things are said to be
coupled [...]” (Wand & Weber, 1995).

BWW-direct acting on, A thing acts directly on one or more other things when the
former thing changes a BWW-binding mutual property they
all possess. Changing the binding mutual property is an
internal event in the former thing and an external event in
each of the latter things.

BWW-system of things “A set of things is a system if, for any bi-partitioning of the
set, couplings exist among things in the two subsets” (Wand
& Weber, 1995). 1) A BWW-system is itself a BWW-thing.
2) BWW-system things belong to BWW-system natural
kinds.

BWW-system composition “The things in the system” (Wand & Weber, 1995), i.e., its
component things.

BWW-system environment “Things that are not in the system but interact with things
in the system” (Wand & Weber, 1995).

BWW-system structure “The set of couplings that exist among things in the system
and things in the environment of the system” (Wand &
Weber, 1995).

BWW-subsystem “A system whose composition and structure are subsets of
the composition and structure of another system” (Wand &
Weber, 1995).

BWW-binding mutual property

BWW-coupling of things

composite thing

composite thing

Table 1, Continued: Basic concepts in the BWW model
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states, events, histories, etc.).
An obvious example is the distinction

between UML-types at the type level and

UML-objects at the instance level.1 (Table
2 will later show template-based definitions
of all the modelling constructs from the
UML that were considered in this paper.
As can be seen from this table, the
definitions of UML-objects and –types only
differ in their instantiation level entries.)

Some constructs can even be used

to represent either level. For example,
processes in some dialects of traditional
dataflow diagrams (DFDs) can represent

either logical processes that can occur
several places in an information system —
and are therefore at the type level — or
physical processes that can occur only at
a specific place — and therefore belong
at the instance level.

Figure 1 shows the first part of a
UML class diagram for the template,
according to which a
“ConstructDefinition” has a
“constructName” and an “instLevel” as
attributes. (In the UML, when multiplicities
are not shown for attributes, the default is
[1,1], so each “ConstructDefinition” has
exactly one “instLevel“ attribute. In this

BWW-system decomposition “A set of subsystems such that every component in the
system is either one of the subsystems in the
decomposition or is included in the composition of one of
the subsystems in the decomposition” (Wand & Weber,
1995).

BWW-level structure “Defines a partial order over the subsystems in a
decomposition to show which subsystems are
components of other subsystems or the system itself”
(Wand & Weber, 1995).

BWW-external event in a thing, “An event that arises in a thing, subsystem or system by
virtue of the action of some thing in the environment of
the thing, subsystem or system. The before-state of an
external event is always stable. The after-state may be
stable or unstable” (see below) (Wand & Weber, 1995). 1)
Stable and unstable states will be defined below. 2) We
have not defined the subsystem-concept because we do
not need it in this paper.

BWW-internal event in a thing, “An event that arises in a thing, subsystem or system by
virtue of lawful transformations in the thing, subsystem
or system. The before-state of an internal event is always
unstable. The after-state may be stable or unstable” (see
below) (Wand & Weber, 1995).

BWW-unstable state of a thing “A state that will be changed into another state by virtue
of the action of transformation in the system” (Wand &
Weber, 1995).

BWW-stable state of a thing “A state in which a thing, subsystem or system will remain
unless forced to change by virtue of the action of a thing
in the environment (an external event)” (Wand & Weber,
1995).

subsystem or system

subsystem or system

Table 1, Continued: Basic concepts in the BWW model
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and later UML class diagrams, we allow
attributes with set value types .)

Class

The second type of entry is used to
define which class of things the modelling
construct may represent. For a modelling
construct at the type level, this means that
the construct may only represent
subclasses of the specified class. For a
modelling construct at the instance level,
this means that the construct may only
represent things that belong to the specified
class.

For example, at the type level, the
UML has constructs that may only
represent subclasses of the BWW-class
of “ActiveThings”, defined by the
characteristic property of acting on other
things. The UML also has constructs that
may only represent subclasses of other
important BWW-classes, such as the class
of “ActedOnThings” or the class of
“CompositeThings”. (Figure 7 will later
show a generalisation hierarchy of all
the BWW-classes that are represented by
modelling constructs from the UML.)
Accordingly, at the instance level, the
UML has constructs that may only
represent active BWW-things, other
constructs that may only represent things
that are acted on and still other constructs
that may only represent composite things.

These restrictions are important parts
of the semantics of the modelling constructs

in question. The class entry type is
particularly important for defining domain-
specific languages, which are often
organised as deep specialisation
hierarchies.2 The entry type is also useful
when comparing and analysing multiple
models, because it makes it clear that some
modelling constructs may never be used
to represent the same classes or things in
the problem domain.

Figure 2 extends the UML class
diagram to show that a
“ConstructDefinition” consists of one or
more “RepresentedClasses”, each of
which is defined, according to the BWW
model, by one or more
“CharacteristicProperties”.

According to Figure 2, the template
allows repeated class entries for modelling
constructs that may represent several
different classes of things (at the type

Figure 1: A UML class diagram of the
instantiation level entr y.

Figure 2: The UML class diagram extended
to show the class entry.
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level) or several things of different classes
(at the instance level). For example, for
the moment, a UML-aggregation (at the
type level) represents one “composite (or
whole) class” and one “component (or
part) class” .

Whenever a construct definition has
more than one class entry, they must be
distinguished by “roleNames”, as shown
in Figure 2. UML-aggregation is therefore
defined by two “RepresentedClasses”,
one with the “roleName” “whole” and
one with the “roleName” “part”. In this
example, the two “RepresentedClasses”
represent different BWW-classes
(because they have different
“CharacteristicProperties”), but a
construct definition may even have more
than one “RepresentedClasses” for the
same BWW-class as long as they have
different “roleNames”.

Even when the class entry is not
repeated, a modelling construct may
represent several subclasses of the same
class in the same role (at the type level) or
several things of the same class in the
same role (at the instance level). In Figure
2,  “RepresentedClass” therefore has
minimum and maximum cardinalities,
“minCard” and “maxCard”, that default
to 1. For example, a UML-link (at the
instance level) represents two or more
“AssociatedThings” and is therefore
defined by a single “RepresentedClass”,
but one with “minCard”=2 (because the
link connects at least two UML-objects)
and “maxCard”= –1 (because –1 is used
to indicate no upper limit on the number of
objects.)

Properties

The third type of entry is used to
define which properties of things the
modelling construct may represent because,

sometimes, different modelling constructs
may represent the same class of things but
not the same properties of those things.
For example, in the UML the BWW-class
of “ActiveThings” can be represented by
UML-operations and UML–pre- and -
postconditions, but each UML construct
nevertheless represents slightly different
properties of active BWW-things. An
additional example is found in Conallen’s
(1999) extension of the UML for
developing web applications. His extension
introduces several stereotypes of UML-
associations, one of them for representing
web “hyperlinks”, i.e., links that change the
content of the web-browser frame that the
links themselves are in, and another one
for representing “target links”, i.e., links
that change the contents of other web-
browser frames. These two stereotypes
have identical class entries because they
both represent pairs of web pages, but they
have different property entries because
they represent different properties of those
pairs.

Figure 3 extends the UML class
diagram to show that a
“ConstructDefinition” also consists of
zero or more “RepresentedProperties”,
which specialise the “Properties” that
characterise “RepresentedClasses”. (In
Figure 2, we have therefore changed the
name of the “CharacteristicProperty”
class to “Property” and instead added
“characteristic” as a role of the
“Property” class.) The template allows
“ConstructDefinitions” with zero
“RepresentedProperties” because there
are modelling constructs that may not
represent properties at all. For example,
general constructs like UML-object and -
type do not have property entries because
they do not themselves represent BWW-
properties (although in the UML
metamodel they are associated with other
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constructs that do so).
However, most modelling constructs

have at least one property entry. In the
languages we have studied, many of the
property entries we encountered were not
very restrictive and might represent any
regular property, i.e., any intrinsic non-
law BWW-property that is not a whole-
part relation. We expect to find more
examples of more restrictive property
entries in less general, domain-specific
modelling languages.

As for classes, the template allows
repeated property entries for modelling
constructs that may represent several
characteristic properties of classes (at the
type level) or several properties of things
(at the instance level). Whenever a
“ConstructDefinition” has more than one
property entry, they must be distinguished
by “roleNames”, as shown in Figure 3. A
“ConstructDefinition” may have more
than one “RepresentedProperty” that
specialises the same “Property”, as long
as they have different “roleNames”.

Because the class entry may also be
repeated, each “RepresentedProperty”
is associated with one or more
“RepresentedClass” to specify exactly to
which class the property belongs in the
definition.

Even when the property entry is not
repeated, a modelling construct may
represent the same property several times
in the same role. In Figure 3, each
“RepresentedProperty” therefore has a
minimum and maximum cardinality,
“minCard” and “maxCard” that default
to 1.

In the BWW model, a property may
be mutual, i.e., it may belong to more than
one thing. In the template, the
corresponding “RepresentedProperty”
would be associated with more than one
“RepresentedClass”. In fact, this was the
case in several of the earlier examples. In
the web application example, both
“hyperlinks” and “target links” represented
(different) mutual properties, each of them
belonging to two “web-page” things, one
playing the role of “source” and the other

 

Figure 3: The UML class diagram extended to show the property entry.
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playing “target”. In the UML-link example,
UML-links represented a mutual property
that belonged to two or more BWW-things.
Finally, in the UML-aggregation example,
the aggregation represented a property (the
whole-part relation) that belonged both to
the aggregate (whole) class and the
component (part) class. The two
“RepresentedClasses” used to define
UML-aggregation, i.e., the “whole” and the
“part” class, were therefore both linked to
the same “RepresentedProperty” with
“propertyName” “whole-part relation”.

This concludes the discussion of
property entries in the template. Together,
the class and property entries form the
core of the template. The two types of
entries fit nicely with Bunge’s view of the
world as composed of things and
properties, in terms of which the other
BWW concepts are defined.

Ontological Descriptions of Properties

The BWW model has concepts that
describe properties in even greater detail
and that are also used in the template.
Figure 4 extends the UML class diagram
to show the additional attributes of
“Properties” and
“RepresentedProperties”.

Most importantly, according to the
BWW model, a “RepresentedProperty”
has an attribute that defines whether the
modelling construct represents (a) the
property per se , i.e., the BWW-property
itself; (b) the property datatype , i.e., the
BWW-property co-domain; (c) a property
value, i.e., a value in the BWW-property
co-domain; or (d) some combination of
these. For example, this attribute
distinguishes between constructs like
UML-attribute and -datatype, which are
both at the type level and may represent
any subclass of “AllThings” and any

characteristic intrinsic property that is not
a whole-part relation, because UML-
attributes represent properties per se ,
whereas UML-datatypes of course
represent datatypes. Accordingly, this
attribute also distinguishes between UML-
property and -value. UML-datatypes and
-values are the only UML constructs we
have encountered that represent property
datatypes and values, but the attribute may
be useful for languages with datatypes that
can only be used in connection with certain
modelling constructs. We have not found
a use for identifying constructs that
represent BWW-property functions
explicitly, leaving this as a possible future
extension.

A “Property” has an attribute that
defines whether the modelling construct
represents a non-law, a state law or a
transition law according to the BWW
model. For example, whereas a UML-
attribute represents a non-law, a UML-
operation represents a law. A “Property”
that is a law is described by an
“oclExpression”. A “Property” also has
an attribute that defines whether the
modelling construct represents a whole-
part relation or not according to the BWW
model. For example, whereas a UML-
association cannot represent a whole-part
relation, a UML-aggregation must do so.

Figure 4 also shows the additional
attributes of the
“ClassPropertyAssociation” class. The
first of these defines whether the
“RepresentedProperty” is intrinsic, non-
binding mutual or binding mutual with
respect to a particular

“RepresentedClass”. To see why it is
necessary to define this attribute in an
association class, rather than in the

“RepresentedProperty” class, consider
the following hypothetical example. A
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modelling construct represents a property
that belongs to three things. Two of these
things are parts of the third. The property
is mutual between the two part things and
is also a resultant property of the whole.
In this case, the property is intrinsic with
respect to the whole thing, but it is mutual
with respect to the two part things. This
explains why the “isIntrinsicOrMutual”
attribute must be defined in an association
class. Although the example is hypothetical,
the situation it describes is not uncommon
and it is not impossible that some modelling
language may have a dedicated construct
for it.

A “ClassPropertyAssociation” has
another attribute that defines whether the
“RepresentedProperty” is resultant,
emergent or neither with respect to the
“RepresentedClass”. A final attribute
applies only to “RepresentedProperties”
that are whole-part relations and defines
whether the “RepresentedClass” is the
whole or the part in the relation or neither.

We need further experience with the

template to determine how useful these
ontologically motivated attributes of
“Properties” and
“ClassPropertyAssociations” are. Also,
the template does not make use of Bunge’s
(1997) distinction between permanent and
variable BWW-properties, leaving this as
a possible future extension.

Lifetimes

The fourth type of entry is used to
define which part of the lifetime of a thing
that the modelling construct may represent
because, sometimes, different modelling
constructs may represent the same class
of things and the same properties of those
things but different segments of the
lifetimes of those things. For example, one
construct may represent an event, another
a state and a third a process, although all
three constructs represent the same
property of the same thing. This becomes
obvious when we see that constructs that
are as different as UML-state and UML-

Figure 5: The UML class diagram extended to show the lifetime entry.

 



62   Journal of Database Management, 15(2), 39-73, April-June 2004

event have identical instantiation level ,
class and property entries. Both
constructs represent the type level, may
represent any subclass of the class of
“ChangingThings” and may represent
any non-law properties of those subclasses.
However, they are distinguished by their
lifetime entries.

Figure 5 extends the UML class
diagram to show
“RepresentedSegments” of the lifetimes
of things and classes. A
“ConstructDefinition” has exactly one
“RepresentedSegment”, which is either
the whole “lifetime” of the thing or class,
a “process”, a “state” or an “event”.
“RepresentedSegments” that are
“states” or “events” must also have a
“RepresentedState” and/or a
“RepresentedEvent” as parts. A
“RepresentedState” is described by an
“oclExpression” that involves
“RepresentedProperties”. A
“RepresentedEvent” is defined in terms
of its “from-” and “toStates”. BWW-
processes are represented as chains of
“RepresentedStates” and “-Events”.

Building Taxonomies

As the template is used to define an
increasing number of constructs from
different modelling languages, the number
of “RepresentedProperties” and
“Properties” used to characterise
“RepresentedClasses” will grow large.
In this situation, it is essential that the same
classes and properties are not represented
independently  several times using the
template. Should this happen, the template
would no longer aid in identifying modelling
constructs that can be used to represent
the same BWW-classes and -properties

The template should therefore be
supported by a tool for defining modelling

constructs, a tool that would also support
building and maintaining a taxonomy of
BWW-classes and -properties. Whenever
a new modelling construct is defined using
the template, this tool should provide
overviews of the classes and properties that
have been used in previous definitions so
they can be reused. Whenever the new
modelling construct necessitates defining
new BWW-classes or -properties, they
should be entered into the taxonomy.

Figure 6 extends the UML class
diagram to show the taxonomy of
“Classes” and “Properties” that can be
reused in “ConstructDefinitions”.
Because “Classes” and “Properties” in
the taxonomy are stored independently
of “ConstructDefinitions”, they are now
connected to “RepresentedClasses” and
“RepresentedProperties” via association
rather than via generalisation/
specialisation.

In order to make the taxonomy more
easy to use, both “Classes” and
“RepresentedClasses” are organised in
“generalisation” hierarchies, whereas
“Properties” are organised through
“precedence” relations and hierarchies of
“complexProperties” and
“subProperties”, all according to the
BWW model. A “propertySet” association
is defined for “ConstructDefinitions” that
may represent a choice of more than one
“Property”.

Figure 6 also shows that “States” and
“Events” have been added to the
taxonomy. Although less critical than
classes and their properties, states and
events also make the template easier to
use, because the lifetime entries of new
modelling constructs can sometimes be
defined by reuse, and more useful, because
the construct definitions become easier to
compare.
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RESULTS

Modelling constructs from the Object
Management Group’s (OMG) standard
Unified Modeling Language (UML)
(OMG, 2001) were used in several
examples so far. In part, the examples were
based on experience from analysing the
UML in terms of the BWW model in
(Opdahl & Henderson-Sellers, 2002) and
from analysing a variant of UML, the
OPEN Modelling Language (OML)
(Firesmith, Henderson-Sellers & Graham,
1997), in Opdahl, Henderson-Sellers and
Barbier (1999) and Opdahl and Henderson-
Sellers (2001). On the one hand, the UML
is similar to the BWW model because it
provides constructs that match key
ontological concepts such as BWW-things
(UML-objects), BWW-properties (many
UML-features) and BWW-classes (UML-
concrete classes).3 On the other hand, a
closer look at the UML definition in (OMG,
2001) reveals numerous problems, many
of which are resolved by the template. This
section will present results of using the
template to define constructs from the
UML. Of course, the most important result
of using the template on the UML, that of
integrating the UML with other modelling
languages, cannot be illustrated at this
stage of our work (because the UML is
the first language we have presented results
of analysing in this detail).

The Generalisation Hierarchy
of UML Constructs

An important outcome of using the
template on the UML is a generalisation
hierarchy of BWW-classes that has

emerged from the class entries for the
UML constructs we have analysed, as
shown in Figure 7. This hierarchy shows
which BWW-classes in concrete problem

domains are recognised by the UML. Each
BWW-class in Figure 7 has been annotated
with a list of those UML constructs that
represent the class. The lists are based on
the analysis by Opdahl & Henderson-
Sellers (2002), which interpreted 68 UML
constructs that were relevant for
representing concrete problem domains in
terms of the BWW model. In this paper,
58 of these constructs have been defined
using the template, as indicated in Table 2,
although it is not the purpose of this paper
to present our definitions in full detail. Ten
UML constructs from Opdahl and
Henderson-Sellers (2002) were left out
because they, on closer inspection, turned
out to be less relevant for modelling
concrete problem domains or because they

were subtypes of other constructs.4 Also,
because the UML has weak semantics in
relation to concrete problem domains today,
many of the definitions are interpretations
and proposals that must be evaluated in
further work.

Generalisation hierarchies is a new
and interesting approach to analysing,
evaluating and comparing modelling
languages. As a contribution to the analysis
of the UML, Figure 7 shows clearly which
types of model elements that may overlap
with one another and may therefore be
inconsistent. As a contribution to the
evaluation of the UML, Figure 7 presents
a generalisation hierarchy that is an
alternative to the one in OMG (2001) and
to which the UML metamodel may
therefore be compared.

As pointed out by Opdahl &
Henderson-Sellers (2002), the modelling
constructs in the UML have been defined
to play several different roles, often at the
same time, such as representing proposed
software solutions, supporting the
development process and matching with
other modelling constructs to create a well-
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defined, compact and tightly integrated
modelling language. This attempt to satisfy
many different roles at the same time has
made the generalisation hierarchies in the
UML metamodel very hard to comprehend.
Figure 7 offers a clear-cut alternative
based on the constructs’ semantics in
relation to concrete problem domains. As
a contribution to comparing modelling
languages, we have already informally
compared Figure 7 to generalisation
hierarchies that have emerged from other
languages we have analysed, such as the
OML (Opdahl, Henderson-Sellers &
Barbier, 1999; Opdahl & Henderson-
Sellers, 2001). These hierarchies have many
similarities and point towards a common
generalisation hierarchy that can serve as
a common ground for semantic language
integration and which can be extended
gradually as more languages are defined
using the template. As in the BWW model,
the generalisation hierarchy is likely to be
a multi-inheritance graph rather than a
single-inheritance tree.

Precise Definitions of UML Constructs in
Terms of Concrete Problem Domains

Among the different roles mentioned
in the previous section, we have found that
UML constructs are often defined in terms
of the proposed software system and not
in terms of the problem domain (Wand &
Weber, 1989; Parsons & Wand, 1997), i.e.,
the definition has given priority to the role
of representing proposed software solutions
over the role of representing the problem
domain. For example, the UML glossary
(OMG, 2001, appendix B) defines a UML-
action as “The specification  of an
[executable statement] that forms an
abstraction of a [computational
procedure.] An action typically results in a
change in the state of the system, and can

be realized by [sending a message] to an
object or modifying a link or a value of an
attribute.” (The [brackets] and emphases
are ours.) In this definition, the bracketed
terms all refer to the proposed software
solution and not to the problem domain. As
with many constructs in the UML, the
construct thereby becomes harder to use
in practical modelling situations and the
resulting models become less precise.
Using the template, UML-action can be
precisely defined in terms of concrete
problem domains, as representing the type
level, the class of “ChangingThings”, any
property that is a characteristic and
intrinsic BWW-transformation law that
describes a single event and the lifetime
of the “ChangingThings”. (It describes
the lifetime because the things possess the
transformation law for as long as they exist,
even though the law itself only describes
an event.)

In the above definition, there are even
emphasised terms that all support the
development process and do not refer to
the problem domain. Definitions that mix
software, development and problem domain
issues are confusing and detrimental to the
learnability and usability of the language.
Mixed definitions also weaken the
semantics of the language, because when
unrelated terms are mixed in the same
definition, the result is several incomplete
definitions instead of a single coherent one.
For example, a UML-object is defined
using a mixture of software (our
[brackets]) and problem domain (our
{braces}) issues as “An [{entity}] with a
well—defined {boundary} and [identity]
that [encapsulates] [{state}] and
[{behavior}].” This definition is incoherent,
because it is not at all clear what a “well-
defined boundary” or the concept of
“encapsulation” (at least in the likely
interpretation of it as meaning information
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hiding) mean in relation to concrete
problem domains. Again, this problem is
avoided using the template, according to
which UML-object is precisely defined as
representing the instance level, the class
of “AllThings”, not representing
properties of those things but representing
their whole lifetimes.

For another example, the glossary
defines UML-reception as a “declaration
that a classifier is prepared to react to the
receipt of a signal”, but it is unclear
whether this “declaration” is static or
dynamic, because “declaration” is left
undefined. The template would have
avoided this ambiguity, because the
lifetime entry explicitly requests this to be
defined.

Finally, using the template helps
avoiding circular definitions, which
Castellani (1998) demonstrates to be
common in the UML, because each
construct definition involves only filling in
the standard set of entries, and none of the
entries allow references to other construct
definitions. The instantiation level,
ontological and lifetime entries are all
specified in terms of a limited number of
attributes with a limited set of possible
values for each. Circularities cannot occur
in class entries either, because “Classes”
are defined only in terms of “Properties”
and never refer to other “Classes”. The
only place where circularities can
potentially occur is therefore in property
entries, where “Properties” may refer to
other “Properties” through precedence
relations. However, precedence
circularities can easily be avoided by
manual checking or by simple tool support.

DISCUSSION

The main idea behind the template
was to provide a standard way of defining

enterprise and IS modelling constructs in
terms of the BWW model, in order to make
the definitions cohesive and, thus, learnable,
understandable and as directly comparable
to one another as possible. When all
construct definitions are directly
comparable, it becomes easier to translate
models from one language to another. It
also becomes easier to detect models and
model elements, possibly expressed in
different languages, that may overlap with
one another and may therefore be
inconsistent. Another important idea was
to provide a way of defining modelling
constructs not only generally in terms of
whether they represent “classes”,
“properties” or other ontological concepts,
but also in terms of which classes and/or
properties they represent. As we have
seen, this additional level of detail was
necessary to differentiate important
modelling constructs in the UML. The
additional level of detail also made the
definitions more clearly and precisely
related to the enterprise.

Clearly and precisely defined
modelling constructs better support several
of the quality featur es discussed in
Lindland, Sindre and Sølvberg (1994) and
Krogstie, Lindland and Sindre (1995), and
languages become easier to learn,
comprehend and use. Also, semantic
overlaps (Spanoudakis & Finkelstein, 1998,
1999) (or construct redundancies (Wand
& Weber, 1993)) and semantic omissions
in languages (or construct deficits (Wand
& Weber, 1993)) can be detected more
easily and more precisely, along with
redundant constructs, i.e., constructs that
do not refer to anything in the problem
domain. At the model level, inconsistencies,
conflicts and omissions in models can be
detected more easily and precisely. There
is also less scope for misunderstanding of
the resulting requirements.
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The template supplements other
contributions that make the BWW model
more precise and useful: 1) Wand and
Weber (1995) have provided a tabular
description of the main concepts in their
model, from which Table 1 in this paper
was derived. 2) Wand and Weber (1990)
have also provided a set-theoretic
formulation of the BWW model. 3)
Recently, Rosemann and Green (2002)
have proposed an extended ER model of
the main concepts in the BWW model.
These contributions each make the BWW
model more precise, but they do not 1)
provide an obvious standard way of
defining modelling constructs so that
different definitions are directly
comparable, nor do they 2) provide a way
of saying that a modelling construct
represents, e.g., a specific class or a
specific property.

The template has been illustrated with
definitions of constructs from the UML and,
thereby, also supplements other
contributions that use the BWW model to
analyse the UML. Evermann and Wand
(2001) present ontology-based rules for
using the UML to model the real world,
whereas Opdahl & Henderson-Sellers
(2002) use the BWW model to analyse and
evaluate the UML as a language for
representing concrete problem domains.
However, in contrast to this paper, neither
contribution addresses in detail the question
of how to define modelling constructs in
relation to the BWW model.

CONCLUSIONS AND FURTHER
WORK

The paper has explained the need for
a standard way of defining modelling
constructs from different enterprise
modelling languages and has proposed a

template for defining enterprise modelling
constructs in a way that facilitates language
integration. The template was based on the
Bunge-Wand-Weber (BWW)
representation model of information
systems (IS)—called just the BWW model
in this paper—and was illustrated with
definitions of constructs from the Unified
Modeling Language (UML). The paper
focussed on modelling constructs that
represent concrete problem domains, i.e.,
on representation of materials rather than
concepts. The main idea behind the paper
was to provide a standard way of defining
modelling constructs in terms of the BWW
model, in order to make the definitions
cohesive and, thus, learnable,
understandable and as directly comparable
to one another as possible. Another
important idea was to provide a way of
defining modelling constructs not only
generally, in terms of whether they
represent “classes”, “properties” or other
ontological categories, but also in terms of
which classes and/or properties they
represent, in order to make the definitions
more clearly and precisely related to the
enterprise. Although most of the paper was
about the concrete parts and aspects of
enterprises, we believe the template and
other results of this paper are sufficiently
general to apply to concrete problem
domains in general.

An important outcome is that the
template encourages thorough analyses and
precise definitions of enterprise, IS and
other problem domain modelling constructs
and languages. In particular, it assists in
identifying semantical overlaps
(Spanoudakis & Finkelstein, 1998, 1999)
at a detailed level between seemingly
unrelated modelling constructs and their
languages. The template is also useful for
identifying constructs that are too complex
or too vaguely defined. Thereby, the
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template paves the way both for more
precise and tightly integrated enterprise and
IS models and for better completeness and
consistency checking of models. However,
we do not mean to imply that all enterprise
and IS modelling languages and all models
should necessarily be integrated or even
defined in terms of a standard template. In
many situations, e.g., to foster creativity
when a new opportunity is identified or a
new IS is to be conceptualised, there will
be a need for modelling languages and
constructs that challenge the commonly
accepted ground. The important issue is
that problem domain modelling languages
that are integrated and defined in terms of
a standard template should be available
when they are called for. Also, we do not
mean to imply that all enterprise and IS
modelling languages and models should
necessarily be as precisely defined as
possible. Whereas in some situations,
models (and thus languages) should be
precise, other situations might call for less
precise models and languages, e.g., to
represent early ideas of the problem domain
during initial development. Again, the
important issue is that problem domain
modelling languages should support precise
modelling when this is called for. Further
work is needed to investigate how to define
languages that provide more and less
precise semantics for different stages of
development.

Another important outcome is the
identification of the generalisation
hierarchy that is inherent in the UML. This
type of generalisation hierarchy is a new
way of analysing and comparing modelling
languages and constructs. It offers both a
new way to clarify and explain the
semantics of the UML and introduces a
new perspective from which the UML can
be constructively criticised.

The template demonstrates again the

applicability and usefulness of the BWW
model as the foundation for work that
addresses the semantics of enterprise and
IS modelling languages. The template also
makes the BWW model more applicable
and useful in practice. Rosemann and
Green (2002) point out that although the
BWW model has produced important
research results, it is large and complex
and therefore difficult to learn and use. The
template makes the BWW model simpler
to use by decomposing construct definitions
into five entries that are largely
independent and that each are simpler than
the BWW model or the template as a
whole. At the same time, the template does
not deviate much from the BWW model.
Although at first sight, the template does
not account for all the BWW-concepts
presented in other papers (e.g., Wand &
Weber, 1988, 1993, 1995), it accounts for
all the basic ones, so that modelling
constructs defined in terms of the template
should also be implicitly related to the rest
of the BWW model. However, this needs
to be verified in further work.

Further work is needed to validate
and refine the proposal made here, both
by relating the template to other ontologies
and other mathematical formalisms and by
using it on additional modelling languages
and constructs. For example, it would be
interesting to use the template to define
the constructs in the ARIS language (Green
& Rosemann, 1999) for business process
modelling and to define intentional modelling
constructs such as goals and speech acts.
The current version of the metamodel has
been developed to be clear and
understandable but, especially when it
comes to the ontological descriptions of
properties, it has some redundancies that
need to be sorted out.

Further work is also needed on tool
support for the template. Such a tool would
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assist definition of modelling constructs in
terms of the five types of entries and would
manage dependencies between entries. If
would also assist in maintaining the

taxonomy of “Classes”, “Properties”,

“States” and “Events”. The tool could
also support analysis of modelling
languages, e.g., by automatically generating
generalisation hierarchies and identifying
overlapping modelling constructs.

The template presented in this paper
focusses on modelling constructs that
represent concrete problem domains, i.e.,
that represent materials rather than
concepts. Further work should extend the
template to account for modelling constructs
that represent social constructs and mental
concepts. Also, as pointed out by Opdahl
and Henderson-Sellers (2002), representing
problem domains—be they material, social
or mental—is only one of several roles
played by enterprise and IS modelling
constructs, which must also sometimes
represent proposed software solutions,
support modellers and software developers
,and match other modelling constructs to
create a well-defined, compact and tightly
integrated modelling language. The current
version of the template only deals with
material problem domains and offers little
help with managing these additional roles.
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ENDNOTES

1 Following an observation made by
Opdahl and Henderson-Sellers (2002),
UML-class is not prominent in this paper
because UML-type, a stereotype of
UML-class in UML Version 1.4, is more

specific to representing concrete
problem domains like enterprises.

2 Here, we make a distinction between
general ontology , such as the BWW
model, and special or domain-specific
ontology, which is a high-level, generic
and often reusable model of a problem
domain. Bunge (1999) makes a similar
distinction between general ontology,
which “studies all existents”, and special
ontology, which “studies one genus of
thing or process.”

3 Table 2 in Opdahl and Henderson-
Sellers (2002) gives a full list of 14
ontological matches or near matches
between the UML and the BWW model,
whereas Opdahl and Henderson-Sellers
(2001) summarise key ontological
differences between OO-modelling in
general and the BWW model.

4 The 10 constructs left out were UML-
class (because UML-types are more
relevant, see footnote 1), UML-send and
-receive, UML-action, -call, -subactivity,
-synch and -final state and UML-signal
and -stimulus.
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