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ABSTRACT

The development of digital twin for smart city applications requires real-time monitoring and 
mapping of urban environments. This work develops a framework of real-time urban mapping using 
an airborne light detection and ranging (LIDAR) agent and game engine. In order to improve the 
accuracy and efficiency of data acquisition and utilization, the framework is focused on the following 
aspects: (1) an optimal navigation strategy using Deep Q-Network (DQN) reinforcement learning, 
(2) multi-streamed game engines employed in visualizing data of urban environment and training the 
deep-learning-enabled data acquisition platform, (3) dynamic mesh used to formulate and analyze the 
captured point-cloud, and (4) a quantitative error analysis for points generated with our experimental 
aerial mapping platform, and an accuracy analysis of post-processing. Experimental results show 
that the proposed DQN-enabled navigation strategy, rendering algorithm, and post-processing could 
enable a game engine to efficiently generate a highly accurate digital twin of an urban environment.
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1. INTRODUCTION

The development of the digital twin of an urban environment requires live streaming of measurement 
data to maintain real-time accurate representation of the environment. It is preferable that the 
measurements are collected in a continuous and automated fashion. Machine learning enabled 
measurement instruments serve the purpose of urban data acquisition well as they need minimal 
labor work. For example, automated airborne LIDARs are desirable in real-time urban mapping as 
they provide continuous high-resolution ranging and depth information by illuminating the object/

https://orcid.org/0000-0002-9362-3906
https://orcid.org/0000-0002-1844-9063


International Journal of Multimedia Data Engineering and Management
Volume 14 • Issue 1

2

environment with laser light and measuring the reflection with a sensor component. However, it is 
usually costly to train such systems in a real-world urban setting.

The development of the digital twin also calls for real-time visualization of heterogeneous data, 
especially live streaming data (Saddik, 2018). Visualization plays a critical role in the development 
of digital twins. Game engines are often used to render large, detailed, 3D environments, the same 
kind that geospatial experts seek to replicate (Andrews, 2020). The coordinate system within any 
game engine can be used to replicate 3D localization of objects and terrain, while taking advantage 
of their optimization and portability. Both interactable and performant, game engines seem to be 
the perfect candidate to visualize and interact with the geographic environment, and thus are a near 
perfect candidate to visualize urban environment (Rusu, 2018). Industry clearly agrees on the aspect. 
For example, both Google and Mapbox have built APIs and SDKs to bring their infrastructure and 
frameworks into the Unity game engine (Google, 2021; Mapbox, 2021).

But game engines are simply not built to handle live streaming data from unsupported objects, 
nor are they built to render dynamically changing meshes defined by live streaming data. Most 
previous work with LIDARs seeks to localize an object through deducing their own location through 
LIDAR data (Chong, 2013a; Chong, 2013b). Other work uses a combination of telemetry sensors 
and LIDAR data to achieve the same purpose (Toroslu, 2018). While these approaches work well for 
object detection or short-term scans, they do not support collaborative scans where multiple scans 
can be stitched together automatically through the geographical significance of their vertices in any 
three-dimensional environment.

In this paper, we describe a framework connecting IoT devices to game engines with point cloud 
pre-processing and post-processing techniques for surface reconstruction in urban mapping. The 
framework allows for the reconstruction of an environment to be observed in real-time. Different from 
existing work on mapping using LIDAR data (Agrawal, 2017), our implementation of large-scale live 
maps inside a game engine has proven to be very intuitive in testing. We also propose to use a game 
engine to generate a virtual urban environment where an airborne LIDAR agent equipped with DQN 
reinforcement learning is trained. This offers a safe, efficient, and low-cost approach for the training 
of the LIDAR agent. When the trained LIDAR agent is deployed in real urban environments, the 
game engine is also able to visualize the collected LIDAR data in surface reconstruction.

The remainder of this paper is organized as follows: Section 2 presents the proposed framework 
and workflow. Section 3 addresses LIDAR data processing. Section 4 discusses game engine enabled 
virtual training of the LIDAR agent for optimal navigation. Section 5 discusses the LIDAR data error 
sources. Section 6 presents both simulation and field experimental results. Section 7 concludes this 
paper and lists the future work.

2. OVERVIEW OF THE PROPOSED FRAMEWORK AND WORKFLOW

This work aims to develop an urban data acquisition and visualization framework that is applicable 
for both simulation and in-situ operation of an airborne LIDAR for digital twin development. One 
objective is to achieve an autonomous drone carrying a LIDAR that can navigate and map an area 
without prior knowledge. As shown in Figure 1, we propose to adopt reinforcement learning to allow 
the drone to learn how to gather information efficiently without any collision. The DQN model is 
first trained in controlled virtual environments, and then deployed with a real airborne LIDAR in 
real-world environments.

The drone simulation in a virtual environment offers a simplified interface to control the drone 
and retrieve LIDAR data. We used AirSim (Microsoft, 2021), a simulator for various vehicles built 
on Unreal Engine. Unreal Engine’s level editor also provides visualization and raycasting, as well as 
the simulation/virtual environment, as shown in Figure 2. We used the “Downtown West Modular 
Pack” created by PurePolygons as the environment, which is available in the Epic Games Marketplace.
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For each time step of the DQN, the virtual drone sends its received LIDAR data to a LIDAR 
processing unit that analyzes the observation and calculates the reward. The LIDAR processing unit 
is built on the Computational Geometry Algorithms Library (CGAL). For each incoming LIDAR 

Figure 1. The proposed urban data acquisition and visualization framework for digital twin development

Figure 2. A virtual environment generated by AirSim
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data point to be considered as new valid information, it needs to be at least somewhat distant from 
the rest of the already collected points. Furthermore, we discard the points that are very far from 
the origin of the virtual drone because we are mainly interested in the surroundings of the drone. To 
process and represent the observations from the drone, we propose two generic maps that describe 
the surroundings of the drone. One map describes the density of points and the other describes the 
distance of the closest point in each region. The observation also includes the position of the drone 
since the drone is rewarded for acquiring the points that are closer from the origin. The observation 
and reward of each time step are sent to the replay memory module of the DQN. The DQN decides 
the action of the virtual airborne LIDAR of the next time step based on a balanced exploitation and 
exploration strategy and sends the action back to the AirSim environment.

After the training is done in the virtual environment, we deploy the learned DQN algorithm with 
a real airborne LIDAR in a real environment. The collected on-site field data include the geographical 
data from the drone and the relative scan from the LIDAR carried by the drone. The drone records 
the offset of each scan, which is the vertical, horizontal and orientation components different from 
the user-defined geographical zero point. The LIDAR detects all surrounding objects within range 
and records their relative positions to the drone. The on-site data are processed every frame, which 
allows taking multiple scans that are aligned automatically if there is overlap between them. The data 
acquired by the LIDAR forms a point cloud and is sent to and processed within the LIDAR processing 
unit and rendered back in the game engine for real time visualization.

The LIDAR processing unit is also responsible for processing real time data into reconstructed 
surface, albeit at slower intervals. It first removes outliers from the point cloud, normalizes the points 
with WLOP simplification, and then reconstructs the surface using Poisson surface reconstruction.

3. LIDAR DATA PROCESSING

The LIDAR processing unit implements a set of methods that are built on the CGAL. The unit contains 
helper functions that are useful for the processing of the collected data.

3.1 Point Filtering
Since the goal of the LIDAR agent is to gather as much information in the environment as possible, 
we need to define what is valid information, and how one piece of information might contain more 
value than others. Table 1 shows the mathematical notation used in this paper.
Algorithm 1 Updating of point cloud 

t

Require: Newly captured points: 
t
 at time step t , the point 

cloud at previous time step: 
t-1 , and the predetermined cut-off 

distance d
ob

1:   Initialize the valid newly captured point set: 
t
: {}= ;

2:   for p tÎ  do
3:         min dist_ = ∞
4:         for q

t t
∈ ∪−O V

1
 do

5:                min dist min dist_ min( _ , )= −p q  // ×  indicates 
Euclidean distance 
6:        endfor 
7:        if min dist

ob
_ ³ d  then

8:               
t t
← ∪ { }p ;

9:        endif 
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Table 1. Mathematical notation

Drone States

x x y z= ( , , ) The position of the drone

M n m∈ ×


Projection map

M n m
d ∈

×
 Density map

M
c

n m∈ ×
 Closeness map

( , )u v The polar-coordinate position of a point

( , )i j The index of a point on M

DQN Configuration

s
t
Î  The state of drone/environment

a s
t t
( ) Î  The action taken WRT s

t

Pr S S
t t
( | )¢ State transition likelihood

r s a
t t t
( , ) Î  Immediate reward of a

t

g Î [ , ]0 1 Discount factor for the return

p( | )¢a s
t

Policy function

Q s a
t tp( , ) , Q s a

t tp
*( , ) Return and optimal return

LIDAR Data Processing Unit


t

The point cloud at t


t

The newly captured points at t


t

The newly captured valid points at t

d
ob

Cut-off distance for valid points

R( ) :p  

3 ® Scaled reward function of newly captured point p

Accuracy Analysis

s s
x y
, GPS error

continued on following page
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10:  endfor 
11: O O V

t t t
= ∪−1

Algorithm 1 shows the generation of point cloud. The data processing unit stores the environment 
observations 

t
 as a set of existing LIDAR points, which should increase in size over time. For each 

time step t , the LIDAR collects a new set of points P
t

. Then, the newly collected points P
t

 are stored 
into the point cloud with only the valid information preserved.

We construct 
t
 from the previous observation 

t-1  and the newly collected points P
t

. Intuitively, 
for each collected point r Î P

t
, we check if there are any points in 

t-1  that are in the vicinity of 
r . If none, we conclude that r  is indeed newly acquired information about the environment. We 
define a hyperparameter d

ob
 as the smallest distance for point r  to be away from the closest point 

in 
t-1  so that r  can be considered as newly acquired information.
To speed up the process of finding points, we use the k-d tree data structure to store 

t
. As a 

result, for each point r , the computational complexity of finding the closest point in 
t
 to r  is only 

 log
t( ) .

3.2 Information Gain by Newly Captured Points
We propose a new evaluation method that measures the information gain of each new point. It is less 
challenging for the drone to move with constant velocity than to change velocity; therefore, the agent 
is incentivized to move in one direction during the finite horizon, collecting points along the way. 
However, in this paper, we aim to have a holistic picture of the surrounding environment, rather than 
a corridor of LIDAR points stretching in one direction. To counter this incentive, we introduce an 
exponentially scaled point evaluation system that assigns more reward to the points that are closer to 
the origin. As shown in Figures 3 and 4, adding scaling changes the behaviors of the agent dramatically.

For any point r , the reward given by that point is defined as:

R p
a

p
td

( ) =
ξ δ/

	 (1)

s
z

Barometer error

r  (pitch), k  (roll), y  (yaw) Drone orientation

σρ  (pitch), σκ  (roll), σψ  (yaw) Drone orientation error

q The angle of LIDAR

σθ LIDAR angle error

s
d

LIDAR range error

Table 1. Continued
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where a  denotes the unscaled reward for each point. In this paper, it is assumed that a  is a 
constant that represents the information gain of a point without scaling. x  denotes the regression 
factor, and d

td
 denotes the threshold distance. For example, if x = 2  and d

td
= 10 , then the 

information gain given by one point 10 units away is equivalent to 2 points 20 units away, which is 
also equivalent to about 1000 points 100 units away.

3.3 Observation Representation
In this paper, we propose a novel method of representing the surrounding point cloud of the drone. 
The observation of the drone should only consist of the points that are in the range of its LIDAR 
camera. Furthermore, as shown in (Guo, 2020), most deep learning techniques applied to point clouds 
need to extract features from those point clouds, instead of using the original data set. The reason 
is that some nature of point cloud data, such as the high dimensionality, the sparseness of the data, 
and the irregularity of its shapes, makes point cloud data inefficient to be represented. Therefore, it 

Figure 3. Points collected without scaling

Figure 4. Points collected with scaling
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is preferred to transform the point cloud data from the high-dimensional space to a space of fewer 
dimensions for better performance in deep learning.

In this paper, we construct two n m´  dimensional maps to represent the points surrounding the 
drone. For the first map, we represent the density of the surrounding point in each region. The points 
that are used to construct the two maps will be from the point cloud 

t
 at time t . Thus, the point 

clusters that are further away from the drone will be denser. This will incentivize the drone to find a 
distance that is optimal for point collection. The second map represents the closest point of the 
surrounding points in each region. The rationale behind this map is to make the drone avoid moving 
in certain directions when it detects some points that are too close to it.

To project the points onto the maps, we employ the Gall-Peters projection (Gall, 1885), which 
is a rectangular map projection that preserves the size of each shape on the sphere.

Let E
t t
Í  be the points that are at most C

range
 away from the drone. Assume the drone is at 

point x . For each point y , let y x− = ( , , )x y z . Then the point’s position on the map u v,( )  can be 
derived as:

u y x= arctan ( , )2 	 (2)

v
z

=
−

2

y x
	 (3)

where arctan2()  is the two-argument function that gives the unambiguous angle for the polar 
coordinates when converting from Cartesian coordinates. Then, the width of the map would be the 
range of the function arctan ()2 , which is 2p ; and the height of the function would be 4.

To apply machine learning, we further convert the map with points into a matrix where each 
element corresponds to a point. As shown in Figure 5, to construct the grids, we need to determine 
which row and column will each point be in. Let the position of point p  on the map be ( , )u v . Then 
the index of the point on the map ( , )i j  is:

Figure 5. Projection of points to the projection map
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i
u

n
=

+











p
p2 /

	 (4)

j
v

m
=

+











2

4 /
	 (5)

which indicates that point p  is in the i th row and the j th column in the grids. As Figure 5 
shows, this process results in a projection map M ∈ ×



n m , where each grid contains the list of points. 
Then the density map Md  can be constructed as:

M M
d

max

i j
i j

C
( , )

| ( , ) |
= 	 (6)

and the closeness map Mc  can be constructed as:

M M
c
i j p p i j( , ) min({| |: ( , )})= ∈ 	 (7)

where C
max

 is a constant that can be calculated using the detecting range of the drone C
range

, 
the minimum closeness of each point d

ob
, and the dimensions (n  and m ) of the map.

3.4 Data Preprocessing and Postprocessing
Given the nature of the real-time mapping process, there are different sources introducing data error. 
Preprocessing and postprocessing need to be applied to the raw data to reduce noise and improve 
image reconstruction accuracy. Postprocessing also needs to be performed in real-time to keep up with 
the rest of the application’s processes (Guarda, 2017; CGAL, 2020; Javaheri, 2017; Haider 2019).

3.4.1 Data Preprocessing
Position Smoothing: Depending on network conditions, the position of the drone maybe updated at 
inconsistent frequencies in the virtual environment. This can lead to points being reported at incorrect 
locations, which results in an inaccurate scan. This effect to the server is that the position of the drone 
appears to jump around instead of moving at some velocity. We use a linear Kalman filter to process 
the noisy, Gaussian data into more accurate telemetry data in real-time, at the same frequency that 
the telemetry (200Hz) data is fed into the filter (Slowak, 2019).

Based on our preliminary experiment, it is observed that Kalman filter can smooth the generation 
of point cloud and provide better data quality (Brock, 2022a) compared with the scenario without 
using Kalman filter (Brock, 2022b).

Outlier Removal: If the average Euclidean distance e  between a point D  and its nearest neighbors 

is greater than the threshold of outliers W , i.e., D
e

e=
∑ >

1

w

w/ Ω , where w  is a hyperparameter that 

represents the number of neighbor points that are used to calculate the average distance, the point 
should be removed from the scan.

3.4.2 Postprocessing
While the following steps for post-processing occur at a lower frequency than most of the other 
functions of the system, they still produce meaningful display results while a scan is being recorded. 
Using a variety of techniques, data is processed during the scan to replace the raw data simultaneously. 
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The postprocessing algorithms can build more meaningful associations with the surrounding data 
and preserve storage when points are converted into surfaces.

Computation of Normals: The Poisson surface reconstruction algorithm needs each point’s 
normal vector to be pointed inside the surface. Usually, the unoriented normals can be oriented by 
constructing a Riemannian graph over the points, deciding an initial orientation, and drawing a 
minimum spanning tree over the graph (Hoppe, 1992). However, this method is very computationally 
expensive as the time complexity of the operation is O n( )2 . For a point set of 10,000 points, the 
method used 4 hours to complete the operation in our initial experiment.

As one of the technical contributions of this paper, we propose a new method of orienting the 
normals by utilizing the drone’s positional data and the LIDAR data. The new method reduces the 
time spent dramatically compared to the contextual approach. As the acquisition of the point cloud 
is associated with light reflection from the surface of an object to the LIDAR device, we can add an 
additional vector to each point called the orientation vector
w p x= −  where p  is the position of the point and x  is the position of the drone. Then the 

oriented normal ¢v  of p  is

′ =
⋅ ≥

− ⋅ <








v
v v w 0
v v w 0
,

, .

if 

if 
	 (8)

With the additional information from the camera, the normals can be oriented in linear complexity. 
With the same data set of 10,000 points, our proposed method reduced the time spent to orient the 
normals from 4 hours to 20 seconds.

WLOP Simplification: The collected data points have various sources of noise and inconsistency. 
To remove most of the errors in the point cloud, we apply the Weighted Locally Optimal Projection 
(WLOP) to the data set (Lipman, 2007).

Surface Reconstruction: The processed point cloud will be visually recognizable as recorded 
object; however, it would be resource-demanding to load the entire point cloud, especially for big 
objects or objects with many details. To solve this issue, surface reconstruction is considered. The 
desired output should represent the point cloud well with less points and surfaces than the original 
point cloud. Furthermore, the constructed surface should be ``denser” in more detailed areas. These 
criteria can be satisfied using Poisson Surface Reconstruction. The Poisson Surface Reconstruction 
method takes as input point-set   and each point’s normal vector: p n p. ( )Î  . The reconstruction 
algorithm assumes that the point-set is taken from the surface of a solid and the normals points to 
the inside of the solid tangent to the surface. The reconstruction method then solves for an approximate 
indicator function of the inferred solid with gradient that best matches with the normals. To convert 
the indicator function (which is a scalar function) into meshes, adaptive marching cubes were used 
to iso-contour the gradient of the indicator function.

4. NAVIGATION OPTIMIZATION BASED ON DEEP REINFORCEMENT LEARNING

Given the environment and the drone, we want to construct a policy such that, given the state of the 
drone and its surroundings, it will act to maximize the information acquired about the environment 
through LIDAR.

Since the state and action spaces are finite, we can model the optimization of the movement of 
the digital drone as a sequential decision-making problem, which can be further modeled as a Markov 
decision process (MDP).

Then, for each time step t , we can describe the MDP model as follows:
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•	 State space  : the set of the states about the drone’s operational status and the observed 
environment. Let s

t t t
= ∈( , )k Ψ   represent the state of the drone and its observation about 

the environment at time t . Here k
t
 represents the newly acquired LIDAR points, and Y

t
 

represents the operating state of the drone, which may include the drone’s orientation, position, 
velocity, and the throttle of each fan.

•	 Action space  : a set of actions of the drone. Let a i j k
t t t t
= ( , , )  denote the drone’s action of 

moving in at most one of three orthogonal directions in the three-dimensional space at any time 
t . Thus, only up to one of i

t
, j
t
, and k

t
 can be ±1 . Then the position of the drone at time 

t +1  can be denoted as P a C
t t step
+ ⋅ , where P

t
 represents the position of the drone at time t , 

and C
step

 is a constant that represents the drone’s flight distance for each time step.
•	 State transition probability {Pr s a s Pr s s s s a a

t t t t
( , , ) ( | , )′ = = ′ = =+1

: the probability of 
transition from state s  to state ¢s  under action a .

•	 K : the horizon over which the drone will act.

Then, the goal of the optimization problem is to find a policy for the drone: a function p : S A®  
that, given the state s

t
, outputs an action a

t
 that maximizes the accumulative knowledge about the 

environment in the given finite horizon. Mathematically, we need to maximize [ ( , )]gt
t

T

t t t
r s a

=
∑

0

, 

where [ ]×  is the expectation taken over s Pr s s a
t t t t+ +1 1

~ ( | , )  and g g( )0 1£ £  is the discount 
factor of the reward r

t
 at different time steps. Due to the extreme curse of dimensionality in the state 

space   and the immense challenge of identifying transition probability P s s a
t t t

( | , )+1
, it is 

impractical to use exact methods such as linear programming and dynamic programming to solve 
the MDP problem. To address this challenge, we investigate a deep reinforcement learning framework 
where the digital drone is reinforced to learn a policy in a game engine generated virtual environment.

4.1 State Definition
In this paper, we assume that the drone has no prior knowledge of the environment. Therefore, the 
state of the drone should only be derived by collected LIDAR points and operational information the 
drone itself, such as the position and the throttle of each fan.

The state is characterized by two parts: the information about the environment through the 
collected LIDAR points, k , and the operating state of the drone, Y . Then, at each time step t , the 
state of the DRL agent s

t
 is defined as s

t t t
= ( , )k Ψ , where k

t
 depends on the observation 

t
 

described in Section 3.3. Specifically, k
t d c
= ( , )M M . The operating state Y

t
 of the agent consists 

of two parts: its position and an indicator of collision, that is, Ψ
t t t
= ( , ( ))x 1 x  , where 

1 : { , }

3 0 1®  is a collision indicator function that depends on the environment and the position 
of the drone.

4.2 Action Definition
The set of actions include the movement of the drone in one of the three orthogonal directions in the 
three-dimensional space. To reduce the action space, action values are discretized. In addition, we 
may restrain the drone from moving up and down and control the drone to stay at a constant height 
if it is unnecessary for the drone to move vertically in collecting LIDAR points.

Given the position of the drone x
t t t t t
x y z= ∈( , , ) Ψ  .at time t , the position of the drone for 

the next time step can be generally derived as:}
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x
t

t step t t

t t step t

t t t step

x C y z

x y C z

x y z C

+ =

+
+
+

1

( , , )

( , , )

( , , )

or

or

orr

or

or

or

( , , )

( , , )

( , , )

(

x C y z

x y C z

x y z C

x

t step t t

t t step t

t t t step

−
−
−

tt t t
y z, , )











	 (9)

4.3 Reward Function
The drone is rewarded based on the newly observed information gain but penalized if it collides with 
the environment. The reward is calculated by the data processing unit. Specifically, the reward function 
r s a

t t
( , ) : S A× →   is decided by the number of scaled, newly acquired points. Thus, the reward 

function at time t  is

r s a R C
t t t col
( , ) ( ) ( ))= + ⋅

∈
∑
p

t
t

p 1 x
V

S 	 (10)

where 
t

 is the newly acquired valid points and defined in Algorithm 1; R( )p  is the scaled 
information gain function and is defined in Eq. (1); and 1  is the collision indicator function and 
defined in Section 4.1. C

col
 is a negative constant representing the penalty when the agent is collided 

with the environment.

4.4 Optimal Q-value Approximation by DQN
With the defined state, action, and reward, the considered deep reinforcement learning (DRL) process 
can be further described. The expected accumulated discounted reward of policy p  is defined as 
η π( ) :

η π γ( ) [ ( , )]=
=
∑ t

t

T

t t t
r s a

0

	 (11)

where [ ]×  is the expectation taken over s Pr s s a
t t t t+ +1 1

~ ( | , )  and g g( )0 1£ £  is the discount 
factor of the reward at different time steps.

The goal of the learning algorithm is to determine the optimal policy p*  by estimating the 
optimal Q-function, which is defined as:

Q s a s s a a
t t

* *( , ) [ ( ) | , ]= = = η π .	 (12)

To approximate the optimal function, we use Deep Q-learning with experience replay and DQN 
(Mnih, 2013).
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5. ACCURACY ANALYSIS

To further characterize the errors introduced during the drone-positioning process, Figure 6 provides a 
visual representation of all possible sources of error relative to the orientation of the drone, presented 
from three different views of the drone: top view, rear view, and side view, respectively. The drone 
has lateral error on all three axes, as well rotational error on all three axes. In addition to this, it has 
rotational error from the LIDAR, and distance error from the LIDAR’s laser. All of these are defined 
relative to the airframe of the drone and are listed in Table 1 (May, 2007).
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Figure 6. Error components
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where

w
x
 sin( )sin( ) sin( )sin( ) cos( )sin( )θ σ θ σ θ σθ φ φ+ + 	 (14)

w
y
 cos( )sin( ) cos( )sin( ) sin( )sin( )θ σ θ σ θ σθ φ κ+ + 	 (15)

w sin sin cos sin
z
 ( ( ) ( )) ( ( ) ( ))θ σ θ σκ ρ

2 2+ 	 (16)

r sin sin cos sin
z
 ( ( ) ( )) ( ( ) ( ))θ κ θ ρ2 2+ 	 (17)

Equations (13) - (17) can be described as a breakdown of the significance of certain error sources 
under certain circumstances. As such, many of the sources of error are amplified or reduced depending 
on the recorded angle of the scanned point. One linear source of error is distance, as all sources of 
error except s s

x y
, , s

z
, and s

d
 are increased by the distance of the scanned point. The quantification 

for s
tz

 is slightly different because the effects of pitch and roll both manipulate the vertical position 
of a scanned point, while the yaw of the drone, when compensated for in pre-processing, does not.

6. EXPERIMENTAL EVALUATION

6.1 Simulation With AirSim
We evaluated the DRL-based drone navigation optimization method by conducting simulation using 
AirSim (Microsoft, 2021). AimSim is a simulator platform for AI research to experiment with deep 
learning, computer vision and reinforcement learning algorithms for autonomous vehicles such as 
drones and cars. AirSim provides application programming interfaces (APIs) to retrieve data and 
control drones/vehicles in a platform independent way. Table 2 shows the configuration of DQN for 
the optimal navigation of the LIDAR drone.

Figure 7 shows the point cloud acquired by the agent during an episode of the early learning 
phase. Figure 8 shows the acquired point cloud during the agent training with high scale.

Figure 9 shows the immediate reward obtained with the proposed reinforcement learning method 
and random walk, respectively, at different learning episode. Figure 10 shows that the comparison 
of the immediate rewards of random-walk and the DQN-enabled navigation with respect to learning 
steps. It can be observed that the RL method has achieved more reward than random walk.

6.2 Field Evaluation
6.2.1 Configuration of LIDAR Sensor
The physical setup of our aerial mapping platform consists of a modified DJI M100 equipped with a 
RPLIDAR A2 for recording 2D scans and a Raspberry Pi micro controller for all necessary networking 

Table 2. Configuration of DQN for optimal navigation

Parameter Value

Learning rate 0.0001

Batch size 64

Training frequency 5 episodes

Buffer size 106

Polyak update 1

Discount factor 0.99



International Journal of Multimedia Data Engineering and Management
Volume 14 • Issue 1

15

functions, as shown in Figure 11. A generalized diagram of how all the components of the drone 
relate to each other can be seen in Figure 12. Specifically, a GPS is used for absolute localization, 
and telemetry sensors are used for precise movements to store scans with respect to geographical 
coordinates.

Table 3 shows the configuration of the LIDAR used for field evaluation.

Figure 7. Acquired point cloud during an episode of the early learning phase of the agent

Figure 8. Acquired point cloud during the agent training with high scale
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6.2.2 Visualization Results Based on Game Engine
The combination of geographic localization and relative mapping results in a powerful application 
that can be used to update current geographic databases easily or construct a new one from scratch. 

Figure 9. Immediate rewards with different learning episode

Figure 10. Comparison of immediate rewards of random-walk and DQN-enabled navigation at different learning time steps
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Figure 11. The LIDAR mapping drone platform employed in the experiment

Figure 12. High-level infrastructure of drone
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This is due to all scans containing data relating to their real-world coordinates, which makes them 
very easy to locate in a 3D environment.

When we take the real-world environment in Figure 13 from Google Earth, and scan it in two 
separate sessions, as shown in Figure 14, the result is still a single large scan, with a seamless border 
between the two. This test was limited in range due to networking limitations but could easily be 
improved by using a dedicated antenna aboard the drone to transmit the data back to the host machine 
instead of a micro-controller over WIFI. However, the results still show that the system can put scans 
in their respective location within a virtual environment with no further operator input other than the 
initial altitude zeroing. This makes it a highly efficient system for recording and rending large scale 
scans of real-world environments, a useful tool for either updating or creating mapping databases.

6.2.3 Surface Reconstruction Using 3D Mesh
Our post-processing method is capable of turning nearly incomprehensible scans represented as 
point clouds into much more tangible polygons. Figure 15 and Figure 16 show a scan of an indoor 
environment before and after post-processing. Our method is capable of turning sparse vertices into 
solid planes that much more accurately portray the area scanned.

Table 3. Configuration of LIDAR

Parameter Value

Range 10

Captured points per second 3000

Rotations per second 10

Number of channels 16

Position of LIDAR (0, 0, -1)

VerticalFOVLower 0

VerticalFOVUpper 360

Figure 13. Building and nearby field for reference
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For point clouds with greater density that are already comprehensible, our method is still helpful 
for improving accuracy along uniformly defined surfaces. Using this method on such surfaces reduces 

Figure 14. The building and the field are scanned separately but are combined automatically in a 3D environment

Figure 15. Raw point cloud data
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the error produced by the many possible error components from airborne LIDAR scanning. The 
system will inherently produce a jagged surface with the raw point cloud but possesses enough data 
density that post-processing can fit the data much more accurately to the actual plane or uniform 
surface that the points were scanned on. As shown in Table 4, the average distance from a point to 
the plane of best fit is reduced by about 40% after processing. The graphical representation of the 
plane fitting can be seen in Figure 17.

Figure 16. Post-processed data with surface reconstruction

Figure 17. Planes of best fit over a cropped portion of raw (left) and over a cropped portion of processed data (right), respectively
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Our results were recorded with a two-dimensional LIDAR. The quality and density of the scan 
could be improved greatly by using a three-dimensional LIDAR, especially since the horizontal 
configuration of the LIDAR makes it difficult to scan the ground or other horizontal surfaces. However, 
the concept and functionality can be applied to most hardware.

7. CONCLUSION

In this paper, we proposed machine learning and data processing methods for LIDAR-based real-time 
urban mapping using game engine. Specifically, we utilize digital environment to train a DRL-based 
airborn LIDAR agent to facilitate field LIDAR data acquisition. Methods for improving the accuracy 
of LIDAR data recorded by airborne platforms were studied. Both preprocessing and postprocessing 
techniques for rendering real time dynamic meshes in a game engine and surface reconstruction were 
developed. Those methods and techniques provide insight into overcoming the challenges associated 
with dynamic mesh rendering in real-time urban mapping by using game engine for digital twin 
development.

ACKNOWLEDGMENT

This work was supported by the National Science Foundation under grant numbers 1647175 and 
1924278.

Table 4. Average distance to plane of best fit

Before Processing After Processing

Average Distance 2.86 1.73

Point Count 4760 531
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