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ABSTRACT

Outlier detection for batch and streaming data is an important branch of data mining. However, there 
are shortcomings for existing algorithms. For batch data, the outlier detection algorithm, only labeling 
a few data points, is not accurate enough because it uses histogram strategy to generate feature vectors. 
For streaming data, the outlier detection algorithms are sensitive to data distance, resulting in low 
accuracy when sparse clusters and dense clusters are close to each other. Moreover, they require 
tuning of parameters, which takes a lot of time. With this, the manuscript per the authors propose a 
new outlier detection algorithm, called PDC which use probability density to generate feature vectors 
to train a lightweight machine learning model that is finally applied to detect outliers. PDC takes 
advantages of accuracy and insensitivity-to-data-distance of probability density, so it can overcome 
the aforementioned drawbacks.
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INTRODUCTION

Outliers refer to “observations (or subsets of observations) which do not conform to the rest of this 
group of data” (Barnett & Lewis, 1994, p. X). Outlier detection can be applied in various fields, 
including network intrusion, industrial sensor failure, and financial fraud. This detection method can 
be applied to different data forms like batch data and streaming data.

Regarding batch data, the proportions for training, testing, and validation sets are approximately 
60%, 20%, and 20%, respectively (Blog, 2022; Zhou, 2016). Thus, most outlier detection algorithms 
designed for batch data, such as DBSCAN (Knorr & Ng, 1998), LOF (Breunig et al., 2000), OCSVM 
(Schölkopf et al., 2001), CBLOF (He et al., 2003), FDPC-OF (Zhang et al., 2023), NANOD (Wahid 
& Annavarapu, 2021), MOD (Yang et al., 2021), DAGMM (Tra et al., 2022), and DIFFI (Carletti 
et al., 2023) often require a large amount of data to label or adjust parameters. This makes them 
impractical in real-world implementation.
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Raha (Mahdavi et al., 2019) presented an outlier detection algorithm (termed “Raha[OD]”) that 
overcomes this drawback by labeling only a few data points, for instance, approximately 20, regardless 
of the total data point quantity in the batch. Raha[OD] employs the histogram method to generate a 
feature vector for each data point. Then, it trains the model and detects outliers. However, the limitation 
of the histogram method lies in ability to represent data distribution at a coarse granularity, which 
leads to low accuracy for Raha[OD].

For streaming data, the most important methods are distance-based and density-based, which 
apply to homogeneous and non-homogeneous data, respectively. For non-homogeneous data, the main 
methods are based on the LOF algorithm. However, due to the shortcomings of LOF, particularly its 
sensitivity to data distance, the accuracy of these approaches declines as dense and sparse clusters 
converge. In addition, both distance-based and density-based methods require parameter tuning, a 
time-consuming and painful process.

To address the aforementioned shortcomings, the authors propose the PDC algorithm, which 
is based on probability density clustering. Their specific approach involves normalizing probability 
density by calculating the ratio of average probability density to probability density, generating 
feature vectors for training a lightweight machine learning model for detecting outliers. Thanks to 
the accuracy, stability, and insensitivity to data distance of probability density, PDC can improve the 
accuracy of detection in both batch and streaming data.

In batch data, PDC only labels a few data points, approximately 20, while achieving high accuracy. 
In streaming data, PDC achieves high accuracy even when dense and sparse clusters converge. In 
the real world, it is common for these two cluster types to be interconnected. This leads to complex 
data distributions, such as those found in industrial sensor data or medical device data. In addition, 
PDC uses lightweight machine learning, which offers two benefits. First, it can save significant time 
without the need for tuning parameters. Second, compared with deep learning, it proves efficient 
enough to be applied to real-time outlier detection of streaming data.

Existing algorithms like Miline (Yamanishi et al., 2001), Takeuchi (Yamanishi & Takeuchi, 
2002), Anyout (Assent et al., 2012), DAGMM (Tra et al., 2022), GC-ADS (Zou et al., 2023), and the 
algorithm put forward by Chenaghlou et al. (2017), do not not use the specific method of calculating 
the ratio of average probability density to probability density when employing a probabilistic approach. 
To the authors’ knowledge, this study is the first to propose this calculation method. The authors 
conduct comprehensive experiments using real-world datasets to demonstrate the effect of PDC. This 
study has the following contributions:

•	 This article proposes a novel method for calculating the ratio between average probability density 
to probability density for the first time.

•	 PDF demonstrates the notable outperformance over cutting-edge rivals in both batch and streaming 
data outlier detection in terms of accuracy, all without adjusting parameters. This, thereby, saves 
considerable time and energy.

•	 Using lightweight machine learning, PDC is efficient for dealing with real-time outlier detection 
in streaming data, especially when compared to deep learning methods.

RELATED WORK

Outlier detection can be performed on both batch and streaming data. Thus, the related work is divided 
into batch and streaming data.

Outlier Detection of Batch Data
For batch data, the existing outlier detection methods like DBSCAN (Knorr & Ng, 1998), LOF 
(Breunig et al., 2000), OCSVM (Schölkopf et al., 2001), CBLOF (He et al., 2003), FDPC-OF 
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(Zhang et al., 2023), NANOD (Wahid & Annavarapu, 2021), MOD (Yang et al., 2021), DAGMM 
(Tra et al., 2022), and DIFFI (Carletti et al., 2023) typically require numerous data points to label 
or adjust parameters. The outlier detection algorithm of the Raha algorithm (Raha[OD]) is capable 
of outperforming these advanced outlier detection algorithms by labeling only a few data points, 
regardless of the dataset’s size. The method generates feature vectors for each piece of data in the 
dataset based on the histogram. Then, it uses hierarchical clustering data points according to their 
feature vectors and randomly selects a data point from each cluster for labeling. Finally, it trains a 
model with the labeled data points, and adopts this model for detecting outliers throughout the entire 
dataset. The number of hierarchical clusters is usually around 20, requiring users to label only 20 data 
points. However, the histogram method used by Raha[OD] results in insufficient accuracy.

Outlier Detection of Streaming Data
Outlier detection algorithms of streaming data are mainly classified into distribution-based, cluster-
based, distance-based, and density-based methods. The distance-based and density-based algorithms 
are the most important, addressing density invariance and density variation, respectively.

Distribution-Based Approach
For distribution-based approaches, both the Miline (Yamanishi et al., 2001) algorithm and Takeuchi 
(Yamanishi & Takeuchi, 2002) algorithm need to build the probability distribution model of streaming 
data. However, these algorithms require prior knowledge, which poses a challenge.

Cluster-Based Approach
Cluster-based approaches involve constructing clusters within streaming data, considering data 
points excluded in any cluster as outliers. The DStream algorithm (Chen & Tu, 2007) proposes a 
grid-based density method divided into online and offline stages. The AnyOut algorithm (Assent et 
al., 2012) enables ongoing outlier detection in streaming data by conducting hierarchical clustering 
and storing of data in a tree structure. In Elahi et al. (2008), streaming data is broken into several 
blocks, using the k-means algorithm within every block. Data points with respective distances from 
the cluster center exceeding the threshold value are confirmed as “candidate” outliers. Chenaghlou 
et al. (2017) put forward the concept of active clustering, an anomaly outlier algorithm focused on 
time/memory efficiency. In addition, if there were new distributions, the model consisting of a group 
of hyperellipsoidal clusters will be updated. Chenaghlou et al. (2018) proposed an online clustering 
algorithm utilizing temporal and spatial similarities for real-time detection of outliers. The GC-ADS 
(Zou et al., 2023) algorithm first adopts a grid-based approach to cluster data and coarsely detects 
outlier points based on cluster density. Then, it employs a Gaussian distribution method to detect 
outlier points.

The challenge with clustering method is the difficulty in determining the border of clusters, 
resulting in reduced accuracy. Also, these methods are unable to detect outliers in real time and may 
encounter delays while detecting outliers.

Distance-Based Approach
The distance-based algorithms for detecting outliers in streaming data with homogeneous density 
rely on the DBSCAN algorithm. Its principle is simple: a data point can be considered an outlier 
if the quantity of its nearest neighbors within a radius of r is below a certain threshold value, “k.”

Following the DBSCAN model, the addition of a sliding window mechanism to facilitate 
streaming data processing is called the DODDS algorithm (Tran et al., 2020). Many algorithms 
have been used in this field, such as ExactStorm (Angiulli & Fassetti, 2007), AbstractC (Yang et 
al., 2009), DUE, LUE, MCOD (Kontaki et al., 2011), LEAP (Cao et al., 2014), NETS (Yoon et al., 
2019), M_MCOD (Tran et al., 2019) and CPOD (Tran et al., 2020). Despite their simplicity and 
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efficiency, distance-based algorithms have drawbacks. They require parameter adjustments to obtain 
the appropriate k and r values, which is very difficult. Moreover, due to the defects of the DBSCAN 
algorithm, it cannot process streaming data with varying densities.

Density-Based Approach
Density-based methods for detecting outliers in streaming data with non-homogeneous densities 
ground themselves on the local outlier factor (LOF) algorithm, which assesses if a data point is an 
outlier based on its computed LOF score. However, this algorithm is inappropriate for streaming 
data due to the need to update LOF scores for all formerly processed data. Each time a new data 
point arrives, it requires O(n2) time complexity. The incremental LOF (iLOF) algorithm (Pokrajac 
et al., 2007) overcomes the issue of large time complexity associated with LOF in streaming data. It 
diminishes the time complexity to O(n) by updating the information regarding the points impacted 
by the insertion of the new data point. Unfortunately, iLOF still needs to store information about all 
neighbors of previous data to identify outliers. Thus, it has the same space complexity as LOF, which 
is O(n2). This makes iLOF impractical for streaming data with large datasets.

The MiLOF algorithm (Salehi et al., 2016) was put forward to address the shortcoming of iLOF. 
MiLOF uses sliding windows to mitigate excessive memory issues when detecting outliers streaming 
data with large datasets. MiLOF uses the c-means method to summarize data within the windows. 
Therefore, the selection of c will affect the accuracy of outlier detection. To overcome MiLOF’s 
shortcomings, DiLOF (Na et al., 2018) adopted a new approach to data summarization. This new 
method results in DiLOF achieving greater accuracy than MiLOF.

The iMCOD algorithm (Degirmenci & Karal, 2022) begins by employing iSVM technology to 
classify newly entered data points. The second step involves the use of newly proposed class-based 
nearest neighbor technology to calculate the iLOF score and determine whether the newly entered 
data point is an outlier based on the calculated iLOF score. However, iMCOD cannot adopt a sliding 
window mechanism; therefore, it cannot handle a large amount of data. In addition, iMCOD continues 
to adopt the LOF mechanism. Thus, it encounters barriers when handling situations where different 
density classes are adjacent.

Other Approaches
I-MLOF (Wang et al., 2015) is an incremental multiple instance (MI) algorithm used to detect outliers. 
This algorithm can obtain outlier detection results similar to the original LOF extension, I-MLOF of 
MI. I-MLOF proves that the simple incremental algorithm and the more complex algorithm produce 
similar outlier detection results. In a study by Kontaki et al. (2016), sliding windows-based algorithms 
are proposed, suitable for the continuous monitoring of anomaly data streams. The advantage of these 
aforementioned algorithms is their ability to reduce memory requirements. These algorithms also 
contribute to suggesting more effective and flexible techniques for recognizing outliers in data streams.

SPOT (Siffer et al., 2017) is performed according to extreme value theory and is particularly 
suitable for univariate time series data streams. Furthermore, SPOT does not need to assume a data 
distribution or set a specific threshold. SPOT aims to develop an algorithm that can detect outliers more 
efficiently. However, its disadvantage is that it does not apply to scenarios with multiple variables.

SENC Forest (Mu et al., 2017) is suitable for classifying new categories within data streams. It 
uses random trees to address three subproblems: (1) model updating; (2) unsupervised learning; and 
(3) supervised learning. However, a drawback of the proposed algorithm is its inability to provide 
a true class label.

LDCD (Ishimtsev et al., 2017) is a model-free algorithm aimed at outlier identification. It employs 
univariate time series data and calculates probability anomaly scores. This approach uses simple 
methods, specifically Lazy Driving Conformal Detector, to detect outliers, exhibiting a performance 
that resembles a more sophisticated outlier recognition approach. However, during the process of 
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LDCD, further research is needed concerning the Numenta Anomaly Benchmark (NAB) corpus, and 
a suitable validity warranty is required.

Chen et al. (2017) put forward AnRAD, a neuromorphic anomaly identification framework 
capable of carrying out probabilistic inferences. AnRAD enhances both memory and computational 
efficiency. This algorithm also presents an increase in incremental learning speed, which improves 
the efficiency and accuracy of anomaly detection.

XSTREAM (Manzoor et al., 2018) is a density-based approach for outlier identification. It is also 
the first method proposed to handle data streams with unfixed dimensions. This article proves that 
XSTREAM accurately detects anomalies, regardless of the noise dimension, thus proving its efficacy.

The KELOS algorithm (Qin et al., 2019) adopts kernel density estimation (KDE) for improving 
the efficiency of local outlier identification within the data stream.

The FDALOCI algorithm (Kalliantzis et al., 2019) is an outlier detection technology suitable for 
distributed and density-based applications. This algorithm can be used for multidimensional streaming 
data. The advantage of this algorithm lies in its illustration of using the approximate computing 
approach of local correlation integral (LOCI) to improve the extensibility and efficiency of anomaly 
detection, especially when involving large amounts of distributed datasets.

The WMFP algorithm (Cai et al., 2019) is a pattern-based two-stage method for recognizing 
outliers, relying on a weighted maximum approach. The advantage of WMFP lies in its improved 
efficiency when handling weighted data streams. By using the maximum frequency mode instead of 
the frequent mode, the detection efficiency is improved.

The EMC algorithm (Din & Shao, 2020) is a new data stream classification method, namely 
evolutionary microcluster. This algorithm dynamically learns evolutionary micro-clusters to evaluate 
concept drift and evolution. Regarding its contribution, it presented an ability to distinguish between 
concept drift and evolution from noise distribution.

The GP-LOF algorithm (Alsini et al., 2020) is a grid partition-based approach adopted to recognize 
local outliers within a data stream.

In Souiden et al. (2022), the proposed algorithm utilizes the adaptive binary GSA technique to 
detect outliers in low-dimensional subspaces within high-dimensional spaces.

The ISPForest algorithm (Li et al., 2023) uses expert online feedback and forest-based mechanisms 
to detect outliers.

PROBLEM ANALYSIS

In this section, the authors elaborate on the principle highlighting PDC’s superiority over its 
competitors. For batch data analysis, the performance of the outlier detection algorithm within the Raha 
algorithm (Raha[OD]) surpasses leading-edge competitors by labeling only a few data, irrespective of 
the dataset’s size. It uses a histogram to generate feature vectors. However, the histogram’s accuracy 
is inferior to that of probability density. Figure 1 compares the histogram with the probability density. 
Based on Figure 1, the block diagram represents the histogram, while the probability density is 
depicted by a smooth curve. The horizontal coordinate represents the data value (x), while the vertical 
coordinate represents its probability density (f(x)) or the quantity within each block (the number). 
The illustration demonstrates that the histogram represents the coarse-grained distribution of data, 
whereas the probability density represents a fine-grained distribution of data. Therefore, the method 
employing probability density is more accurate than with the histogram method (or the accuracy of 
probability density).

The advantages of probability density are not confined to accuracy. They also include stability, 
as shown in Table 1. The first column (Batch) contains the batch of data, while the second column 
(v) and third column (p) refer to individual values and their probability densities. The fourth column 
(µp/p) is the probability density as a percentage of average probability density. This is calculated by 



International Journal of Data Warehousing and Mining
Volume 19 • Issue 1

6

dividing the average probability density (µp) by the probability density (p).All batches of data come 
from the Angle sensor, collected at different times, each consisting of 200 data points. The data 
distribution of the Angle sensor is shown in Figure 6(a). Batch1 and Batch2 represent data in standby 
state, characterized by small data values. Batch3 and Batch4 represent data in a working state, where 
the data value is large. In addition, the data density of the standby state is different from that of the 
working state, with Batch1 and Batch2 exhibiting denser data while Batch3 and Batch4 are sparse.

In the second column, 0.2356 and 12.9702 are the lower limits of inliers in Batch1, Batch2, Batch3, 
and Batch4, respectively. In addition, 0.3919 and 14.4546 are the upper limits of inliers in Batch1, 
Batch2, Batch3, and Batch4, respectively. Batch1, Batch2, Batch3, and Batch4 outliers are 0.6183, 
0.6207, 5.3328, and 5.3219. Among them, 0.6183 and 0.6207 are similar in size, which means they 
have similar positions in Batch1 and Batch2, respectively. The same is true for 5.3328 and 5.3219.

Within a given batch, such as Batch1, 0.2356 and 0.3919 are considered inliers, with their p 
scores and µp/p scores displaying similarity. The outlier, 0.6183, within Batch1 showcases a lower p 

Figure 1. Histogram vs. Probability Density

Table 1. Accuracy and Stability of Probability Density

Batch v p µp/p

Batch1 0.2356 0.0016507 0.9194

Batch2 0.2356 0.0016494 0.9246

Batch3 12.9702 0.0016749 0.9078

Batch4 12.9702 0.0016851 0.9163

Batch1 0.3919 0.0016587 0.9150

Batch2 0.3919 0.0016666 0.9263

Batch3 14.4546 0.0016732 0.9238

Batch4 14.4546 0.0016521 0.9175

Batch1 0.6183 0.0015943 0.9520

Batch2 0.6207 0.0015944 0.9717

Batch3 5.3328 0.0013509 1.1235

Batch4 5.3219 0.0013422 1.1023
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score than that of 0.2356 and 0.3919. Its µp/p score is higher than that of 0.2356 and 0.3919. These 
observations prove the accuracy of the probability density.

For the same data point, p score and µp/p score are similar in different batches, such as 0.2356. In 
different batches, p score and µp/p score are also similar for data points in similar positions, such as 
0.2356 and 12.9702 or 0.6183 and 0.6207. These findings prove the stability of the probability density.

The authors calculate the µp/p score to normalize the p score. This can be adopted for generating 
feature vectors in various datasets. The stability of the µp/p score allows us to apply it to the detection 
of streaming data.

Regarding detecting outliers in streaming data, two main approaches are density-based and 
distance-based. Distance-based methods identify a data point as an outlier if its nearest neighbor 
quantity falls below k within a radius r (as seen in the DBSCAN algorithm). Then, the sliding window 
mechanism is applied to the DBSCAN algorithm to detect outliers in streaming data, as observed 
in the DODDS algorithm. However, the DODDS algorithm is not suitable for non-homogeneous 
density data due to constraints within the DBSCAN approach. Conversely, PDC is suitable for this 
situation according to stability in probability density. For example, Batch1 and Batch3, even with 
different data densities, the position of 0.2356 in Batch1 is similar to that of 12.9702 in Batch3, with 
similar p and µp/p scores.

The density-based approach is suitable for handling non-homogeneous density data, among 
which the most important algorithm being LOF. LOF determines whether a data point is an outlier 
based on its LOF score. This can be described as follows for data point p:

Definition 1.1: The term k - dist(p) refers to the distance between point p and its kth nearest neighbor. 
In cases where data points are multidimensional, the distance between data points can be calculated 
with the Euclidean distance approach.

Definition 1.2. The definition of reachable distance from point p to point x (reach-distk(p, x)) is:

reach - distk(p, x) = max{k - dist(p), d(p, x)}	 (1)

Here, d(p, x) refers to the distance between point p and x.

Definition 1.3. The local reachability density, lrdk is expressed as:
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Here, Nk(p) represents the set of all k nearest neighbors for data point p.

Definition 1.4. The local outlier factor, LOFk(p) is expressed as:
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The LOFk(p) value refers to the LOF score for data point p. A higher LOF score suggests a higher 
probability of the point being an outlier. When a point’s LOF score exceeds a given threshold, it will 
be classifed as an outlier. If a point has an LOF score close to 1, it is likely to be an internal point 
within the dataset.



International Journal of Data Warehousing and Mining
Volume 19 • Issue 1

8

The DiLOF algorithm adds a sliding window and sampling mechanism based on the LOF 
algorithm to process streaming data with non-homogeneous densities. LOF, a kind of KNN algorithm, 
faces a specific challenge—it is sensitive to data distance (Wang et al., 2019). Regarding DiLOF, 
when the distances between data points within windows frequently change in irregular patterns (like 
having dense and sparse clusters consistently close together), the accuracy of the DiLOF algorithm 
will decrease.

Figure 2 illustrates the defect encountered by DiLOF when dealing with the proximity of sparse 
and dense clusters within windows. As presented in Figures 2(a) and 2(b), the red and blue clusters 
represent clusters with diverse densities. The red cluster is dense, while the blue cluster is sparse. 
Both clusters are in close proximity, and their borders meet. In this article, k is set as 3, and the radius 
of each dashed line circle in Figure 2 is the 3-dist(n) value of the center point n within the circle.

In Figure 2(a), the green, purple, and orange points are outliers generated by the blue cluster. 
Each has a similar degree of deviation from the inner points. The green point has two of its three 
nearest neighbors within the blue (sparse) cluster and one within the red (dense) cluster. The purple 
point has one neighbor in the blue cluster and two in the red cluster, while the orange point has all 
three nearest neighbors in the blue cluster.

Figure 2. Sparse Cluster and Dense Cluster are Close Together
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Let the orange point be p, and the top neighbor among its three nearest neighbors be o. Formula 
1 implies that the radius of the orange dashed line circle represents the reachable distance between 
point p and each of its three nearest neighbors. Thus, the average reachable distance is this radius. 
Formula 2 indicates that the reciprocal of the radius of the orange dashed line circle represents the 
local reachability density for point p.

For point o, it is an inlier of the blue cluster. Its three nearest neighbors are also inliers of the 
blue cluster. Figure 2(a) demonstrates that the 3-dist(m) value of each inlier m in the blue cluster is 
similar. Therefore, according to formula 1, the reachable distance between each inlier m and its three 
nearest neighbors is about 3-dist(m). According to formula 2, the locally reachable density of point 
o is about the reciprocal of 3-dist(o), that is, the radius of the dashed line circle containing point o.

According to formula 3, the LOF score for point p can be visually approximated as the radius of 
the orange dashed line circle relative to the average radii of the three black dashed line circles that 
intersect within the orange dashed line circle. This assessment also applies to the LOF scores for the 
purple and orange points.

As illustrated in Figure 2(a), when the three nearest neighbors of the outliers (the green point, 
purple point, and orange point) are within the dense cluster, the circles containing them have small 
radii. Conversely, when the outliers are in the sparse cluster, the radii are larger.

The green point, purple point, and orange point are all outliers generated by the blue cluster 
and share a similar degree of deviation, resulting in the circles containing them to be similar in size. 
However, the LOF scores differ. The LOF score of the green point is determined by the ratio of the 
radius of the green dashed line circle to the average of the two large radii and one small radius. The 
LOF score of the purple point is about the ratio of the purple dashed line radius to the average of one 
large radius and two small radii. The orange point’s LOF score is about the ratio of the orange dashed 
line circle radius to the average of three large radii. Thus, the three outliers have very different LOF 
scores, indicating the lesser accuracy of the DiLOF algorithm.

In Figure 2(b), the green and purple points are the inliers at the junction of the red and blue 
clusters. The orange point is an inlier of the blue cluster. Similarly, two of the green point’s three 
nearest neighbors have small radii and one has a large radius. Regarding the purple point, one of its 
three nearest neighbors has a small radius, and two have large radii. All three nearest neighbors of the 
orange point have larger radii. Therefore, the DiLOF algorithm is less accurate. Real-world datasets 
exhibit a complex interweaving situation of clusters with different densities, as shown in Figures 5 
and 6. Probability density, fortunately, is not impacted by the distance between data points. Thus, 
the PDC algorithm is suitable for this situation. In addition, adjusting parameters for DODDS and 
DiLOF is not an easy task. It is time-consuming, especially when dealing with large windows and 
datasets used for tuning parameters.

For example, when adjusting parameters for DODDS or DiLOF with a dataset size of 900 and 
window sizes of 20, 30, 40, and 50, this process could take several days. However, the training time 
for a model using PDC with this dataset size in only one second. This model applies to all windows. 
In the case of a larger dataset of about 10,000 and windows sizes of 100, 200, 300, and 400, adjusting 
parameters DODDS or DiLOF could take more than 10 days. Conversely, the PDC algorithm only 
takes a few minutes to train a model.

Finally, PDC leverages lightweight machine learning compared to deep learning. It is efficient 
enough to deal with real-time outlier detection of streaming data.

PROPOSED ALGORITHM

The proposed PDC algorithm can be used for batch and streaming data. According to the characteristics 
of batch data and streaming data, PDC workflows differ between these two types of data.
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Detection of Outliers in Batch Data
Regardless of the volume of data within the batch, PDC only selects 20 data points from the entire 
batch for labeling purposes. These 20 points are used to train a model and subsequently utilized to 
identify the the entire batch dataset. The workflow of PDC batch data processing is shown in Figure 3.

Step 1: The entire batch dataset form, denoted as D, is processed to compute the probability density for 
each data point within the set. D is calculated according to formula 4, where x∈D, µ refers to the 
average value of all data points in D, and σ indicates the standard deviation of D. Formulas 5 and 
6 calculate the ratio of average probability density to probability density. Here, xi ∈ D represents 
the ith data point in the dataset D, while p(xi) represents the probability density value of xi.

Next, set the threshold set T = {t1, t2……tm} according to experience, where each threshold is 
arranged in ascending order, ensuring non-equal values between two adjacent thresholds. Here, m 
refers to the number of user-defined thresholds. This threshold set is used to construct the feature 
vector Fi = [f1, f2……fm] for every data point xi in D according to formula 7:

Figure 3. Workflow of PDC on Batch Data
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where 1≤ l ≤ m.
For example, if k(xi) = 0.883, and the threshold set is {0.85, 0.86, 0.87, 0.88, 0.89, 0.90 … 1.19, 

1.20}, then Fi = [1, 1, 1, 1, 0, 0 … 0, 0].

Step 2: Hierarchical clustering of the data in D into multiple clusters occurs based on their feature 
vector. The authors often set the number of clusters to 20, dividing all data into 20 clusters.

Step 3: Randomly select one data point from each cluster and label it as an inlier or outlier. This 
selection of labeled data points forms the training dataset. With 20 clusters, only 20 data points 
need to be labeled.

Step 4: The binary classification model is trained by using the feature vectors and labeling results 
of the data in the training data set.

Step 7: The trained binary classification model is used to detect outliers in the entire dataset.

Detection of Outliers in Streaming Data
PDC adds a sliding window mechanism to process streaming data. The processing method is classified 
into the training model and detecting data stage. The workflow is shown in Figure 4.

The training model stage is as follows:

Step 1: The authors label each data point in the training dataset as an inlier or outlier.
Step 2: According to formulas 4, 5, 6, and 7, feature vectors are generated for each data point in the 

training dataset.
Step 3: A binary classification model is trained using the feature vectors and results are labeled for 

all data in the training dataset.

Detecting data stage:

At this stage, the authors added the sliding window. When the data point to be detected reaches 
the end of the window, the data point at the head of the window is removed.
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The detection steps are presented:

Step 1: All the data in the window is used for generating the feature vector of this new data according 
to formulas 4, 5, 6, and 7.

Step 2: Using the trained models to detect this new data.

EXPERIMENT

The authors conducted comparative experiments on real-world datasets to confirm the effect of the 
PDC algorithm. At first, the authors introduced the evaluation indicator, followed by an introduction 
of the experimental results on batch and streaming data.

Batch Data
Evaluation Indicator
The experiment aims to detect outliers. Thus, the authors use the outlier detection results to illustrate 
the evaluation indicators:

•	 Precision(P): The proportion of points that are genuine outliers in the points that the authors 
determined to be outliers.

•	 Recall(R): The proportion of the genuine outliers that the authors determined in the outliers of 
the entire dataset.

•	 F1-score: A harmonious indicator of P and R indicators, defined as follows:

F score
Precision Recall

Precision Recall
1 2− = ×

×
+

	 (8)

Figure 4. Workflow of PDC on Streaming Data
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For example, there are 15 outliers in the dataset. The authors detected 10 outliers, of which eight 
points were indeed outliers (with two points being misjudgments). Thus, Precision is 8/10 = 0.8, 
Recall is 8/15 = 0.53, and F1-score = 0.64.

Datasets
The real-world datasets applied in the experiments are described in Table 2. Both Raha[OD] and 
PDC only label 20 data points, regardless of the size of the dataset. The year dataset includes the 
year column from the movie dataset used in the Raha algorithm. The math dataset is from https://
data.gov/, maxlength and minlength datasets are the maxlength column and minlength column in the 
DryBean dataset from https://archive.ics.uci.edu/ml/index.php.

Experimental Analysis
Table 3 shows the experimental results, highlighting the superior performance of PDC compared to 
Raha[OD] across all datasets. For these four datasets, PDC achieves an F1-score that is 23.3% to 37.8% 
higher than that of Raha[OD]. In the year and math datasets, the data distribution is centralized. In 
addition, the maxlength and minlength datasets reveal scattered data distributions. Thus, the detection 
effectiveness of Raha[OD] and PDC in the year and math datasets is better than on the maxlength 
and minlength datasets. On the other hand, the year and math datasets have duplicated data points, 
while the maxlength and minlength datasets primarly consist of nonduplicate data points. Outliers 
are almost always nonduplicate data points. As a result, Raha[OD] has high precision in the year and 
math datasets but notably lower precision in the maxlength and minlength datasets.

Streaming Data
Datasets
Table 4 describes four real-world datasets applied in these experiments, all originating from Siemens 
industrial sensors. They consist of four or five consecutive cycles over time, with a sampling time 
interval of 0.2 seconds in each dataset. The data distribution is illustrated in Figure 5 and Figure 6. 
Figure 5 presents the distribution of all data in each dataset. Figure 6 displays the distribution of 
data in the first cycle of each dataset. Within each cycle of the datasets, the data is in a standby state 
(with small data values) or a working state (with large data values). Notably, the data density differs 
between these two states. For instance, the standby state indicates dense data while the working state 

Table 2. Batch datasets

Dataset Data quantity Dimension

year 7390 1

math 3136 1

maxlength 13611 1

minlength 13611 1

Table 3. Experimental results of batch datasets

year math maxlength minlength

P R F1 P R F1 P R F1 P R F1

Raha[OD] 1 0.526 0.689 1 0.622 0.767 0.515 0.404 0.453 0.556 0.529 0.542

PDC 1 1 1 1 1 1 0.818 0.845 0.832 0.849 0.928 0.886

https://data.gov/
https://data.gov/
https://archive.ics.uci.edu/ml/index.php
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reveals sparse data. Thurs, the data density of every dataset is non-homogeneous. More noteworthy 
is the consistent proximity of sparse clusters to dense clusters within each dataset.

Experimental Analysis
The authors compared the PDC, DODDS, and DiLOF algorithms, using parameter tuning for DODDS 
and DiLOF in the first cycle data in each dataset while they trained the PDC model. DODDS and 
DiLOF, however, use the data of the whole cycle for parameter tuning. In the case of PDC, a segment 
of data representing one density from the cycle data was used to train the model. The parameters 
tuned by DODDS and DiLOF and the model trained by PDC were employed to detect data from the 
remaining three or four cycles.

Table 4. Streaming datasets

Dataset Size of the first cycle Size of remaining cycles Meaning of sensor

Angle 1107 4415 Rotation angle value of finishing mill

Rollforce 652 1979 Rolling force of finishing mill

FBY 900 2700 Armature current

Storm 900 2700 Excitation current

Figure 5. whole data distribution of streaming datasets
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Table 5 presents the experimental results, while a visual diagram comparing the results of the 
experiment can be found in Figure 7. In Table 5, the bold digits are the highest value in each index, 
while the underlined digits are the highest F1-score for each algorithm across the four windows. In the 
Angle, Rollforce, FBY, and Storm datasets, PDC attains F1-scores that are 13.1%, 4.08%, 4.63%, and 
5.66% higher than the highest F1-score of competitors. In addition, for PDC, the main contribution 
of the F1-score is recall, indicating a high recall rate.

All datasets are non-homogeneous; therefore, the DODDS algorithm is not as effective as 
PDC. Furthermore, the data density is continuously changing under the working state, resulting in 
close proximity between sparse and dense clusters in the windows. Thus, the DiLOF algorithm’s 
effectiveness is lower than PDC. PDC consistently outperforms DiLOF in all windows of all datasets.

In the Angle dataset, the data includes 33.2% standby and 66.8% working status data, respectively. 
Thus, there is no density of data between the states. In addition, DDOS exhibits a low F1-score due 
to the difference in density. Conversely, in the Rollforce dataset, 70.5% of the data is in a working 
state, similar to the Angle dataset. However, the data density between the two is minimal. This leads 
to a higher F1-score for DODDS in the Rollforce dataset. Still, it is lower than that of PDC. It can be 
seen that the DiLOF algorithm can be effective when the data density difference is large.

In the FBY and Storm datasets, approximately 85.8% and 84.4% of the data, respectively, belong 
to the working state. This means that most of the data in the dataset is one density. As a result, 
DODDS achieves a high F1-score in these datasets. However, it remains lower than the F1-score 
obtained by PDC.

Figure 6. First cycle data distribution of streaming datasets
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Table 5. Experimental results were obtained when the window sizes were 20, 30, 40, and 50

20 30 40 50

p R F1 P R F1 P R F1 P R F1

Angle

DoDDS 0.917 0.636 0.751 0.888 0.641 0.744 0.889 0.628 0.736 0.896 0.607 0.724

DiLOF 0.808 0.706 0.753 0.731 0.902 0.807 0.675 0.894 0.769 0.721 0.903 0.802

PDC 0.878 0.978 0.925 0.886 0.985 0.933 0.881 0.972 0.924 0.870 0.971 0.918

Rollforce

DoDDS 0.860 0.908 0.883 0.829 0.869 0.848 0.866 0.801 0.832 0.851 0.803 0.827

DiLOF 0.946 0.857 0.899 0.912 0.835 0.872 0.895 0.869 0.882 0.906 0.847 0.876

PDC 0.909 0.973 0.940 0.888 0.966 0.926 0.859 0.951 0.903 0.828 0.944 0.882

FBY

DoDDS 0.940 0.810 0.870 0.931 0.833 0.879 0.904 0.829 0.865 0.905 0.806 0.853

DiLOF 0.924 0.837 0.878 0.917 0.845 0.879 0.843 0.858 0.851 0.867 0.900 0.883

PDC 0.884 0.983 0.931 0.888 0.977 0.931 0.865 0.967 0.913 0.830 0.960 0.890

Strom

DoDDS 0.946 0.833 0.886 0.921 0.849 0.884 0.919 0.846 0.881 0.898 0.842 0.869

DiLOF 0.925 0.805 0.860 0.937 0.813 0.871 0.893 0.892 0.892 0.850 0.917 0.882

PDC 0.924 0.975 0.949 0.901 0.972 0.935 0.880 0.966 0.921 0.850 0.956 0.900

Figure 7. Comparison of Experimental Results Under Each Window Size W
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For PDC, DODDS, and DiLOF, the adaptability of a large window to jump data is poor. Thus, 
when selecting a large window, the accuracy of each algorithm will be reduced. For DiLOF, using 
a larger window will increase the number of clusters with different densities, impacting its accuracy 
negatively. Therefore, the authors chose small windows due to the aforementioned limitations. 
However, it is important to note that the window size should not be too small. If it is too small, the 
data features (i.e., probability density, data distance, and data density) displayed in the window will 
be unstable, failing to accurately reflect the data features of the entire dataset. This will result in 
reduced accuracy across all algorithms.

In conclusion, both too large and too small windows prove inadequate. The principle for window 
selection is to opt for a small (but not too small) window. Thus, the authors chose window sizes of 
20, 30, 40, and 50. Setting the window size below 20 leads to a significant reduction in the F1-score 
across algorithms. Similarly, if the window size is greater than 50, an increase in the window size 
correlates to a decrease in the F1-score of all algorithms. Both the DODDS and DiLOF algorithms 
require parameter adjustment, a difficult task that entails a significant amount of time and energy. In 
addition, it is very painful. Moreover, during parameter adjustment, more than one parameter group 
can achieve the highest F1-score. Although demonstrating the same precision, recall, and F1-scores 
during parameter adjustment, the results can differ when using the parameter groups for detection. 
In the experiments with DODDS and DiLOF, when multiple parameter groups yield the same and 
highest F1-score during parameter adjustment and result in differing outcomes, the authors choose 
the highest score of F1-score.

CONCLUSION AND FUTURE WORK

In response to the insufficient accuracy of existing outlier detection algorithms in the presence of 
interwoven clusters with different densities, the current study proposes PDC. This algorithm detects 
outliers based on probability density without requiring parameter tuning. Experiments carried out 
on real-world datasets highlight PDC’s superiority over advanced techniques in outlier detection.

The current study introduces the method for calculating the ratio between average probability 
density and probability. Future advancements may be able to calculate the ratio between the average 
probability density and the probability density of kernel density estimation (KDE), enhancing the 
applicability of these algorithms.
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