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ABSTRACT

In vechcular networks, a promising approach to enhance vehicle task processing capabilities 
involves using a combination of roadside base stations or vehicles, there are two challenges when 
integrating the two offloading modeth: 1) the high mobility of vehicles can easily lead to connectivity 
interruptions between nodes, which in turn affects the processing of the tasks that are being 
offloaded; and 2) vehicles on the road are not completely trustworthy, and vehicle tasks that contain 
private information may suffer from result errors or privacy leakage and other problems. This paper 
investigates the computing offloading problem for minimizing task completion delay in vehicular 
networks. Specifically, we design a trust model for mobile in-vehicle networks and construct a 
migration decision problem to minimize the overall delay of task execution for all vehicle users. The 
simulation results show that the scheme proposed in this paper can effectively reduce the execution 
delay of the task compared to the baseline scheme.
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With the rapid development of new technologies such as autonomous driving and in-vehicle 
communication, application services that require high computing power or have high latency 
requirements are widely used in in-vehicle networks, including autonomous driving (Ren et al., 
2020; Zhu et al., 2023; Zhou et al., 2019) intelligent traffic control (Xu et al., 2023) and image- or 
video-assisted real-time navigation (Fan et al., 2023). However, the limited computational resources 
of vehicles seriously hinder the realization of the above applications, and it is difficult to achieve 
good performance by relying only on the vehicle itself (Gao et al., 2023); thus, edge computing is 
regarded as a promising approach (Chen et al., 2023). By utilizing edge computing technology, vehicles 
can offload the complex computational tasks of applications to platforms with more resources, thus 
shortening the response time of applications and improving the service quality of applications. When 
there are multiple resource-rich edge nodes in a network, choosing which edge node to offload the 
task becomes the primary problem to be solved by the vehicle. Currently, there are two approaches 
for solving this problem: roadside server-assisted migration and road vehicle migration.
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For the first approach, the vast majority of research has focused on server-based migration 
strategies, and the more common scheme is to achieve migration based on the distance of the requester 
or node availability. Zhu et al. (2023) considered the constraints of service latency as well as the quality 
of the task and used the binary particle swarm optimization method to construct a task offloading 
scheme. Similarly, Hou et al. (2020) introduced partial offloading and redistribution mechanisms 
into the regular offloading process, using heuristics to maximize reliability under delay constraints. 
Fan et al. (2023) further refined the task offloading process through collaboration between edges 
to achieve balanced computational loads in the network. Lin et al. (2020) added an authentication 
mechanism to ensure security during the migration process.

Due to facility costs, it is impractical to deploy servers along all highways. To address this lack 
of infrastructure, using other vehicles to achieve task offloading has become an effective approach 
(Ma et al., 2021). Shi et al. (2020) provided a dynamic pricing scheme that optimizes the gains of 
vehicles to achieve the migration of computational tasks between vehicles through a deep reinforcement 
learning approach. Fan et al. (2023) proposed a heterogeneous migration scheme that uses both 
vehicles and edge servers to achieve migration. Chao et al. (2019), Hou et al. (2020) and Lin et al. 
(2020) introduced parked vehicles as nodes into the network. Fan et al. (2023) and Xue et al. (2023) 
utilized parked vehicles as forwarding relays to expand the service range of mobile vehicles as well 
as edge servers, which minimized the processing delay of weighted tasks within the system. Shi et 
al. (2020) and Fan et al. (2022) then formed computing clusters of parked vehicles to participate in 
the task offloading process. Fan et al. (2023) and Dai et al. (2019) utilized only vehicles waiting for 
traffic lights as temporary computing nodes to assist in migration.

However, problems still exist for in-vehicle network task migration. First, existing task offloading 
research has mainly focused on offloading between vehicle nodes and roadside base stations or vehicles, 
and it is rare to consider both offloading modes at the same time. Considering two offloading modes 
further increases the complexity of the migration decision problem. Second, the above work mostly 
assumes that the devices in the network are trustworthy, and any node can perform task offloading. 
However, in an open network environment, malicious nodes are inevitable. These malicious nodes 
could steal private information or interfere with task offloading. When tasks are offloaded to malicious 
nodes, the accuracy of task results cannot be guaranteed. Although the traditional authentication 
system can guarantee the security of task offloading in vehicular networks to a certain extent, it is 
difficult to filter for malicious nodes with legitimate identities within the network. Constructing trust 
relationships between nodes in a network is a challenging problem. To address the above issues, we 
propose a trusted and efficient task offloading scheme for vehicular networks, and our contributions 
are summarized as follows.

In this paper, we consider a hybrid migration scenario in which computational tasks can be 
migrated to edge servers as well as road vehicles and design a node trust value evaluation model 
considering the impacts of vehicle mobility.

In this paper, four parameters – internode transmission delay, network communication link 
stability, trust assessment, and computation delay – are combined to model the trusted computing 
offloading problem of service nodes in a vehicle network, and an offloading strategy decision problem 
with average delay minimization, link stability, and trust assessment maximization is constructed.

We analyze the complexity of the above problem and then design an algorithm based on an 
alternating direction method of multipliers (ADMM) and a convex difference algorithm to find a set 
of approximate solutions. Simulation experiments show that the proposed scheme in this paper can 
effectively reduce task delay and improve service quality.

SYSTEM MODELLING

In this paper, we provide mobile edge computing services to users in a time-varying vehicular 
network, as shown in the scenario in Figure 1. Mobile vehicles with spare computing resources and 
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roadside infrastructure together form a service unit to process computing tasks for users. The set 
of vehicles with task requests is   V  s   =  { V  s1  ,  V  s2  , … ,  V  sn  }  , and the set of vehicles that can be used as 
auxiliary computing nodes is   V  e   =  { V  e1  ,  V  e2  , ...,  V  en  }  .

All nodes can communicate with each other within the communication range for resource sharing 
and trust evaluation. A node's task request can be migrated to only one node within its communication 
range. The computational tasks commonly carry real-time road information and authentication 
information for the user and are highly sensitive to latency. The main parameters used in the model 
proposed in this paper are shown in Table 1

Assuming that the service range of roadside unit  r  is fixed and that a mobile vehicle is associated 
with only one service node at moment  t , each vehicle node in   V  s   can offload its computational tasks to 
an auxiliary vehicle node in its area or to roadside unit  r . Each vehicle node   V  si   ∈  V  s    transmits mobile 
data of size   k   V  si  

    at a time. In this paper, we use the ternary    p  v  
t  =  {    x  v  

t ,  y  v  
t ,  v  V   }     to denote the operating 

state of the mobile vehicle at moment  t , where   〈 x  V  t  ,  y  V  t  〉   denotes the position of the mobile vehicle at 
moment  t  and   v  V    denotes the speed of the vehicle at moment  t .    p  r  

t  =  {    x  r  
t ,  y  r  

t  }     indicates the position 
of the roadside unit at moment  t . The  n th computing task received by each service unit is denoted as 
   M  sn   =  ( ω  sn    k  sn  ) , n =  {  1, 2, … ,  V  sk   }    , where   k  sn    denotes the packet size of the  n th task received by the 
service unit, and   ω  sn    denotes the number of CPU revolutions required by the current service unit to 
process the  n th computing task.

Transmission Model
The data forwarding delay between the task generating node  V  si    and the serving node  V  ej    is defined 

as   D   V  si  , V  ej  
  C   , as shown in equation 1.

  D   V  ix  , V  d  
  c   =   

 k   V   x  i  
    
 _  r   V  ix  , V  e  
      (1)

Figure 1. Trusted computing offloading network model scenario
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In a time-varying vehicular network, the distance between vehicle node   V  si    and vehicle node   V  ej    
varies in real time due to the mobility of the vehicle, which affects the transmission rate   r   V  si  , V  ej  

   ; the 
transmission rate should decrease as the node pair   (  V  si  ,  V  ej   )   distance becomes larger. Thus, transmission 
rate  r   V  si  , V  ej  

    can be expressed as shown in equation 2.

  r   V  si  , V  ej  
  (t ) =  B   V  si  , V  ej  

   × log (1 +   
 p   V  si  , V  ej  

   ×  d   V  si  , V  ej  
  −1  (t)
 _  σ   2   )   (2)

where   σ   2   is additive Gaussian white noise (AGWN). In the scheme of this paper, it is assumed 
that the channel adopts the orthogonal frequency division multiple access (OFDMA) communication 
method, which enables different communication links to occupy orthogonal spectrum resources 
to avoid co-channel interference.   p   V  si  , V  ej  

    represents the channel transmission power.   B   V  si  , V  ej  
    represents 

the channel transmission bandwidth. Therefore, the transmission delay between vehicles should be 
satisfied as shown in equation 3.

  ∫ 
0
  
 D   V  si  , V  ej  

  c  

   B   V  si  , V  ej  
    × log (1 +   

 p   V  si  , V  ej  
   ×  d   V  si  , V  ej  

  −1  (t)
 _  σ   2   ) dt =  k   V  si  

    (3)

Assume that   V  si    maintains uniform motion, as shown in Figure 2.
The change in the horizontal and vertical components of the node during the moment  t  can be 

calculated as shown in equation 4.

Table 1. Parameter definitions

Parameters Define

  V  s   Pool of vehicles generating tasks

  V  e   Calculate the vehicle pool

 r roadside unit  M  sn   

  ω  sn   Task  M  sn    CPU RPMs required

  k  sn   Size of data volume for task   M  sn   

  D  ij   Communication distance for link (i, j) 

  r  ij   Transmission rate for link (i, j) 

  B  ij   Communication bandwidth for link (i, j) 

  p  ij   Transmission power of the link (i, j) 

  d  ij  
t   Transmission time for task   M  sn   

 R Maximum communication radius of vehicle nodes

  C  ij  
t   Maximum connection time for link (i, j) 

  L  ij  
t   Stability of the link (i, j) 

  T  d  
t   Direct trust assessment of target nodes

  T  p  
t   Past trust assessment of target nodes

  T   t  Global trust assessment of target nodes
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  { 
 x   V  si  

   =  x   V  si  
  t   +    Δ     x   V  si  

   × T
    y   V  si  

   =  y   V  si  
  t   +    Δ     y   V  si  

   × T    (4)

where   x   V  si  
  ,  y   V  si  

    denotes the running coordinates of the center node at moment  t  in the current 
direction of motion after time  T ,  Δ   x   V  si  

    denotes the rate of change of the horizontal component of the 
centre node, and  Δ  y   V  si  

    denotes the rate of change of the vertical component of the centre node, as 
shown in equation 5.

  
{

 
Δ  x   V  si  

   =  x   V  si  
  t   −  x   V  si  

  t−1 
   

Δ  y   V  si  
   =  y   V  si  

  t   −  y   V  si  
  t−1 
    (5)

Similarly, the change rule of node   V  ej    can be obtained, assuming that   V  ej    maintains uniform motion. 
The distance between the node pair and   (  V  si  ,  V  ej   )    d   V  si  , V  ej  

  (t)  can be expressed as shown in equation 6.

  d   V  si  , V  ej  
  (t ) =  √ 

_______________________________________________
       ( x   V  si  

  t   + Δ  x   V  si  
   t −  x   V  ej  

  t   − Δ  x       V  ej  
     t)    2  +   ( y   V  si  

  t   + Δ  y   V  si  
   t −  y   V  ej  

  t   − Δ  y       V  ej  
     t)    2     (6)

The data forwarding delay between node   V  si    and curb unit  r  is defined as   D   V  si  ,r
  C    as shown 

in equation 7.

  D   v  si  ,r
  c   =   

 k   v  e  
  
 _  r   v  a  ,r
      (7)

In contrast to vehicles, roadside units are stationary, so the variation in   r   V  si  ,r
    is completely 

determined by the mobility of   V  si   . Therefore, the transmission delay between the additive point and 
the roadside unit can be calculated as shown in equation 8.

Figure 2. The change law of vehicle user motion



6

International Journal of Digital Crime and Forensics
Volume 16 • Issue 1 • January-December 2024

  ∫ 
0
  
 D   V  si  ,r

  C  

   B   V  si  ,r
   × log (1 +   

 p   V  si  ,r
   ×  d       V  si  ,r

    
−1  (t) 
 _  σ   2   ) dt =  k   V  si  

     (8)

The end-to-end link with the lowest transmission delay is generally selected as the optimal 
serving node. However, in an in-vehicle network environment, the relative distance between individual 
nodes varies due to different speeds, and the optimal service node of a vehicle may change between 
different time gaps. A change in service nodes may lead to the failure of task data transmission, which 
affects task migration efficiency. Therefore, link stability is also an important influencing factor in 
the selection process of service nodes. We use the vehicle connection time to measure the stability 
of the data link, and the maximum connection time of two nodes under the time slot  t  needs to meet 
the data forwarding delay requirement. The deviation of node connection time under multiple time 
slots is also compared to measuring the similarity of vehicle node behaviour to further ensure the 
stability of the data link.

The roadside unit  r  is stationary, and the maximum connection time   D   V  si  ,r
  t   of the two nodes at 

moment  t  can be calculated based on the law of coordinate motion. When node   V  si    intersects with  r  
in the communication coverage curve along the current trajectory, it is considered that the two nodes 
are about to lose their connection, as shown in equation 9.

   ( x  r   −  x   v  u  
  t   − Δ  x   v  u  

   ×  C   v  u,r  
  t  )    2  +   ( y  r   −  y   v  u  

  t   − Δ  y   v  u  
   ×  C   v  n,t  

  t  )    2  =  R   2   (9)

The maximum connection time   C   V  si  , V  ej  
  t    of two mobile vehicle nodes at moment  t  can be calculated 

via the same approach. As shown in Figure 3, two nodes are considered about to lose connections 
when node   V  ej    intersects the communication coverage curve along its current trajectory, as shown 
in equation 10.

  

⎧

 
⎪

 ⎨ 
⎪

 

⎩
 

Skipping malformed tag: msup + Skipping malformed tag: msup =  R   2 

        x   V  ej  
   =  x   V  ej  

  t   + Δ  x   V  ej  
   ×  C   V  si  , V  ej  

  t     
 y   V  ej  

   =  y   V  ej  
  t   + Δ  y   V  ej  

   ×  C   V  si  , V  ej  
  t  
     (10)

At this point, the end-to-end maximum connection time can be obtained at the moment  t ; when 
the maximum connection time meets the data forwarding delay, the current data link is considered 
stable, as shown in equation 11 and 12.

  D   V  si  , V  ej  
  C   ≤  C   V  si  , V  ej  

  t    (11)

  D   V  si  ,r
  C   ≤  C   V  si  ,r

  t    (12)

Considering the deviation of the connection times of the node pairs   V  si  ,  V  ej    and   V  si  , r  at past 
moments, which is defined as the stability of links   L   V  si  , V  ej  

  t    and   L   V  si  ,r
  t   , the larger the deviation of the 

connection time, the greater the risk of packet loss. The stability of the link at moment  t  is expressed as 
the sum of the connection time deviations of the previous moments, as shown in equations 13 and 14.

  L   V  si  , V  ej  
  t   = Δ  C   V  s  , V  g  

  t   + γΔ  C   V  s  , V  g  
  t−1   + ⋯ +  γ   n−1   C   V  s  , V  g  

  t−n+1   (13)
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  L   V  si  ,r
  t   = Δ  C   V  si  ,r

  t   + γΔ  C   V  si  ,r
  t−1  + ⋯ +  γ   n−1   C   V  sin  ,r

  t−n+1   (14)

where  Δ  C   V  si  , V  ej  
  t   =  | C   V  si  , V  ej  

  t   −  C   V  si  , V  ej  
  t−1  |   is the connection time change of two consecutive moments, and 

the connection time change of the most recent moment is more informative than that of relatively old 
connections. Therefore, this paper introduces the decay factor  γ ∈ [0, 1]  to reflect the effect of time.

Trust Models
The evaluation   T  d  

t    obtained by node   V  si    and node   V  ej    through direct interaction within time interval  
t  can be expressed as shown in equation 15.

  T  d(i,j)  
(t)   = α  T  c(i,j)  

(t)   + (1 − α )  T  p(i,j)  
(t)    (15)

In equation 15,   T  p  
t    is a measure of the historical behaviour of a node   V  ej   . Past trust changes over 

time, ensuring that its impact is reduced before new trust values are aggregated. Therefore, in this 
paper, we assume that the trust value decays over time with a decay factor of  μ . Past trust decays over 
time regardless of the presence of new interactions within the time interval  t , as shown in equation 16.

Figure 3. Trends in point-to-point connectivity for vehicle users
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  T  p(i,j)  
(t)   = μ  T  d(i,j)  

(t−1)   (16)

Current trust is the trust value calculated by the direct interaction between node   V  si    and node   
V  ej    at the current moment and is only calculated if node   V  si    has direct communication with node   
V  ej    at moment  t . In this paper,   T  c(i,j)  

(t)    is calculated by collecting the number of positive and negative 
interactions between node   V  si    and node   V  ej   , as shown in equation 17.

  T  c(i,j)  
(t)   =   P _ P + R    (17)

where  P  represents the number of forward interactions between node   V  si    and node   V  ej   , and  R  
represents the number of reverse interactions between   V  si    and node   V  ej   .

Indirect trust represents the trust value of node   V  ej    calculated by node   V  si    using the recommendations 
of all neighbor nodes   V  ek    within its communication range. The recommendation given by each neighbor 
node depends on the direct observation of the target node   V  ej    by that neighbor node   V  ek   . Indirect trust 
predicts the trust value of the target node and helps to overcome the cold start problem that exists when 
there is no direct trust between the source node   V  si    and the target node   V  ej   . Source node   V  si    broadcasts 
an indirect trust request to all neighbor nodes   V  ek    within the communication range and sends it as a 
recommendation message to source node   V  si    when   V  ek    possesses the recommended trust   T  d(k,j)  

(t)   . When 
evaluating nodes using indirect trust values, malicious nodes may send recommendation messages.

We use confidence  Con  f  k    with trust bias  De  v  k    to filter neighbor nodes that behave abnormally 
or make false recommendations in the neighbor recommendation list, and when  Con  f  k   − De  
v  k   < 0 , the current neighbor node is considered a malicious neighbor node. The confidence  Con  
f  k    measures whether source node   V  si    can trust recommended neighbor nodes   V  ek   , and node   V  si    
judges the recommendation of each neighbor node   V  ek    based on the current trust value   T  c(i,k)  

(t)   . False 
recommendations from malicious nodes   T  r(k,j)  

(t)    are ignored.
The trust bias  De  v  k    is used to determine whether there is any improper false recommendation by 

further judging the compatibility of the recommendation of each node in the list with the subjective 
judgement value of the source node   V  si    after filtering out the nodes with abnormal behaviour in the 
list. Node   V  si    compares the received recommendations with the current trust value   T  c(i,j)  

(t)    and accepts 
only those recommendations that have a smaller deviation from   T  c(i,j)  

(t)   .
When a node lacks historical interaction information with the target node, the subjective judgement 

value cannot be used as the base value for deviation comparison. To overcome this problem, the 
confidence value of the target node is temporarily used as the base value for comparison with that 
of the current neighbor nodes. In contrast, when the source node has sufficient subjective judgement 
on the target node, it can compare the deviation between the neighbor’s recommended value and its 
own subjective judgement value, as shown in equation 18.

 De  v  k   =  
{

 
 | T  c(i,j)  

(t)   −  T  c(k,j)  
(t)  | if  T  p(i,j)  

(t)   ≥ 0.5
   

 |Con  f  k   − Con  f  j  | otherwise
     (18)

By calculating  Con  f  k    and  De  v  k   , it is possible to exclude nodes that make false recommendations. 
The behaviour between nodes is similar to that of social networks, and we use the closeness  In  t  (k,j)    and 
similarity  Si  m  (i,j)    in social relationships to further measure the relationships between nodes.

The historical interaction degree between neighbor node   V  ek    and target node   V  ej    is measured by  
In  t  (k,j)   . Under the condition of good behaviour of neighbor nodes, when the neighbor node has a long 
time content interaction with the target node, it can be considered that neighbor node   V  ek    is more 
sufficiently aware of the current target node   V  ej   , and the value of its recommendation is high.
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 Si  m  (i,j)    represents the behavioural similarity between source node   V  si    and neighbor node   V  ek   . A 
node always wants to find a possible long-term neighbor within a dynamic communication range. 
In this way, trusted long-term neighbors can continuously feed the central vehicle with a high value 
of benign recommendations.

As shown in Figure 4, the position information of the two nodes is extracted from the beacon 
messages of the source node and the neighbor nodes under the two time slots. Based on the coordinates 
of the source node under moment  t − 1  ( x  i  

(t−1) ,  y  i  
(t−1) )  and the coordinates of the source node under 

moment  t  ( x  i  
(t) ,  y  i  

(t) ) , the vector     → L    i    of   V  si    under time slot  t  is constructed. Based on the coordinates of 
the neighbor node at time  t − 1  ( x  k  

(t−1) ,  y  k  
(t−1) )  and the coordinates of the neighbor node  t  at time  ( x  k  

(t) ,  
y  k  

(t) ) , we construct the vector     → L    k    of   V  ek    under the time slot t .
Based on the two vectors, the travelling angle within the current time slot of the two nodes can 

be determined, as shown in equation 19.

 cos θ =   
   → L    i   ×    → L    k   _ 

 |   → L    i  |  ×  |   → L    k  |     (19)

The clip angle can be used to simply determine whether the neighbor can continue to be a trusted 
neighbor to provide recommendations by the next task migration, and if the current neighbor node 
meets the judgement conditions, it is said to be an old neighbor within the communication range. 
Finding additional neighbor nodes and assigning higher weights to the recommendations they provide 
can improve the trustworthiness of the whole indirect trust model. If the current neighbor node does 
not meet the judgement conditions, then such a short-term passer-by within the communication range 
is given a lower similarity weight.

Figure 4. Travelling pinching angle for vehicle users at time gap
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When the angle of vehicle travel is from   0        °    to   45        °   , it is considered that the neighboring vehicle 
and the current center vehicle are still driving on the same road, and the deviation of the vehicle's 
running direction indicates that the vehicle may change lanes or overtake, and such a deviation of 
the driving behavior is considered temporary, which means that the neighboring vehicle has a high 
degree of behavioral similarity with the current center vehicle. When the angle of vehicle travel is 
from   45        °    to   90        °   , the neighboring vehicle is considered at a fork in the road with the current center 
vehicle, and the deviation of the vehicle's running direction indicates that the vehicle may change the 
road to the left or to the right; such a deviation of driving behaviour accelerates the reduction of the 
remaining connecting time between the vehicles, and this time, the neighboring vehicle has a proper 
behavioral similarity with the current center vehicle. When the vehicle driving angle is between   90        °    
and   180        °   , the neighboring vehicle is considered changing the road in the opposite direction or driving 
on the opposite road from the current center vehicle at the beginning of the connection, and such a 
driving behavior deviation results in the connection between the vehicles being only temporary, and 
the neighboring vehicle has a lower behavioral similarity to the current center vehicle  Si  m  (i,j)   . This 
can be expressed as shown in equation 20.

  

Si  m  (i,j)   =   cos θ + 1 _ 2  

   
 

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

 0   °  ≤ θ <  45   °   Si  m  (i,j)   ∈ [1,   1 _ 2   +    √ 
_

 2   _ 4  )

      45   °  ≤ θ <  90   °   Si  m  (i,j)   ∈ [  1 _ 2   +    √ 
_

 2   _ 4  ,   1 _ 2  )     

 90   °  ≤ θ ≤  180   °   Si  m  (i,j)   ∈ [  1 _ 2  , 0]

   
   (20)

where  β  represents the assigned weights of the current trust and indirect trust. At moment  t , the 
global trust value   T  (i,j)  

(i)    computed by node   V  si    on node   V  ej    can be computed as shown in equation 21.

  

 T  (i,j)  
(i)   =   1 _ n    ∑ 

k∈R
    (1 − β ) ×  T  d(i,j)  

(t)   + β ×  T  d(k,j)  
(t)  

    
β =  

⎧
 

⎪
 ⎨ 

⎪
 

⎩
 
0.5     if   

In  t  (k,j)   + Si  m  (i,k)   ___________ 2   ≥ 0.5
    

  
In  t  (k,j)   + Si  m  (i,k)   ___________ 2    otherwise

   
   (21)

Service Models
Assuming that the computational powers of  r  and the service vehicle   V  ej    are   f  r    and   f   V  ej  

   , respectively, 
the computational latency required to process task   ω  si    is denoted as shown in equations 22 and 23.

  D   V  si  ,r
  M   =   

 ω  si   _  f  r  
    (22)

  D   V  si  , V  ej  
  M   =   

 ω  si   _  f   V  ej  
      (23)

Thus, the task generates the total processing delay required for vehicle   V  si    unloading to the 
roadside unit versus the service vehicle, as shown in equations 24 and 25.

  D   V  si  ,r
   =  D   V  si  ,r

  C   +  D   V  si  ,r
  M    (24)
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  D   V  si  , V  ej  
   =  D   V  si   V  ej  

  C   +  D   V  si  , V  ej  
  M    (25)

To avoid the inefficiency of service processing caused by many real-time tasks, this paper designs 
service processing windows   C  r    and   C  j    for the roadside units and service vehicles, respectively, and 
the service nodes refuse to perform the newly arrived computational tasks when the service window 
is congested.

The goal of this paper is to select the global best service node in the scenario for each task-
generating vehicle to minimize the task processing delay and maximize the communication link 
stability with the trust metric of the target service node. Therefore, in this paper, we denote  γ  as the 
sum of the weights of the above parameters, and the joint optimization problem of task offloading 
can be formulated as shown in equation 26.

  

P1 :  min   x  ij  , y  ir  
     ∑ 

i=1
  

N

     ∑ 
j=1

  
M

     x  ij    γ  ij   +  y  ir    γ  ir  

   

s . t .     C  1   :  D   V  si  , V  ej  
   ≤  C       V  si  , V  ej  

    
t  

   

     C  2   :  D   V  si  ,r
   ≤  C       V  si  ,r

    
t  

   

     C  3   :  L   V  si  , V  ej  
  t  ,  L   V  si  ,r

  t   ≤  Γ  L  

    
     C  4   : 0 ≤  p  j  ,  p  r   ≤  p  max  

    
     C  5   :  ∑ 

j=1
  

M

   x  ij   +  y  ir   = 1, i ∈ N, j ∈ M 
     

      C  6   :  x  ij  ,  y  ir   ∈  {  0, 1 }  , i ∈ N, j ∈ M 

     

     C  7   :  ∑ 
i=1

  
N

   ω  si    x  ij   ≤  C  j   

   

     C  8   :  ∑ 
i=1

  
N

   ω  si    y  ir   ≤  C  r   

    (26)

where   C  1    and   C  2    indicate that the task processing delay must not exceed the maximum connection 
time of the end-to-end link.   C  3    indicates that the stability of the end-to-end link cannot be lower than 
the minimum stability requirement,   C  4    indicates that the transmit power of each service vehicle and 
roadside unit cannot exceed the power maximum limit, and   C  5    and   C  6    indicate that each task-generating 
vehicle can only select a unique service node in the scenario for task offloading.   C  7    and   C  8    indicate 
that the service node cannot perform more computational tasks than the maximum capacity of the 
service window.

PROBLEM ANALYSIS AND ALGORITHM DESIGN

Since problem  P1  contains binary decision variables   x  ij    and   y  ir   , the presence of discrete variables 
causes  P1  to be a nonconvex problem, making the solution of this problem more complex. At the 
same time, all binary decision variables are coupled. Referring to the objective function form of Du 
et al. (2023) we can transform the  P1  problem into a SAT problem to prove that the  P1  problem is 
an NP question. At this point, it is almost impossible to find the optimal solution to the  P1  problem 
in polynomial time.

Parallel ADMM Optimization Framework
For problem  P1 , the number of variables and constraints reaches  MN + N  and  2MN + 6N + 3M , 

respectively, and the computational burden of this problem increases as the number of vehicles and 
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service units generated by the task increases. The ADMM is a heuristic algorithm for solving 
large-scale optimization problems (Boyd et al., 2021). In this paper, the original problem is divided 
independently through the ADMM algorithm, and the convex difference algorithm is used to solve 
the independent subproblems. Specifically, this paper decomposes  P1  into  M + 1  subproblems, and 
the problems are independent of each other. Each subproblem corresponds to a service vehicle or a 
roadside unit. This paper utilizes the same centralized controller to parallelize these subproblems, 
and each subproblem is run on a different computational unit to ensure solution efficiency. Thus, the 
solving efficiency is guaranteed.

First,  P1  is deconstructed into several independent subproblems, but due to the existence of 
the coupling constraint   C  5   , the original problem cannot be divided simply. Therefore, in this paper, 
we consider copying the global variable   x  ij  ,  y  ir    to obtain its corresponding local variable   _  x  ij   ,  

_  y  ir    , and 
at the same time, according to the constraint   C  5   , we can obtain the coupling constraints of the local 
variables, as shown in equation 27.

  { 
 _  x  ij    =  x  ij     i ∈ N, j ∈ M

   
 _  y  ir    =  y  ir     i ∈ N

     (27)

Based on equation 27, the coupling constraint   C  5    of problem  P1  can be converted to equation 28.

  ∑ 
j=1

  
M

    _  x  ij    +  _  y  ir   , i ∈ N, j ∈ M  (28)

Using equations 27 and 28 to replace   C  5   , the problem  P1  can be equivalently converted to 
equation 29.

  
P2 :  min  

 V  si  ∈ V  s  
     ∑ 

i=1
  

N

     ∑ 
j=1

  
M

     x  ij    γ  ij   +  y  ir    γ  ir     
s.t.      C  1  ,  C  2  ,  C  3  ,  C  4  ,  C  5  ,  C  6  ,  C  7  ,  C  8  , (27 ) , (28)

   (29)

Thus, the augmented Lagrangian function of problem  P2  can be expressed as shown in equation 30.

  
 L  p  ( x  ij  ,  

_  x  ij   ,  y  ir  ,  
_  y  ir   , λ, μ ) =  ∑ 

i=1
  

N

     ∑ 
j=1

  
M

     x  ij    γ  ij   +  y  ir    γ  ir   +  ∑ 
i=1

  
N

     ∑ 
j=1

  
M

     λ  ij   ( x  ij   −  _  x  ij   ) 
      

+  ∑ 
i=1

  
N

     μ  i  ( y  ir   −  
_

  y  ir    ) +   
ρ
 _ 2    ∑ 

i=1
  

N

     ∑ 
j=1

  
M

    Skipping malformed tag: msup +   
ρ
 _ 2    ∑ 

i=1
  

N

    Skipping malformed tag: msup
    

  
 

(30)

where  λ =   {    λ  ij   }    
i∈N,j∈M

  ,  μ =   {    μ  i   }    
i∈N

    are the Lagrange multipliers on the coupling constraints 
of the global and local variables in equation 28, respectively.  ρ > 0  is the coefficient of the quadratic 
penalty term, and this coefficient determines the convergence speed of the ADMNM. In this paper, the 
problem  P1  is solved step by step by treating the Lagrangian function by augmenting and generalizing 
the global variables, the local variables, and the update of the dyadic variables.

For global variable updating, at the  t + 1  iteration, the optimization framework can obtain the 
updated values of local and dyadic variables after the  t  iteration, so the global variable    {    x  ij  ,  y  ir   }     will 
be further updated at the  t + 1  iteration by solving the problem  P3 , as shown in equation 31.



13

International Journal of Digital Crime and Forensics
Volume 16 • Issue 1 • January-December 2024

  
P3   :    min  

 V  si  ∈ V  s  
     L  p   ( x  ij  ,  ‾  x  ij  (t) ,  y  ir  ,  ‾  y  ir  (t) , λ(t ) , μ(t)) 

    
s . t .       C  1  ,  C  2  ,  C  3  ,  C  4  ,  C  6  ,  C  7  ,  C  8  

    (31)

For each service vehicle   V  ej   , let    x  j   =  {    x  ij  , i ∈ N }     denote the vector of all local offloading 
decisions associated with the service vehicle   V  ej   , and for the curb unit  r , let   y =  {    y  i  , i ∈ N }     denote 
the vector of all local offloading decisions associated with the curb unit  r . Thus, problem  P3  can be 
rewritten as shown in equation 32.

  L  p   ( x  ij  ,  ‾  x  ij  (t) ,  y  ir  ,  ‾  y  ir  (t) , λ(t ) , μ(t))  =   ∑  
M

     
j=1

     f  j   ( x  j  )  +  g  r   (y)   (32)

where the functions   f  j   ( x  j  ) ,  g  r  (y)  are denoted as shown in equations 33 and 34.

  f  j  ( x  j   ) =   ∑  
N

     
i=1

     x  ij    γ  ij   +  λ  ij  (t ) ( x  ij   −  ‾  x  ij  (t)  ) +   ρ _ 2    ( x  ij   −  ‾  x  ij  (t) )   
2     (33)

  g  r  (y ) =   ∑  
N

     
i=1

     y  ir    γ  ir   +  μ  i  (t ) ( y  ir   −  ‾  y  ir  (t)  ) +   ρ _ 2    ( y  ir   −  ‾  y  ir  (t) )   
2     (34)

Therefore, the objective function of problem  P3  is fully separable with the division of the set 
of decision vectors of service vehicles and roadside units. Moreover, the objective function can be 
further deconstructed into two independent functions   f  j   ( x  j  ) ,  g  r   (y)  . In this paper, problem  P3  is further 
deconstructed into two subproblems,  P4  and  P5 , where each computational unit  j, j ∈  [1, M]   can 
independently handle problem  P4 , computational unit  M + 1  will handle problems  P5 ,  P4  and  P5  
associated with roadside unit  r , and the computational unit will handle problems and be associated 
with the roadside unit, as shown in equations 35 and 36.

  
P4 : mi  n   x  j  

    f  j  ( x  j  )
  

 s . t .       C  1  ,  C  3  ,  C  4  ,  C  7  ,  x  ij   ∈  {  0, 1 }  , i ∈ N 
   (35)

  
P5 : mi  n  y    g  r  (y)

  
 s . t .       C  2  ,  C  3  ,  C  4  ,  C  8  ,  y  i   ∈  {  0, 1 }  , i ∈ N 

   (36)

The subproblem  P4  is nonconvex due to the presence of the binary variable    x  ij   ∈  {  0, 1 }    . We 
equivalently convert the binary variable constraints in  P4  to the interaction of equation 37 and further 
convert  P4  to  P6 , as shown in equations 37 and 38.

  
 ∑ 
i∈N

    ( x  ij   −  x  ij  
2  ) ≤ 0

   
s . t .    x  ij   ∈ [0, 1 ] , i ∈ N

   (37)

  
P6 :  min   x  j  

     f  j  ( x  j  )  
s.t.      C  1  ,  C  3  ,  C  4  ,  C  7  , (37)

   (38)
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After the above equivalent conversion, the objective function of problem  P6  is linear, but the 
existence of equation 37 causes problem  P6  to remain nonconvex. To address equation 37, this paper 
converts problem  P6  to problem  P7 , as shown in equation 39.

  
P7 :  min  

     x  j  
  
     f  j  ( x  j   ) + ζ  ∑ 

i∈N
    ( x  ij   −  x  ij        

2 )
    

s.t.      C  1  ,  C  3  ,  C  4  ,  C  7  , (37)
    (39)

where  ζ  is a penalty factor,  ζ > 0 . Problem  P7  is equivalent to problem  P6  when there exists a 
sufficiently large  ζ (Che et al., 2014).

We use a convex difference algorithm to solve the nonconvex problem  P7 , which splits 
the problem  P7 , into the difference of two standard convex functions, i.e.,  a  j  ( x  j   ) −  b  j  ( x  j  ) , where 
  a  j  ( x  j   ) =  f         j  ( x  j   ) + ζ ∑ 

i∈N
    x         ij     and   b  j  ( x  j   ) = ζ ∑ 

i∈N
    x  ij        

2   . According to the algorithm in Table 2, in this 
paper, we use a sequential convex approximation method to obtain a locally optimal solution in the 
current iteration round.

  x  j  
n   is the solution obtained by the algorithm at the nth iteration, and  ∇  x  j    is a subgradient operation 

on the feasible set of service vehicle decision variables   x  j    that yields the problem  P8  as a convex 
function. In this paper, we use the interior point method (Wright, 2023) to solve  P8  and thus obtain 
the near-optimal solution   x  j    of  P7 . In Algorithm 1,   x  j  

n   obtained in each iteration is always better than   
x  j  

n−1   obtained in the previous iteration. The iterative solution set    {    x  j        
n  }    

n=1,2,3,...
    converges. Thus, the 

iterative process can converge in a finite number of rounds, and the convergence results are consistent.
Consistent with  P4 ,  P5  is also linear and has the binary variable    y  i   ∈  {  0, 1 }    . Therefore,  P5  

can be solved using the same solution method as its counterpart, the serial-convex approximation.
For the update of local variables, at iteration  t + 1 , the optimization framework can obtain the 

updated values of the global variables after iteration  t + 1  and the updated values of the dyadic 
variables after iteration  t , so the local variable    {   _  x  ij   ,  

_  y  ir    }     will be further updated at iteration  t + 1  by 
solving problem  P9 , as shown in equation 40.

  
P9 :  min   V  si  ∈ V  s  

    L  p  ( x  ij  (t + 1 ) ,  _  x  ij   ,  y  ir  (t + 1 ) ,  _  y  ir   , λ(t ) , μ(t ) )
     

 s . t .     (28),  _  x  ij   ,  
_  y  ir    ∈  {  0, 1 }  , i ∈ N, j ∈ M 

    (40)

After eliminating the constant term in the objective function  P9 , the objective function is 
equivalent to equation 41.

  
 min   _  x  ij   , 

_  y  ir   
    ∑ 

i=1
  

N

     L  i   ( 
_  x  ij   ,  

_  y  ir   )    
 s . t .     (28),  _  x  ij   ,  

_  y  ir    ∈  {  0, 1 }  , i ∈ N, j ∈ M 
   (41)

Table 2. Subproblem solving based on convex difference algorithm

Algorithm 1: Convex Difference Algorithm for Solving the Subproblem  p7 
Inputs: maximum number of iterations   n  max   , convergence value  δ 
Output: convergence result for   x  j   
Initialization: Select an initial feasible solution   x  j  

0   to the subproblem  p7 .  n = 0  
1. for  n ≤  n  max    do
2. Solve the convex problem  P8 :   min   x  j  

    a  j  ( x  j  
n  ) −  b  j  ( x  j  

n  ) − ∇  x  j    b  j  ( x  j  
n  ) ( x  j   −  x  j  

n )  
3. Obtain the optimal solution   x  j  

n+1   
4.  n = n + 1  
5. end for
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where   L  i   ( 
_  x  i   ,  

_  y  ir   )   is the local variable update function, which is expressed as shown in equation 42.

  L  i   ( 
_  x  ij   ,  

_  y  it   )  =  ∑  
M

    [  ρ _ 2   
_

  x  ij  
2   −  λ  ij  (t )  

_  x  ij    − ρ    _ x     i  ij      x  ij  (t + 1)]  +  [  ρ _ 2   
_

  y  it  
2   − μ(t )  _  y  it    − ρ _  y  i     y  ij  (t + 1)]   (42)

According to the coupling constraints of local variables, for each requesting vehicle  i , only one 
of the local variables   ( 

_  x  ij   ,  
_  y  ir   )   can be assigned a value of 1. Therefore, for each requesting vehicle  i , 

there are  M + 1  possible solutions for the service node selection decision. By calculating the values 
of the local variable update function corresponding to the  M + 1  decisions, the minimum is selected 
as the solution of the local variable. Thus, the optimal solution of problem  P9  is formalized as shown 
in equation 43.

  { 
 _  x  ij    = 1,  _  y  ir    = 0  if  c  i,j   =  C  i,min  , i ∈ N, j ∈ M

      _  x  ij    = 0,  _  y  ir    = 1  if  c  i,r   =  C  i,min  , i ∈ N, j ∈ M    (43)

  c  i,j   = 1 / 2 ρ −  λ  ij  (t ) − ρ  x  ij  (t + 1)  and   c  i,r   = 1 / 2 ρ −  μ  i  (t ) − ρ  y  ir  (t + 1) .   c  i,min    denotes the optimal 
value among all feasible solutions for the requested vehicle  i , which is denoted as    c  i,min   = min {    c  i,j∈M  ,  c  i,r   }    .

To update the dyadic variables, this paper utilizes    {    x  ij  (t + 1 ) ,  y  ir  (t + 1 )  ‾ ,  x  ij  (t + 1) ,  ‾  y  ir  (t + 1)  }     
obtained from the above optimization of the global and local variables and further updates the 
dyadic variables   λ  ij  (t + 1)  and   μ  ij  (t + 1)  in the first  t + 1  iteration. As shown in Table 3, Algorithm 2 
completes the solution of the original problem  P1  through a parallel optimization framework shown 
in equations 44 and 45.

  λ  ij  (t + 1 ) =  λ  ij  (t ) + ρ ( x  ij  (t + 1 ) −  ‾  x  ij  (t + 1) ) , i ∈ N, j ∈ M  (44)

  μ  i  (t + 1 ) =  μ  i  (t ) + ρ( y  ir  (t + 1 ) −  ‾  y  ir  (t + 1)  ) , i ∈ N  (45)

Performance Analysis of the Proposed Algorithm
In this paper, problem  P3  is deconstructed into two subproblems,  P4  and  P5 , by updating the 

global variables. The two subproblems use the convex difference algorithm to solve the problem 
with the presence of binary variable constraints. First, in subproblem  P4 , there are  N  optimization 
variables and  2N + 2  convex constraints for each service vehicle node   V  ej   . Therefore, the computational 
complexity of solving subproblem  P4  is  O( max  j∈M  (  |N|    3  ) (2 |N|  + 2 ) ) = O( max  j∈M     |N|    4 ) . In subproblem  
P5 , the common curb unit  r  has  N  optimization variables and  2N + 2  convex constraints, so the 
computational complexity of solving subproblem  P5  is also  O( max  r     |N|    4 ) . Second, in the local variable 
updating problem  P9 , let   c  1    denote the computational steps required to solve equation 43, so the 
computational complexity of solving  P9  is   c  1   N . Finally, in the update problem for the dyadic variables, 
let   c  2    denote the computational steps required to solve equations 44 and 45, and its computational 
complexity is finally measured as   c  2   N . Thus, the computational complexity of each iteration of the 
ADMM optimization framework is  O( N   4  + ( c  1   +  c  2   ) N ) = O( N   4 ) .

Let  t  denote the maximum number of iterations required for the algorithm to converge; thus, the 
overall computational complexity of the proposed algorithm is obtained as  O ( N   4 ) t . The proposed 
algorithm significantly improves the solution efficiency compared to the branch-and-bound method 
for solving the problem at the exponential scale.
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Experimental Analysis
In this section, the paper first evaluates the convergence of the proposed algorithm and then 

verifies the performance of the proposed scheme against other baseline schemes. The main dataset 
used in this paper is derived from a publicly available dataset (Wang et al., 2019). The required 
experimental parameter settings for this section are shown in Table 4.

Algorithm Performance Analysis
Figure 5 demonstrates the convergence process of the proposed scheme in this paper for N=5, 

N=10, N=20, and N=40, respectively, and compares the performance of the proposed algorithm 
with that of the branch-and-bound method. The branch-and-bound (BNB) method is a classic 
method for solving discrete combinatorial optimization problems that is able to achieve the optimal 
performance of  1 − ε  for a given small parameter  ε ≥ 0 . In this experiment,  ε = 0.001  is taken to 
obtain the approximate optimal solutions obtained by the branch-and-bound method in four cases. 
With increasing system size, the number of iterations required by the proposed algorithm does not 
increase explosively, the total number of iterations in the four cases is relatively stable, and all of them 
can converge quickly within 35 iterations. At the same time, the final results under the four system 
sizes are very close to those of the branch-and-bound method, and it can be seen that the proposed 
algorithm can obtain an approximate optimal solution.

Table 3. ADMM algorithm for trusted computation offloading of service nodes

Algorithm 2: ADMM-based service node selection algorithm
Inputs: maximum number of iterations   t  max   , convergence error  emp 
Output: Task completion time
Initialization:  t = 1 ,  ε = 0.01 ,  ρ = 0.05 ,   λ  ij  

1  = 0, i ∈ N, j ∈ M ,   μ  i  
1  = 0, i ∈ N  

1. While   | {  x, y }   −  {    _ x  ,   _ y   }  |  ≥ ε  and  t ≤  t  max    
2. Update global variables:  M  computation unit parallel computation subproblem  p7 ,  M + 1  computation unit 
computation subproblem  p5 , update global variables    {  x, y }     t+1   
3. Update local variables: update local variables by equation 43
4. Update the dyadic variables: update the dyadic variables by equations 44 and 45
5.  t = t + 1  
6. Calculate the value of the generalized Lagrangian function by bringing    {  x, y }     into equation 31
7. End while

Table 4. Simulation parameters

Parameters Define (be) Worth
 p Calculate task packet size 1M

  B  i,r   Roadside unit channel bandwidth 20MHz

  B  i,j   Vehicle node channel bandwidth 15MHz

 P Channel transmission power 200mW

 R Vehicle node communication radius 1000m
  ω  i   Number of CPU cycles required for task computation [3,10]Gigacycles

  f  r   Roadside unit computing power 5 Gigacycles/s

  C  r   Calculated Load for Curbside Units 30 Gigacycles

  f  f   Helper Vehicle Computing Capability 1 Gigacycles/s

  C  j   Helper Vehicle Calculation Load 20 Gigacycles
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Figure 6 compares the running time of the proposed algorithm with that of the branching 
delimitation method for different numbers of requested vehicles. Due to the time-consuming nature 
of the branching delimitation method, its running time grows approximately exponentially with the 
increase in the number of requested vehicles. In contrast, the average running time of the proposed 
algorithm increases slowly with the increase in the number of requested vehicles, which shows that the 
proposed algorithm can significantly reduce the running time while guaranteeing good performance.

Comparative Analysis
To validate the performance of the proposed scheme in system task computations, two additional 

baseline schemes are introduced in this paper: All-Local and All-Edge. In the All-Local scheme, all 
tasks generated by the requesting vehicles are handed over to the local terminal for computation. In 
the All-Edge scheme, all tasks are fully offloaded to be computed at the roadside unit.

Figure 7 reflects the overall task duration required with different schemes for different average 
computation volumes of requesting vehicles.

As the average computation amount of the requesting vehicles increases, the computation latency 
required by the service nodes and the local terminals increases with the fixed computation capacity 
of the nodes, and the overall task lengths of the three strategies increase significantly. The overall 
task duration required by the algorithm proposed in this paper is lower than that of the All-Edge 
scheme. This is because, in this paper, the two metrics of D2D link stability and security, which 

Figure 5. Convergence process of the proposed algorithm
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affect the quality of task service, are introduced in the selection of optimal service nodes. Although 
there is a significant difference in computational power between helper vehicles and roadside units, 
the computational latency required by both roadside units and helper vehicles is within the latency 
tolerance of the requesting vehicle when the given computational volume is small. The nodes will 
favor the two parameters of D2D link stability and security when selecting the optimal service node. 
Under the comprehensive consideration of delay, link stability, and trust assessment, the overall task 
duration obtained by the algorithm proposed in this paper is significantly smaller than that of the 
All-Edge scheme, shortening the task duration by approximately 13%. As the average computation 
of the requesting vehicle increases, the roadside unit cannot satisfy the full computation from the 
vehicle. At this point, the requesting vehicle hands over the tasks that cannot be offloaded to local 
computation, resulting in a rapid increase in the overall task duration of the All-Edge scheme. When 

Figure 6. Comparison of running times with different numbers of requested vehicles

Figure 7. Comparison of overall task duration for different average computations of requested vehicles
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the average computation volume of the requesting vehicles is set to 10, the scheme proposed in this 
paper shortens the task duration by approximately 48% compared to the All-Edge scheme. Compared 
with the other two baseline schemes, the scheme proposed in this paper can significantly reduce the 
system task duration while ensuring service stability and security.

As shown in Figure 8, the experiment examines the computational resource utilization of the 
proposed scheme in this paper at the roadside unit (RSU) and the helper vehicle for different average 
computations of the requesting vehicles.

According to Figure 8, the computational resource utilization of both the roadside unit and the 
helper vehicle increases as the average computational volume of the requesting vehicle continues 
to increase. When the average number of computations of the requesting vehicle is low, the 
computational resource utilization of the roadside unit fails to reach 100%. This is because, with a 
smaller computational delay gap, helper vehicles with higher link stability and trust assessment can 
provide better computational services for some of the requesting vehicles. In addition, as the average 
computation volume of the requesting vehicles continues to increase, the difference in computation 
delay between the roadside unit and the helper vehicles significantly increases when more vehicle 
users choose the roadside unit with lower computation delay as the target service node. At this time, 
the helper vehicles with higher link stability and trust assessment in the system start to share the 
computational pressure for the roadside unit, and the utilization rate of the computational resources 
of the helper vehicles is continuously improved. In the All-Edge scheme, the computational resource 
satisfaction rate of vehicle users decreases significantly with the increase in the average computational 
volume of requesting vehicles because the size of the average computational volume of requesting 
vehicles directly affects the computational load of the roadside unit. The scheme proposed in this 
paper can fully satisfy the computational resource demand of the requesting vehicles and effectively 
alleviate the computational load of each service node in the system.

Figure 9 compares the overall task length required with different schemes for different helper 
vehicle computing powers.

Figure 8. Service node utilization and computational resource satisfaction rate for different average computations of the requested 
vehicles
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The overall task duration required by both the All-Local and All-Edge schemes remains unchanged 
with increasing computational power of helper vehicles because neither baseline scheme considers 
roadside travelling vehicles as service nodes in the system, and thus the task duration in the system is not 
affected. In contrast, the overall task duration required by the scheme proposed in this paper decreases 
as the computational power of the helper vehicle continues to increase. When the computational power 
of helper vehicles is the lowest, it saves approximately 13% of the task duration compared to the All-
Edge scheme, and when the computational power of helper vehicles is equal to that of roadside units, 
it saves approximately 30% of the task duration compared to the All-Edge scheme.

Figure 10 compares the overall task duration required with different schemes for different roadside 
unit computing powers.

The overall task duration required by the All-Local scheme remains unchanged because all the 
tasks generated by the requesting vehicles are handed over to the local terminals for computation, 
and the task duration is related only to the local terminal's computing power. Both the All-Edge 
and the scheme proposed in this paper decrease slowly as the roadside unit computational power 
increases, this is because for a fixed average computation amount of the requesting vehicle, as the 
computation power of the roadside unit increases significantly, the change in the computation delay 
required by the roadside unit decreases. For the All-Edge scheme, doubling the computational power 
of the roadside unit saves approximately 4% of the overall task duration. For the scheme proposed 
in this paper, doubling the computational power of the curb unit saves about 1.8% of the overall task 
duration. In contrast, the overall task duration of the proposed scheme in this paper changes more 
gently. It can be seen that the scheme proposed in this paper can help the system to perform better 
when the computational power of the roadside unit is insufficient.

CONCLUSION

This paper investigates the problem of trusted computing offloading for multivehicle users in 
scenarios lacking roadside infrastructure. To this end, this paper acts as a service node to provide 
computing services to vehicular users from vehicles with free computing resources that are travelling 
or parked on the roadside and simultaneously proposes a trust evaluation model for mobile vehicular 

Figure 9. Overall task duration with different helper vehicle computing power
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networks. In this paper, the trusted computing offloading problem for service nodes based on trust 
metrics is modelled as an integer planning problem, with a goal of minimizing the total delay of 
tasks performed by multivehicle users under the requirements of service node security and D2D link 
stability. To solve this problem, this paper proposes a parallel ADMM solution method that uses a 
convex difference algorithm to solve the subproblem. On this basis, this paper analyses the convergence 
and complexity of the algorithm and demonstrates the performance of the proposed method through 
simulation experiments. In the future, we aim to introduce additional effective strategies such as energy 
harvesting, service caching, and other technologies into the existing solution to further expand the 
applicability of the solution. In addition, we plan to introduce reinforcement learning methods into 
vehicular networks to better design offloading strategies.
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