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ABSTRACT

With the growing urgency of global climate change, carbon neutrality, as a strategy to reduce 
greenhouse gas emissions into the atmosphere, is increasingly seen as a critical solution. However, 
current forecasting models still face significant challenges and limitations in accurately and effectively 
predicting carbon emissions and their associated effects. These challenges largely stem from the 
complexity of carbon emission data and the interplay of anthropogenic and natural factors. To 
overcome these obstacles, the authors introduce an advanced forecasting model, the SSA-Attention-
BIGRU network. This model ingeniously integrates an external attention mechanism, bidirectional 
GRU, and SSA components, allowing it to synthesize various key factors and enhance prediction 
accuracy when forecasting carbon neutrality trends. Through experiments on multiple datasets, the 
results demonstrate that, compared to other popular methods, the SSA-Attention-BIGRU network 
significantly excels in prediction accuracy, robustness, and reliability.
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1. INTRODUCTION

In the context of today’s global warming, achieving carbon neutrality has become a critically discussed 
topic of paramount importance (Zhao et al., 2022). Carbon neutrality refers to the goal of reaching 
net-zero emissions by reducing and offsetting carbon dioxide emissions to combat the threat of climate 
change. However, despite the widespread discussion and interest in the concept of carbon neutrality 
within the environmental sector, realizing this goal still presents a series of significant challenges and 
difficulties (Wu et al., 2022). Firstly, the idea of carbon neutrality involves reducing greenhouse gas 
emissions into the atmosphere, a challenge in and of itself. Industrial production, energy consumption, 
and transportation activities worldwide lead to substantial carbon dioxide emissions. Therefore, 
effectively monitoring, managing, and reducing these emissions poses an urgent issue. Secondly, 
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forecasting these emissions is also an essential aspect of carbon neutrality. Yet, weather patterns, 
climatic conditions, and various human-induced factors can influence fluctuating emission levels, 
making accurate predictions extremely challenging. As such, there is a need to seek more precise 
and reliable methods for forecasting future emission trends. Lastly, reducing emissions requires the 
formulation and implementation of a series of effective policies and measures, which in turn, touch 
upon a broad spectrum of social and economic factors. Hence, ensuring sustainable socio-economic 
development while reducing emissions becomes a complex problem to address (Waheed et al., 
2019). To tackle these challenges, many researchers and scientists have turned to deep learning and 
artificial intelligence technologies. Deep learning, a potent method within machine learning, can 
handle large-scale and intricate data, facilitating better emission monitoring, future trend predictions, 
and the proposition of effective emission reduction strategies. Significant advancements in emission 
monitoring and forecasting through deep learning offer renewed hope for achieving carbon neutrality 
(Li et al., 2021).

Deep learning has demonstrated immense potential in various aspects of the carbon neutrality 
domain, offering innovative solutions to achieve carbon-neutral objectives. As a compelling testament 
to this, one can observe the successful application of deep learning in the organization of sporting 
events, intelligent scheduling, and resource management (Wang et al., 2021). Sporting events are large-
scale activities that attract millions of viewers globally. However, the organization and management 
of these events often involve significant energy consumption and carbon emissions (Somu et al., 
2021). To mitigate the adverse environmental impacts of these events, deep learning technologies 
have been introduced to optimize resource utilization and carbon-neutral strategies for the events. By 
analyzing vast amounts of historical data and real-time information, deep learning algorithms can 
intelligently adjust the planning, scheduling, and energy consumption of these events, minimizing 
emissions and ensuring the sustainability of the events. These successful instances not only reduce 
the carbon footprint but also offer insights for other sectors, indicating the broad applicability of deep 
learning in carbon neutrality efforts (Amasyali & El-Gohary, 2018).

It’s noteworthy that a series of researchers have delved into the references related to deep learning 
in carbon emission reduction prediction and the field of climate change. These studies not only provide 
invaluable insights but also lay a solid foundation for research on carbon neutrality using deep learning 
(Berriel et al., 2017). For instance, in the work related to deep reinforcement learning for energy 
management, researchers employed deep reinforcement learning to optimize energy management 
systems, aiming to significantly reduce energy consumption and carbon emissions (Liu et al., 2019). 
They developed a model based on the Deep Q-Network, which formulates the best energy scheduling 
strategies by learning real-time environmental data. However, this model encounters computational 
complexity issues when handling large-scale energy networks, especially when considering multiple 
diverse energy sources. Furthermore, another research explored the application of Convolutional 
Neural Networks (CNN) in air quality prediction. Researchers utilized vast amounts of meteorological 
and pollution data to train the CNN model to predict future air quality (Tang & Li, 2022). A limitation 
of this model is its typical need for a considerable amount of labeled data, and its performance might 
decline when dealing with complex meteorological conditions and pollution sources. Additionally, 
some studies focus on using Recurrent Neural Networks (RNN) to predict energy demands, aiding 
in optimizing the energy supply chain (Yu, 2023). While RNN models can handle time series data, 
they may face limitations in addressing long-term dependencies and seasonal changes (Oyando et al., 
2023). Lastly, certain research endeavors are dedicated to using deep learning techniques to monitor 
and estimate carbon emissions. These methods often rely on large datasets, like satellite remote sensing 
data and ground observation data, to train the deep learning models. However, these approaches 
might be less effective under data scarcity or poor data quality, and the fine-grained classification 
and monitoring of emission sources remain challenging (Wenya, 2021).

Given the limitations of the aforementioned studies, we introduce the SSA-attention-BIGRU 
network. Within the context of carbon neutrality and climate change, this network integrates cutting-



Journal of Organizational and End User Computing
Volume 36 • Issue 1

3

edge deep learning technologies with the aim of offering a more precise prediction and analytical tool. 
Firstly, the external attention component stands as one of the central elements of this network. This 
component applies weighted processing to multi-variable input sequences, ensuring that essential 
points within the sequence are emphasized and retained, while relatively less crucial points are 
selectively overlooked. Such a strategy empowers the model to enhance the capture of key information 
within the time series, thus improving prediction accuracy. Secondly, the crux of the network revolves 
around the Bidirectional Gated Recurrent Unit (BIGRU). BIGRU is designed to grasp the non-linear 
relationships present within time series and is capable of concurrently considering past and future 
information, granting the model a comprehensive perspective. As for the SSA component, its primary 
function is to optimize the hyperparameter combinations of BIGRU. Through this mechanism, SSA 
ensures that BIGRU operates under its optimal configuration, thereby further amplifying the overall 
performance of the model.

The SSA-Attention-BIGRU is an integrated and efficient solution, particularly well-suited for 
prediction tasks related to carbon neutrality and climate change. Given the urgency surrounding climate 
change, we believe this network will provide invaluable tools and insights for the field. Below, we 
highlight the three key contributions of this paper:

• We introduced a novel SSA-Attention-BIGRU network, which ingeniously integrates the external 
attention component, the Bidirectional Gated Recurrent Unit (BIGRU), and the SSA component. 
This architecture ensures that critical points within the time series are given ample emphasis, 
while also capturing the non-linear relationships inherent in the time series.

• Through the SSA component, the network is able to automatically optimize the hyperparameter 
combinations for BIGRU. This significantly enhances the training efficiency and prediction 
accuracy of the model, allowing it to excel across various tasks and datasets.

• In the realm of carbon emission prediction, the SSA-Attention-BIGRU network offers an efficient 
and accurate prediction tool. It not only aids in a better understanding of carbon emission dynamics 
but also provides scientific decision-making support for formulating related policies and measures.

In the rest of this paper, we present recent related work in Section 2. Section 3 introduces our 
proposed methods. Section 4 showcases the experimental part. Section 5 contains the conclusion.

2. RELATED wORK

2.1 Application of External Attention Mechanism in Climate Prediction
In recent years, the external attention mechanism has gained widespread attention in time series 
forecasting. A study introduced a model named “Env-AttNet”, specifically designed for environmental 
variable data (Chen et al., 2022). This model, by incorporating the attention mechanism into the 
traditional recurrent neural network, can capture long-term dependencies in time series with greater 
precision. Moreover, a model named “ClimateCNN”, which blends attention mechanism with 
Convolutional Neural Networks (CNN), has been explored (Sheng et al., 2023). This model aims to 
obtain better feature representation both spatially and temporally. Furthermore, the “BiRNN-Attention” 
model, which combines the external attention mechanism with bidirectional recurrent neural networks, 
offers an efficient solution for predicting carbon emissions and climate change (Y. Liu et al., 2023).

These innovative approaches showcase the ongoing development in the field of time series 
forecasting models, emphasizing the increasingly crucial role of integrating external attention 
mechanisms. The “Env-AttNet” model, with its focus on environmental variable data, has paved 
the way for more precise predictions in the domain of environmental forecasting (Kaixu Han 2023). 
By incorporating the attention mechanism into the traditional recurrent neural network, it addresses 
the challenge of capturing nuanced patterns in time series data related to environmental variables. 
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Furthermore, the “BiRNN-Attention” model efficiently tackles the prediction of carbon emissions 
and climate change by combining the external attention mechanism with bidirectional recurrent neural 
networks (Guipeng Ding, 2023). This combination allows the model to better capture key information 
in time series, thereby enhancing prediction accuracy and robustness. These studies provide new 
methods and tools for understanding environmental and climate change, laying a solid foundation 
for future research and practical applications (Ning et al., 2024).

2.2 Exploration of Bidirectional Recurrent Networks in Meteorology
Bidirectional recurrent networks, especially BIGRU, have been utilized in many time series forecasting 
tasks (Yang et al., 2022). A model named “MeteorNet”, based on bidirectional recurrent networks, 
has been designed to forecast future meteorological conditions, processing both past and future data 
simultaneously. Additionally, a model combining bidirectional recurrent networks with external 
memory units, named “WeatherMNet”, aims to provide more accurate predictions for long-term 
meteorology (Lv et al., 2023). Further research shows that combining bidirectional recurrent networks 
with attention mechanisms can further enhance the predictive performance of the model.

2.3 Deep Reinforcement Learning in Energy Management
In the field of energy management, deep reinforcement learning has made significant progress. For 
instance, a model named “EnergyDQN” combines deep Q networks with real-time energy data to 
offer real-time optimization decisions for energy systems. A model named “Attention-EnergyAgent”, 
which fuses deep reinforcement learning with the attention mechanism, has been developed (Zou et 
al., 2022). This model can automatically adjust the energy supply chain to minimize carbon emissions 
to the greatest extent. The “LinearReinforceNet” model, which combines deep reinforcement learning 
with traditional linear regression, excels in predicting energy consumption and emissions (Zhang et 
al., 2022).

3. METHOD

The SSA-Attention-BIGRU network is a meticulously designed and highly integrated framework 
aimed at addressing the challenges posed by carbon neutrality and climate change. Its structure 
ingeniously combines three core components to enhance the precision and reliability of predictions.

Firstly, the external attention mechanism processes multivariate input sequences, automatically 
identifying and weighting key points in the time series while selectively disregarding those with 
a lesser impact on predictions(Ding et al., 2020). This balancing strategy significantly boosts the 
network’s ability to capture critical changes within the data.

Secondly, at the core of the network, the BIGRU is responsible for capturing both short-term 
and long-term dependencies within the time series (Yang et al., 2022). Its bidirectional structure 
ensures the consideration of both past and future information from the time series, providing a more 
comprehensive contextual view and resulting in more accurate predictions. Simultaneously, the SSA 
component seeks and applies optimal hyperparameter combinations, ensuring the BIGRU operates 
at its prime state, greatly enhancing the model’s training efficiency and predictive accuracy.

The construction of this network adheres to strict design principles and spans multiple stages. The 
process commences with data preprocessing, including handling missing values and normalization. 
Subsequently, the preprocessed data is input into the external attention mechanism for preliminary 
processing. Following this, the processed data is fed into the BIGRU to extract time series features. 
At the conclusion of each training cycle, the SSA component assesses and optimizes hyperparameters 
for the BIGRU (Sun et al., 2022). Ultimately, the network outputs prediction results, which can further 
aid in subsequent decision-making or other related applications, as illustrated in Figure 1, depicting 
the overall network flow.
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The SSA-Attention-BIGRU network not only provides an efficient solution to the problem but also 
assists researchers, policymakers, and relevant organizations in gaining a better understanding of the 
dynamics and patterns of carbon emissions. Moreover, the precise predictions furnished by this model 
offer robust scientific support for the formulation of related carbon reduction policies and measures.

3.1 Sparrow Search Algorithm
The Sparrow Search Algorithm (SSA) is a heuristic optimization algorithm inspired by the foraging 
behavior of sparrows (Sun et al., 2022). In this strategy, the sparrow population performs an 
adaptive search based on the food sources in the environment, while also simulating interactions 
and collaborations among sparrows. For our SSA-Attention-BIGRU model, the introduction of SSA 
primarily aims to efficiently optimize the network’s hyperparameters. In deep learning models, 
the correct selection of hyperparameters is crucial for model performance. The SSA algorithm, by 
simulating the foraging behavior of sparrows, conducts an effective search in the hyperparameter 
space, swiftly identifying the optimal hyperparameter combination. The network structure of SSA 
is illustrated in Figure 2.

Carbon neutrality and climate change represent a highly complex and dynamic issue. To 
predict the associated dynamics more accurately, we require an efficient and precise model. The 
SSA-Attention-BIGRU, leveraging the advantages of the sparrow algorithm, offers robust support 
for model optimization, ensuring optimal performance in carbon neutrality predictions. Below, we 
present the primary formulas for SSA:

Carbon neutrality and climate change represent a highly complex and dynamic issue. To 
predict the associated dynamics more accurately, we require an efficient and precise model. The 
SSA-Attention-BIGRU, leveraging the advantages of the sparrow algorithm, offers robust support 
for model optimization, ensuring optimal performance in carbon neutrality predictions. Below, we 
present the primary formulas for SSA:

To update the sparrow’s position based on the best and local positions found so far, we use:

Figure 1. Overall flow chart of the model
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new current best current local curre
= + × −( )+ × ( )× −α β 0 1,

nnt( )  (1)

where P
new

 represents the new position of the sparrow, P
current

 is the current position of the 
sparrow, a  is a scale factor, P

best
 is the best position found so far, b  is another scale factor, and 

P
local

 represents the position of another randomly selected sparrow in the neighborhood.
The scale factor a  decreases over time as follows:

a a= × −








0

1
t

T
 (2)

where a
0

 is the initial value of a , t represents the current iteration, and T  is the maximum 
number of iterations.

Similarly, b  also decays exponentially over iterations:

β β γ= × − ×( )0
exp t  (3)

Figure 2. Flow chart of the SSA model
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where b
0
 is the initial value of b  and g  is a coefficient controlling the exponential decrease.

The average position of all sparrows in the population is computed as:

P
N

P
global i

N

i
=

=∑
1

1
 (4)

where P
global

 is the average position of all sparrows, N  is the total number of sparrows, and P
i
 

is the position of the i th-  sparrow.
A random position influenced by the global average position is determined by:

P P P P
rand current global current
= + × −( )d  (5)

where P
rand

 represents a random position based on the global average position, and d is a random 
number between 0 and 1.

Combining exploration and exploitation, the final position of the sparrow is:

P P P
new final new rand_

= × + −( )×w w1  (6)

where P
new final_

 is the final new position of the sparrow and w  is an inertia weight.
To determine whether the sparrow should move to the new position, we check:

f P f P
new final current_( ) < ( )  (7)

where f  is the fitness function used to evaluate the quality of the solutions. If the new position 
has a better fitness value, the sparrow will move to the new position; otherwise, it will stay at its 
current position.

3.2 BIGRU Model
The Bidirectional Gated Recurrent Unit, commonly known as BiGRU, is an evolution of the standard 
Gated Recurrent Unit (GRU) (Yang et al., 2022). The GRU was developed to address the vanishing 
gradient problem in Recurrent Neural Networks (RNNs), aiming to offer an alternative with fewer 
parameters and higher computational efficiency. The standard GRU works in a forward sequence 
manner, processing the sequence from start to end. In contrast, BiGRU encompasses two GRU 
layers - one processing the sequence in a forward manner and the other in reverse. This bidirectional 
approach enables the model to capture context from both the past (from forward pass) and the future 
(from backward pass). Essentially, while the GRU captures patterns from the past to represent the 
current state, BiGRU ensures that there is a flow of information from both past and future, providing 
a richer data representation for any given time step. Figure 3 illustrates the model structures of GRU 
and BIGRU.

In the context of the SSA-Attention-BiGRU model, BiGRU plays a pivotal role in enhancing 
the model’s prediction accuracy. By leveraging information from both past and future in time series 
data, BiGRU offers a more comprehensive view of patterns, crucial for understanding complex and 
dynamic systems like climate patterns and carbon emissions. The bidirectional nature ensures that 
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no critical information is overlooked, especially when predicting pivotal turning points or abrupt 
changes. We now delve into the key proofs related to BIGRU:

To control the information flow, the Gated Recurrent Unit (GRU) uses an update gate defined as:

z W x U h b
t z t z t z
= + +( )−s

1
 (8)

where: x
t
 is the input, h

t-1
 is the previous hidden state, and W U b

z z z
, ,  are the update gate 

parameters.
Similarly, the reset gate, which determines how to combine the new input with the previous 

memory, is computed as:

r W x U h b
t r t r t r
= + +( )−s

1
 (9)

where: W U b
r r r
, ,  are the reset gate parameters.

With the help of the reset gate, the candidate hidden state is then computed:

h Wx r Uh b
t t t t

� �= + +( )−tanh
1

 (10)

where: W U b, ,  are parameters for the candidate hidden state.
The final hidden state is a combination of the previous hidden state and the candidate hidden 

state, modulated by the update gate:

h z h z h
t t t t t
= −( ) +−1

1
� � �  (11)

where: h
t
 is the updated hidden state.

Figure 3. (a) Illustrates the network architecture of the GRU model. (b) Illustrates the network architecture of the BIGRU model
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For bidirectional GRUs, we compute the backward pass as:

h GRU x h
t t t
' ',= ( )+ +1 1

 (12)

where: h
t
'  is the backward hidden state.

To utilize information from both forward and backward passes, the outputs are concatenated:

o h h
t t t
= 


;
'  (13)

where: o
t
 is the concatenated output.

Finally, to get the prediction, the concatenated output is passed through a dense layer with a 
softmax activation:

y W o b
t o t o
= +( )Softmax  (14)

where: y
t
 is the prediction and W b

o o
, are the dense layer parameters.

3.3 Attention Mechanism
The core idea of the attention mechanism is to assign a weight to each input data point when processing 
sequence data, allowing the model to focus on the most important information relevant to the current 
task. In traditional sequence processing models, such as RNN or LSTM, the model needs to remember 
all information(Ding et al., 2020). However, in practical applications, some information is more 
important than others. The attention mechanism simulates human attention behavior, meaning we 
always pay more attention to the parts most relevant to the current task.

In the SSA-Attention-BIGRU network, the external attention mechanism plays a crucial role. 
It ensures that key points in the time series are emphasized, while relatively less important parts 
can be selectively ignored. This strategy enhances the model’s ability to capture key changes in the 
data, thereby improving prediction accuracy. Moreover, the attention mechanism also reduces the 
computational burden on the model, as it no longer needs to process information that isn’t important.

The attention weights, which dictate how much focus should be given to each input at a specific 
time step, are computed as:

±
t

t

j

T

j

e

ex

=
( )
( )

=∑

exp

exp
1

 (15)

where a
t
 is the attention weight for the tth  time step and e

t
 is the alignment score for that time 

step.
To determine the alignment of the input sequence to the output sequence, we compute the 

alignment scores using:

e a s h
t t t
= ( )−1,  (16)
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where e
t
 is the alignment score calculated using the previous state s

t-1
 and the current hidden 

state h
t
, and a is an alignment model which can be a feed-forward network.

The context vector, which is a weighted sum of all hidden states based on the attention weights, 
is then computed as:

c h
t j

T

t t

x=
=∑ 1
a  (17)

where c
t
 is the context vector for the  tth  time step.

The current state of the decoder is influenced by the previous state, the previous output, and the 
current context vector:

s f s y c
t t t t
= ( )− −1 1

, ,  (18)

where s
t
 is the current state of the decoder, and f  is the function that calculates the current 

state.
Finally, the predicted output for the current time step is determined using the current state and 

the context vector:

y g s c
t t t

 = ( ),  (19)

where y
t

  is the predicted output for the tth  time step and g  is an output function.

4. EXPERIMENT

4.1 Datasets
To comprehensively validate our model, this experiment utilizes four distinct datasets: Global Carbon 
Budget, EDGAR, BP Statistical Review, and NEO. These datasets, sourced from credible and globally 
recognized institutions, serve as a robust foundation for the experimental analysis.

Global Carbon Budget (GCB) (Friedlingstein et al., 2020):Originating from the Global Carbon 
Project, this dataset furnishes detailed information on global carbon dioxide emissions. It meticulously 
segregates the data into natural and anthropogenic sources, making a clear distinction between human-
induced emissions and those from natural processes. Additionally, it provides insights into carbon 
sinks, such as forests and oceans, which play a pivotal role in offsetting carbon emissions to a certain 
extent. We harness this dataset to analyze temporal patterns of carbon emissions and understand the 
distribution and dynamics of major carbon sinks globally.

EDGAR - Emissions Database for Global Atmospheric Research (EDGAR) (Olivier et al., 1994): 
Administered by the European Commission, EDGAR provides an exhaustive set of global emission 
inventories, explicitly charting CO2 emissions stemming from fossil fuel combustion. It encompasses 
a wide range of sectors, offering a granular view of emissions by industry. This dataset aids in sector-
wise analysis, allowing us to pinpoint industries and regions with the highest emissions and thereby 
identify areas requiring urgent mitigation measures.

BP Statistical Review (BPS) (Dudley, 2018): An annual compendium of global energy data, 
the BP Statistical Review offers pertinent statistics related to carbon emissions. It not only provides 
historical data but also sheds light on recent trends and future projections, making it an invaluable 
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asset for our experimental setup. We employ this review to validate our model’s predictions against 
real-world data, leveraging the extensive historical records and future projections to fine-tune our 
predictive algorithms.

NASA Earth Observations (NEO) (Sarwar et al., 2022): Managed by NASA, the NEO project 
avails a plethora of data linked with climate and environmental patterns. It covers a broad spectrum 
of metrics, including CO2 concentrations, sea levels, and global temperatures. NEO’s data serves 
as a supplementary source, especially when cross-referencing environmental patterns with CO2 
concentrations. It provides a holistic perspective, enabling our model to account for diverse 
environmental variables while making predictions.

4.2 Experimental Details
Step 1: Data preprocessing

First, we will conduct data cleaning to ensure that the dataset has no duplicate entries. For missing 
values, if more than 5% of the data is missing, we will either interpolate or delete them directly. At 
the same time, we will use the Interquartile Range (IQR) method to detect and handle outliers. Next, 
during the data standardization phase, we will use Z-score normalization to standardize features and 
convert categorical data into numerical data using one-hot encoding. Finally, in the data splitting 
step, we plan to divide the data into training and testing sets at a ratio of 70%-30%. We will also 
ensure that the category distribution in each split is similar to the original data, achieved through 
stratified sampling.

Step 2: Model training

• Network Parameter Settings: In our training, we have tuned various hyperparameters to ensure 
optimal performance. The learning rate was set to 0.001 with a decay rate of 0.0001 every ten 
epochs. We utilized a batch size of 32 samples per batch, which provided a balance between 
computational efficiency and model accuracy. The dropout rate was adjusted to 0.3 to prevent 
overfitting and enhance generalization capability.

• Model Architecture Design: Our model comprises of three main layers: an input layer, three 
hidden layers, and an output layer. Each hidden layer contains 128 neurons with ReLU as the 
activation function. The input layer’s dimension corresponds to the number of features, which 
in our case is 64. The output layer’s size is 10, corresponding to the number of target classes, 
and uses a softmax activation for classification.

• Model Training Process: Training was executed over 100 epochs with early stopping enabled, 
which would terminate the training if the validation loss did not improve for 15 consecutive epochs. 
This ensured that we didn’t overtrain on the dataset. We utilized the Adam optimizer because of 
its adaptive learning rates and fast convergence. Throughout the training, we maintained a split 
of 70% for training data and 30% for validation data, ensuring that the model’s performance was 
being monitored on unseen data.

Algorithm 1 represents the algorithm flow of the training in this paper:
Step 3: Model Evaluation

• Model Performance Metrics: To comprehensively assess the performance of our model, we 
employ a variety of performance metrics, including MAE, MAPE, RMSE, MSE, and MAE. 
Specifically, MAE (Mean Absolute Error) measures the average absolute difference between the 
predicted values and the actual values. MAPE (Mean Absolute Percentage Error) represents the 
percentage error between the predicted and actual values. RMSE (Root Mean Square Error) is 
the square root of the average of the squares of the differences between observed and predicted 
values, placing a higher weight on larger errors. MSE (Mean Square Error) is the average of the 
squares of the errors.
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• Cross-Validation: To further bolster our confidence in the model’s robustness and generalizability, 
we implemented a 10-fold cross-validation approach. This method involves partitioning the 
dataset into 10 subsets, training the model on 9 of them, and evaluating its performance on the 
remaining subset. This iterative process continues until each subset has been utilized as a test set, 
ensuring that performance metrics are averaged across 10 distinct partitions. Employing cross-
validation not only helps mitigate the risk of overfitting but also provides a more comprehensive 
understanding of the model’s potential performance on unseen data.

Here, we introduce the key evaluation metrics used in this paper:
The Mean Absolute Error (MAE) represents the average of the absolute differences between the 

predicted and actual values.

MAE
n

y y
i

n

i i
= −

=∑
1

1

  (20)

where y
i
 is the actual value, y

i

  is the predicted value, and n  is the total number of observations.
The Mean Absolute Percentage Error (MAPE) expresses the errors as a percentage of the actual 

values, providing a relative measure of the prediction accuracy.

Algorithm 1. Training SSA-Attention-BIGRU network

1: InitializeSSAcomponent SSA InitializeSSA i: ← ( )

2: InitializeAttentionmechanism Attention InitializeAttention: ← ii( )
3: InitializeBIGRU BIGRU InitializeBIGRU i: ← ( )
4: Setnumberof epochs N

epochs
� � � :�

5: �� � � :� ,� ,� ,�Initializeevaluationmetrics RMSE MAE SMAPE R2

 6: for to do�epoch¬ 1� � �N
epochs

7: for x y X y doi i� � � , , }eachtrainingsample ( ) ∈ ( )
8: Calculateexternalattentionweights a Attention x Applyatt

i i
: ← ( ) eentionmechanism

9: Applyattentionweights x x aWeighted input sequence
i

i i� � : � �’�¬ 

10: ExtractfeaturesusingBIGRU features BIGRU x BIGRUfeature
i i

: '← ( ) eextraction

11: Predictoutput y features
i i

� :  ← ( )Predict

12: Calculateloss loss y y Lossfunction e g MeanSqua
i i i

: , , . .,← ( )Loss  rredError

13: UpdateSSAhyperparameters SSA features y loss
i i i

� � : , , , , ,α β γ δ ← ( )
14: end�for
15: UpdateBIGRU withoptimizedhyperparameters BIGRU UpdateB� � � � : �← IIGRU BIGRU , , , ,α β γ δ( )
16: RMSE MAE SMAPE R SSA Attention BIGRU, , , ,2 ← − −Evaluate Validation Daata( )
17: Printepoch RMSE MAE SMAPE R Monitormodelperformance, , , , 2

18: end for 
19: Return   TrainedSSA Attention BIGRUmodel- -
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%


 (21)

The Mean Squared Error (MSE) quantifies the squared differences between the predicted and 
actual values, giving more weight to larger errors.

MSE
n

y y
i

n

i i
= −( )=∑
1

1

2
  (22)

The Root Mean Squared Error (RMSE) is the square root of the MSE, which provides a measure 
of the prediction error in the same unit as the original data.

RMSE
n

y y
i

n

i i
= −( )=∑
1

1

2
  (23)

4.3 Experimental Results and Analysis
As shown in Table 1, we have conducted a detailed comparison of the performance of various models 
across multiple datasets. Judging from the various evaluation metrics (such as RMSE, MAE, SMAPE, 
and R2 ), our approach consistently outperforms the other methods across all datasets. Specifically, 
for the GCB dataset, our model achieved 133.23, 89.12, and 0.65 in RMSE, MAE, and SMAPE 
respectively, which is noticeably superior to all other models. In particular, when compared to the 
next best model, SSA-CNN-GRU, our method shows a significant improvement in RMSE by 11.25, 
which is highly significant in terms of prediction accuracy. In the R2 evaluation metric, our model 
also achieved the best results, reaching 0.91, indicating that our model can capture the trend changes 
in the data more effectively.

For the other datasets (like EDGAR, BPS, and NEO), our model consistently showed superior 
performance, always ranking at the forefront in all evaluation metrics. For instance, on the EDGAR 
dataset, our model’s R2  reached 0.91, a clear enhancement compared to the closest competing model. 
These results strongly suggest that our model has a significant advantage in predicting carbon neutrality 
and climate change. The bidirectional feature of BiGRU ensures better capture of temporal information, 
while SSA guarantees the best configuration for the model. This enables our model to provide high-
precision predictions in various complex scenarios, which is crucial for formulating corresponding 
policies and strategies. Figure 4 visualizes the contents of the table, further proving the superiority 
of our method and its application value in predicting carbon neutrality.

As shown in Table 2, we provide a comprehensive comparison of various models based on their 
computational complexities, as indicated by the number of parameters and FLOPS across multiple 
datasets.

For the GCB dataset, our proposed method has a compact model size with only 116.45M 
parameters and requires 41.28G FLOPS for inference. This is highly efficient when compared to 
other models like the BIGRU, which requires 445.47M parameters and 44.65G FLOPS. Notably, the 
Attention-GRU, which is one of the more complex models, necessitates 455.06M parameters for the 
GCB dataset, showing our model’s compactness without compromising performance.

Across all datasets, including EDGAR, BPS, and NEO, our method consistently demonstrates a 
balance between model size and computational cost. Specifically, in the EDGAR dataset, our model 
only needs 125.5M parameters, which is substantially fewer than SSA-AR which requires 199.87M. 
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Figure 4. The comparative visualization results of different models on RMSE, MAE, SMAPE, and R2 indicators come from four 
different datasets

Table 2. The comparison of different models on parameters and flops indicators comes from four different datasets

Method Datasets
GCB EDGA BPS NEO

Parameters(M) Flops(G) Parameters(M) Flops(G) Parameters(M) Flops(G) Parameters(M) Flops(G)
BiGRU 445.47 44.65 263.46 58.22 388.83 47.18 513.15 53.53

GRU 256.78 46.52 450.44 59.27 372.58 56.37 119.76 47.58

CNN-GRUE 196.65 48.33 288.09 63.92 423.83 38.90 189.14 63.11

Attention-GRU 455.06 77.36 468.67 64.23 251.20 45.25 457.94 68.75

SSA-AR(Wang et 
al., 2021)

123.56 48.85 199.87 67.21 432.91 71.55 383.71 47.42

SSA-CNN-GRU 
(Tang & Li, 2022)

288.36 46.58 245.16 58.06 326.75 50.55 285.36 73.04

Ours 116.45 41.28 125.5 45.25 189.33 25.32 142.45 48.56
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Furthermore, the FLOPS of our model is 45.25G, which is more efficient than the 67.21G of SSA-
AR. This trend continues in the BPS and NEO datasets.

This efficiency is crucial, as it allows our model to be deployed in real-time scenarios or on 
devices with computational constraints, ensuring that predictions related to carbon neutrality and 
climate change can be made promptly. Furthermore, the reduction in computational requirements does 
not come at the cost of accuracy or capability, as evidenced by the results from the previous table.

In conclusion, the results, as visualized in Figure 5, highlight the efficiency and effectiveness 
of our method in terms of computational cost and model size, further emphasizing its applicability 
in real-world scenarios related to carbon neutrality and climate change.

As shown in Table 3, ablation experiments were conducted for the BIGRU module across various 
datasets. These ablation studies aimed to reveal the contribution of each component to the model’s 
performance.

Firstly, for the GCB dataset, our method exhibited excellent performance with an RMSE of 
133.23, MAE of 89.12, SMAPE of 0.65, and a R2  value reaching 0.91. In contrast, other benchmark 
methods, such as RNN and LSTM, performed slightly worse on this dataset. For instance, the RNN 
had an RMSE of 256.29, while the LSTM had an RMSE of 138.28, both higher than our approach. 
This further highlights our method’s advantage in capturing complex temporal patterns in the data.

For the EDGAR dataset, our method once again demonstrated its efficiency with an RMSE of 
118.21 and MAE of 85.12, indicating a distinct advantage in prediction accuracy. Meanwhile, the 
Transformer model also had a decent performance on this dataset, but still lagged behind our method 
in terms of SMAPE and R2  scores.

On the BPS and NEO datasets, our method consistently maintained its leading position, especially 
in the three key metrics of RMSE, MAE, and SMAPE. Particularly on the NEO dataset, our method’s 
RMSE was 115.2, while the SVR and Transformer models had RMSE values of 145.73 and 137.07, 
respectively. This further attests to the superiority of our approach.

Figure 6 visualizes the table’s content, showcasing our method’s advantages over other baseline 
methods across multiple datasets. These experiments validate the effectiveness and accuracy of our 
approach when dealing with data related to carbon neutrality and climate change.

Figure 5. The comparative visualization results of different models on parameters and flops indicators come from four different 
datasets
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As shown in Table 4 the results of the ablation study focusing on the Attention module across 
various datasets are presented.

From the table, we can observe the performance of different models across four datasets: GCB, 
EDGAR, BPS, and NEO. Each model is evaluated based on four metrics on each dataset, namely 
RMSE, MAE, SMAPE, and R2 .

The models mainly include Cross-AM, Multi-Head-AM, Dynamic-AM, and our proposed method. 
Overall, our method demonstrates superior performance on most datasets and metrics. Particularly 
on the GCB dataset, where the RMSE is 133.23, MAE is 89.12, SMAPE is 0.65, and R2  reaches 
0.91.

Furthermore, we can compare different variants of the attention module, such as Cross-AM, 
Multi-Head-AM, and Dynamic-AM. While these models exhibit comparable performance to our 

Figure 6. Visualization results of ablation experiments on the BIGRU module. The benchmark model is RNN. Some advanced 
prediction models are compared on 4 data sets. The performance indicators are RMSE, MAE, SMAPE, and R2
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method on certain datasets and metrics, they fall behind in others. For instance, for the EDGAR 
dataset, the RMSE for Dynamic-AM is 138.63, whereas our method achieves an RMSE of 118.21.

In summary, this table offers a detailed view, and Figure 7 visually illustrates the table’s content, 
showcasing the performance of different attention module variants across multiple datasets.

5. CONCLUSION AND DISCUSSION

In this study, we conducted a thorough investigation into the potential of using the SSA-Attention-
BIGRU network to address the challenges of carbon neutrality and climate change. Our empirical 
analysis confirmed the significant effectiveness of our model in capturing key patterns in complex 
time series data. By cleverly integrating external attention mechanisms, bidirectional GRU, and SSA 
components into a unified framework, the network automatically identifies and balances crucial points 
in time series, thereby enhancing the accuracy and reliability of predictions.

However, despite the outstanding performance of our model on multiple datasets, it still 
exhibits some limitations. Firstly, the complexity of the model may result in higher computational 
requirements, which could limit its practical application in resource-constrained environments. We 
need to explore more efficient computational methods or approaches to simplify the model, enhancing 
its practicality and scalability. Secondly, although our model performs well on various datasets, it 
may face difficulties when dealing with particularly complex or noisy data. Further optimization of 
data preprocessing steps is necessary to ensure the model’s robustness across diverse data scenarios. 
Lastly, even though our model has achieved relatively satisfactory results, further optimization may 
be required in specific contexts. Exploring more advanced techniques or model adjustments can 
improve performance on complex datasets.

Figure 7. Visualization results of ablation experiments on the Attention module. The benchmark model is Cross-AM. Some advanced 
models are compared on four data sets. The performance indicators are RMSE, MAE, SMAPE, and �R2
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In the future, there is room for more in-depth research into fusion methods for multimodal data, 
exploring how to better integrate visual, language, and other sensor information to enhance the model’s 
understanding and processing capabilities in complex real-world scenarios. Additionally, applying 
the model to broader fields such as healthcare, traffic management, and environmental monitoring 
could expand its utility. By thoroughly investigating the model’s generality and transferability, it 
can become a powerful tool for addressing practical problems in various domains. In conclusion, 
this study not only provides a new perspective on carbon neutrality and climate change but also 
offers valuable references for related research fields, advancing progress in science, technology, and 
environmental protection.
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