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ABSTRACT

The Multidimensional Knapsack Problem (MDKP) stands as a prominent challenge in 
combinatorial optimization, with diverse applications across various domains. The Artificial Bee 
Colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the foraging 
behavior of bees. The aim of this paper is to develop an ABC with the goal of improving the solution 
quality in comparison to previous studies for the MDKP. In the proposed ABC algorithm, a heuristic 
method is presented to make employed bees. The roulette wheel and k-tournament methods are 
investigated for selecting employed bees by onlooker bees. For crossing over, two methods including 
one-point and uniform are studied. To tune the parameters, the Design of Experiment (DOE) method 
has been applied. The well-known benchmark test problems have been used to evaluate the proposed 
algorithm. The results show the absolute superiority of the solutions generated by the proposed 
algorithm in compared with the previous studies.
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1. INTRODUCTION

The Multidimensional Knapsack Problem (MDKP) is an extension of the classic knapsack 
problem, where instead of a single constraint, there are multiple constraints to consider. Each item 
has multiple attributes or dimensions, and the goal is to maximize the total value of the items selected 
while staying within the constraints for each dimension. The MDKP is recognized as an NP-Hard 
integer programming problem (1). The problem can be mathematically defined as equations (1)-(3).
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​​​x​ j​​  ∈  ​{0,1}​,   j  ∈  N  =  ​{​​1,2, … , n​}​​​​

.	 (3)

In Kellerer et al. (2004) study, a set of items ​n​ with profits ​​c​ j​​  ≥ 0​ needs to be packed into a 
knapsack with ​m​ dimensions, each having capacities ​​b​ i​​  ≥ 0​. Each item ​j​ consumes ​​a​ ij​​  ≥ 0​ from each 
dimension ​i​ and binary variables ​​x​ j​​ ​determine the selection of items to maximize overall profit while 
adhering to knapsack constraints.

The MDKP is significant because it can represent a variety of real-world applications including 
resource allocation, intelligent transportation systems, logistics, Quality of Service (QoS), web 
service composition, energy-efficient offloading in mobile edge computing, medicine, budgeting 
problems, hardware design, and cloud computing. As a highly complex multi-constraint Combinatorial 
Optimization Problem (COP) with binary decision variables, and extensive research has been dedicated 
to the MDKP (Mkaouar et al., 2020).

Solving the MDKP is generally more complex than the classic knapsack problem due to the 
additional dimensionality. The most effective exact algorithms primarily utilize the branch-and-bound 
method. However, as the size of the MDKP increases, the time required for the branch-and-bound 
method grows exponentially, making it inefficient for large-scale MDKP instances. This inefficiency 
is a common drawback of exact algorithms. Various algorithms, such as dynamic programming, 
greedy algorithms, and metaheuristics can be adapted or extended to address the multidimensional 
version. Solving the MDKP is considered as a challenge in the field of optimization discussions 
(Chu & Beasley, 1998).

The ABC algorithm is a swarm intelligence optimization algorithm inspired by the foraging 
behavior of bees. ABC is widely used for solving optimization problems. ABC has been widely 
applied in various fields such as engineering design, data mining, and machine learning, due to its 
simplicity and ability to find high-quality solutions efficiently. Its versatility and effectiveness make 
it a popular choice for addressing diverse optimization challenges (Karaboga & Basturk, 2007).

The ABC algorithm is widely used due to its simplicity and high efficiency in various fields 
such as transportation, communications, engineering design, data mining, and machine learning. In 
transportation, ABC optimizes transportation routes and reduces associated costs (Karaboga et al., 
2007). In communications, it optimizes resource allocation and manages wireless networks (Karaboga 
& Ozturk, 2011). In engineering design, ABC solves complex design and optimization problems 
(Akay & Karaboga, 2012). In data mining and machine learning, it is used for feature selection, 
clustering, and parameter optimization of machine learning models (Karaboga & Basturk, 2008). In 
distributed computing, ABC optimizes resource allocation and load management (Gao et al., 2012).

The aim of this article is to develop a metaheuristic algorithm with the goal of improving the 
solution quality in comparison to the published sources in literature. In this study, the Beasley (2017) 
dataset has been employed for the implementation of the proposed algorithm. A total of 30 problems, 
each comprising 100 items and 5 knapsacks, has been selected for evaluating the performance of 
the proposed algorithm. The contributions presented in this article can be summarized as follows:

(1) 	 designing an Artificial Bee Colony (ABC) algorithm for MDKP,
(2) 	 developing a heuristic method to make employed bees (solutions),
(3) 	 investigating the roulette wheel and k-tournament methods for selecting employed bees by 

onlooker bees,
(4) 	 evaluation of two uniform and one-point crossover methods,
(5) 	 applying the Design of Experiments (DOE) method for parameter tuning,
(6) 	 improving the quality of solutions in comparison with the previous studies.
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In the following, the literature review on the topic is addressed in the second section, focusing 
on implemented heuristic and metaheuristic algorithms for the MDKP. The proposed ABC algorithm 
in the third section is explained. The fourth section presents parameter tuning using the Design of 
Experiments. In the fifth section, we delve into presenting the results and the final section of the 
paper is dedicated to the conclusion.

2. LITERATURE REVIEW

Numerous studies have been conducted on developing solution algorithms for the Multidimensional 
Knapsack Problem (MDKP). Given the objective of the article, this section reviews solution methods 
based on metaheuristics. This literature review categorizes the existing research based on different 
types of metaheuristic algorithms: evolutionary metaheuristics, swarm intelligence, Tabu Search, 
hybrid methods, heuristic methods, and instance generation and parameter control.

Significant advancements in solving MDKP using evolutionary algorithms include Chu et al.'s 
(1998) genetic algorithm-based approach and Yaghini et al.'s (2012) Memetic Algorithm using 
DIMMA principles. Liu et al. (2016) proposed a Binary Differential Evolution to effectively address 
the MDKP, contributing to this method's applicability in complex optimization scenarios. Mingo et 
al. (2017) combined Binary Particle Swarm Optimization with Genetic Algorithms, while Gazioglu 
(2022) developed the Bayesian Multiploid Genetic Algorithm. Most recently, Li et al. (2024) 
introduced a Binary Quantum-Behaved Particle Swarm Optimization (BQPSO) algorithm, which 
excels in large-scale MDKP instances.

Swarm intelligence algorithms have significantly advanced MDKP solutions. Notable 
contributions include Karaboga et al.'s (2007, 2009) Artificial Bee Colony (ABC) algorithm, Ke 
et al. (2010) demonstrated the effectiveness of Ant Colony Optimization on benchmark problems, 
showcasing its potential in solving MDKP efficiently. Abdel-basset et al.'s (2017) Improved Whales 
Optimization Algorithm, Meng et al.'s (2017) Fruit Fly Optimization Algorithm, and Garcia et al.'s 
(2017) integration of K-Means clustering with Firefly and Black Hole search algorithms. He et al. 
(2019) implemented the Grey Wolves Optimization Algorithm, while Lai et al. (2020) introduced the 
Diverse Particle Quantum Optimization Algorithm. Feng et al. (2022) developed the Binary Moth 
Search Algorithm, and Gupta et al. (2022) enhanced the Sine-Cosine Algorithm for MDKP. Recent 
contributions include Olivares et al. (2023) with Q-Learning for PSO and Du et al. (2023) with a 
binary Multi-Swarm version of the Fruit Fly Optimization Algorithm (bMFOA).

Dammeyer et al. (1993) investigated combining Tabu Search with Simulated Annealing to enhance 
optimization outcomes. Glover et al. (1996) and Hanafi et al. (1998) demonstrated the effectiveness 
of Tabu Search for MDKP. Lai et al. (2018) introduced the Two-Phase Evolutionary Tabu Algorithm, 
a more sophisticated approach tailored specifically for MDKP.

Hybrid methods combine two or more optimization techniques to leverage their individual 
strengths. Zhang et al. (2015) developed Hybrid Harmony Search by combining Fruit Fly Optimization 
and Harmony Search. Similarly, Feng et al. (2023) combined Hybrid Learning MS (HLMS) for 
solving the 0–1 MDKP with Global-Best Harmony Search (GHS) learning and Baldwinian learning, 
demonstrating significant improvements in optimization results.

Heuristic methods provide practical, though not necessarily optimal, solutions to complex 
problems. Weingartner et al. (1967) developed a heuristic based on Dynamic Programming, while 
Petersen (1967) introduced the Balas Additive Algorithm. Angelelli et al. (2010) proposed the Kernel 
Search Heuristic, and Hill et al. (2012) presented a heuristic that reduces problem size using Lagrangian 
relaxation. Wilbaut et al. (2009) proposed a dynamic variable fixation method for MDKP, and Della 
et al. (2012) evaluated a heuristic method for parallel computing.

Instance generation and parameter control methods focus on creating diverse problem instances 
and adaptively controlling algorithm parameters. Scherer et al. (2024) developed a novel instance 
generator for the multi-demand multidimensional knapsack problem, producing diverse and feasible 
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instances. Vega et al. (2024) proposed a self-adaptive strategy based on online parameter balance, 
improving the performance of population-based metaheuristics.

The above studies collectively showcase diverse approaches towards tackling MDKP, ranging 
from heuristic methods to sophisticated metaheuristic algorithms, contributing significantly to 
the optimization literature. The purpose of this paper is to continue the path of previous studies in 
improving the performance of algorithms and producing solutions with higher quality.

3. THE PROPOSED ARTIFICIAL BEE COLONY ALGORITHM

In this section, we will provide a comprehensive explanation of the proposed ABC algorithm. 
The ABC algorithm is a swarm intelligence optimization algorithm inspired by the foraging behavior 
of bees. Introduced by Karaboğa (2005), ABC is widely used for solving optimization problems. It 
starts with a population of artificial bees representing potential solutions to an optimization problem. 
The employed bees explore the solution space by adjusting their positions based on local information. 
The onlooker bees select solutions probabilistically according to their fitness. Abandoned solutions, 
which fail to improve over iterations, are replaced by new randomly generated bees. The scout bee 
is responsible for handling solutions that are no longer promising or have not been improved over a 
certain number of iterations. The purpose of the scout bee is to introduce diversity into the population 
by replacing these unproductive solutions with new randomly generated solutions.

The algorithm employs a balance between exploration and exploitation, seeking optimal solutions. 
The parameters like colony size and abandonment limit impact performance need careful adjustment. 
Its iterative process continues until a termination criterion, like a maximum number of iterations, is 
satisfied. In the subsequent part of this section, the presented algorithm is fully outlined.

3.1. The Data Structure
Data structures and algorithms are intricately connected, each relying on the other for effective 

computational solutions. Therefore, it is essential to carefully select an appropriate data structure 
before designing the algorithm. The algorithm begins by input data of the test problem. The problem 
input data is illustrated in a Table 1. Subsequently, the input parameters are presented in Table 2.

Other variables used include the number of employed bees and onlooker bees (each of which is 
half of the total number of colony bees), the time spent by the algorithm, the best bee found in each 
iteration and its fitness value, the best bee found in the whole algorithm and its fitness are presented 
in Table 3.

3.2. Overview of the Proposed ABC Algorithm
Figure 2 outlines the structure of the proposed ABC algorithm. It involves initializing a population 

of employed bees, iteratively performing employed and onlooker bee phases, tracking the best solution 
and fitness, and incorporating a scout bee phase to replace new solutions. The algorithm continues 
until the specified time limit is reached, and it returns the best fitness and corresponding solution 

Table 1. Input data

Row Data Name Type Description

1 Knapsack_No Int Number of knapsacks

2 Capacity Int[] Capacity array of knapsacks

3 Profits Int[] Profits array of each items

4 Weights Int[][] Weights matrix of the items
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found during the process. Let's delve into a step-by-step analysis of the pseudocode for the proposed 
ABC Algorithm.

The algorithm starts by receiving input data from Table 1 and parameters from Table 2, and it 
declares necessary variables from Table 3. Line 4, Captures the starting time for tracking elapsed time. 
In the following, a loop generates the initial population of employed bees using the make_a_bee() 
function. The algorithm enters the main loop, which continues until the elapsed time exceeds the 

Table 2. Input parameters

Row Parameter Name Type Description

1 Time_Limit Int Limitation of algorithm run time

2 Bees_No Int Number of bees

3 Max_Try_Improve Int Maximum iterative for improve

4 Selection_Type String Roulette Wheel / Tournament

5 Crossover_Type String One Point / Uniform

6 Pc_Uniform Percent Probability of crossover

7 Pm Percent Probability of mutation

Figure 1. Solution representation

Table 3. Variables

Row Var Name Type Initial Value Description

Bee Class NA A class for generating bees

Bee.selected_items Boolean[] [0] Selected items in the bee

Bee.fitness Float 0 The fitness of the bee

Bee.improve_try_num Int 0 The improve try number of the bee

employed_bees_no Int Bees_No/2 Employed bees number

onlooker_bees_no Object Bees_No/2 Onlooker bees number

elapsed_time Int 0 Time elapsed of the algorithm

best_fitness_of_iteration Float 0 Best fitness of iteration

best_bee_of_iteration Object Bee(Items_No) Best bee of iteration

best_fitness_so_far Float 0 Best fitness so far

best_bee_so_far List Null Best bee so far
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specified time limit. Line 9 calls the employed bees phase, where employed bees explore and adjust 
their solutions. Line 10 executes the onlooker bees phase. For tracking the best solution, the algorithm 
identifies the best solution and its corresponding fitness in the current iteration. If the fitness of the 
best solution in the current iteration is greater than the best fitness observed so far, the best fitness 
and the corresponding bee are updated. Line 16 calls the scout bees phase, where scout bees replace 
new solutions. After this step, elapsed time has been updated. The main loop continues until the 
elapsed time surpasses the specified time limit. At the end of the proposed ABC algorithm in Line 
19 returns the best fitness and the corresponding solution found during the algorithm’s execution. 
Next, we proceed to explain the main functions of the algorithm.

3.3. Making a Bee
For making a bee a heuristic algorithm is presented. Making a bee is performed in the starting 

time of the algorithm and in scout bees phase. The function used for making a bee is illustrated in 
Figure 3. In the presented heuristic algorithm, new_bee is initialized as a new instance of the Bee 
class, and feasibility_flag is set to True initially. The algorithm enters a loop that continues until the 
generating solution is feasible. Inside the loop, a random item is selected. The algorithm examines if 
the selected item is not already chosen (Line 5). If the item is not selected, it sets it as selected (Line 
6). Then it checks the feasibility of the current solution. If the solution is not feasible, it undoes the 
selection by setting the chosen item back to 0. Once the algorithm exits from the loop, the fitness of 
the solution is calculated (Line 13).

Finally, the function returns the new_bee object containing the feasible solution and its calculated 
fitness. The result is a bee with a set of selected items that satisfies the problem constraints, and its 
fitness is evaluated based on the chosen items.

Figure 2. The pseudocode for the proposed ABC algorithm
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3.4. The Employed Bees Phase
Figure 4 is representing the pseudocode of the employed bees phase. The employed bees phase 

is a crucial component of the ABC algorithm, designed to explore and improve solutions within the 
search space.

The employed bees phase starts with a population of artificial bees, where each bee represents 
a potential solution to the optimization problem. In the proposed ABC algorithm, each employed 
bee systematically selects another solution (another employed bee) for collaboration. Then, by using 
crossover and mutation operators, a new solution (new_bee) is generated.

The fitness of the new solution (new_bee.fitness) is then evaluated using the objective function. 
For solution update, if the fitness of the new solution is better than the fitness of the current solution 
(current_bee.fitness), the current bee is replaced with the new bee. If not, the current bee remains 
unchanged.

The employed bees phase attempts to enhance the quality of a bee's solution through a 
combination of crossover and mutation operations. It initializes a flag, improve_flag, to track whether 
an improvement is made during the proces. A deep copy of the current bee (new_bee) is created to 
avoid direct modifications. This phase dynamically selects the type of crossover operation based on 
the specified crossover_type (”one_point” or “uniform”). Following crossover, a mutation is applied 
to introduce random changes. Subsequently, it checks the feasibility of the new solution, calculates 
its fitness, and assesses whether an improvement is achieved. If an improvement occurs, the current 
bee's data and fitness are updated, and a counter (try_improve) is reset. In the absence of improvement, 
the counter is incremented, allowing the algorithm to adapt its strategy over successive iterations.

The employed bees, having potentially improved their solutions, share information with the 
onlooker bees. This information influences the onlookers in the subsequent phase. The algorithm 
iteratively refines the solutions through the employed bees’ efforts, contributing to the overall search 
for optimal or near-optimal solutions.

3.5. The Onlooker Bees Phase
The onlooker bees phase is illustrated in Figure 5. The process involves random perturbing of 

the selected solution to generate a new candidate solution. The onlooker bees phase in the ABC 
algorithm involves the selection of employed bees by onlooker bees based on their fitness values. 

Figure 3. The pseudocode for the make bee
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For the selection of the employed bees by the onlooker bees, two methods including roulette wheel 
selection and k-tournament selection, have been implemented. In the roulette wheel selection method, 
the probability of selecting each employed bees are calculated based on the equation (4). The onlooker 
bees select employed bees based on these probabilities. Solutions with higher fitness have a higher 
chance of being selected.

​​P​ i​​  =  ​ 
f​(​​ ​x​ i​​​)​​
 _ 

​∑ i=1​ 
N  ​ f​(​​ ​x​ i​​​)​​​

 ​​� (4)

Where ​​f​(​​ ​x​ i​​​)​​​​ is the fitness level of ith employed bees, and N is the total number of employed bees. 
Additionally, in the proposed ABC algorithm, we have utilized the tournament selection method to 
select employed bees. In the k-tournament selection method, k bees are randomly chosen, and the best 
bee based on the fitness is selected. Here, k is a parameter determining the size of the tournament.

Roulette Wheel assigns probabilities to each employed bee based on their fitness values. Bees 
with higher fitness values are given a higher probability of being selected by onlooker bees. This 
approach ensures that bees with better solutions have a higher chance of being chosen, mimicking 
the natural selection process where fitter individuals are more likely to be chosen for reproduction. 
K-Tournament involves randomly selecting k employed bees and then choosing the best one among 
them based on their fitness values. By setting k to a small value, typically 2 or 3, this approach 
introduces randomness into the selection process while still favoring bees with higher fitness values. 
K-tournament selection allows for a balance between exploration and exploitation, as it ensures that 
not only the best solution is selected but also provides opportunities for less fit solutions to be chosen, 
thus allowing for exploration of different areas of the search space.

Figure 4. The pseudocode for the employed bees phase
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In this phase, a loop is constructed based on the number of onlooker bees. The improve_flag 
is initialized as False. This flag tracks whether an improvement is made during the process. The 
new_bee is created as a copy of the selected bee (current_bee). This avoids directly modifying the 
current solution. Depending on the specified crossover_type (“one_point” or “uniform”), the code 
applies the corresponding crossover operation to new_bee. The type of crossover determines how 
solutions are combined. The new_bee undergoes a mutation operation, introducing random changes 
to explore the solution space further. Then, the function checks the feasibility of the new solution, if 
the new solution is feasible, the its fitness is calculated. If the fitness of new_bee is better than the 
fitness of the current_bee, an improvement is considered. The current_bee is replaced with new_bee. 
If no improvement is made, the try_improve counter of the employed bee is incremented.

3.6. Scout Bees Phase
The scout bee phase is showed in Figure 6. The scout bee phase in the ABC algorithm is 

responsible for handling solutions that are no longer promising or have not been improved over a 
certain number of iterations. The purpose of the scout bee phase is to introduce diversity into the 
population by replacing these unproductive solutions with new randomly generated solutions.

In this phase, the variable first_max_flag is set to False initially. This flag is used to exit the loop 
after the first replacement. The variable index is initialized to 0, representing the index of the current 
bee being checked. Then, the algorithm enters a while loop that continues until either all bees are 
checked or the first_max_flag becomes True. Inside the loop, the current bee is selected from the 
list of employed bees. The function checks if the try_improve counter of the current bee exceeds the 
specified threshold (max_try_improve). If the threshold is reached, the current bee is removed from 

Figure 5. The pseudocode for the onlooker bees phase
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and a new bee is created using the make_a_bee() function and added to the bees. The first_max_flag 
is set to True to ensure that only the first bee exceeding the threshold triggers replacement. The index 
is incremented to move on to the next bee in the list. The main loop terminates with two conditions: 
either no bee has shown improvement for a maximum of max_try_improve iterations, or when the 
first bee with max_try_improve is found.

4. THE PARAMETER TUNING USING DESIGN OF EXPERIMENTS

The parameter tuning for metaheuristics involves finding the optimal values for the parameters 
to improve their performance. The Design of Experiments (DOE) is a systematic approach that can 
be used to efficiently explore the parameter space and identify the most influential factors affecting 
the algorithm's performance. In this study, the parameter tuning has been performed according to 
the steps illustrated in Figure 7.

In the rest of this section, step-by-step procedure are given on how to perform parameter tuning 
for the proposed ABC algorithm using DOE.

4.1. Choosing Test Problems
Selecting the appropriate test problems for tuning metaheuristic algorithms is a critical step in 

the parameter tuning process. The chosen test problems should be representative of the characteristics 
and challenges that the algorithm may encounter.

In this study, the test problem that selected for algorithm evaluation includes three groups with 
30 problems, the first ten problems have a tightness ratio of 0.25, the second ten problems have a 
tightness ratio of 0.50 and the last ten problems have a tightness ratio of 0.75. Given this subject, one 
problem from each group has been selected for parameter tuning.

4.2. Parameters Selection and Their Ranges
In the proposed algorithm, we have a total of 7 parameters. Parameters are shown in Table 2 in 

the data structure section. In this study, based on the results obtained from the initial experimental 
runs, it was decided to set the maximum solution time to 60 seconds and choose the roulette wheel 
selection method and the uniform crossover type. Four remaining parameters were entered into the 
process of parameter tuning with the DOE. After obtaining the results from the experimental runs, 
the upper and lower bounds for the parameters were determined and presented in Table 4.

Figure 6. Pseudocode for scout bees phase
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4.3. Response Selection
In the context of the methodology for tuning metaheuristic algorithms, the step “Select the 

Responses” refers to the process of identifying and choosing the performance metrics or responses 
that will be used to evaluate the effectiveness and efficiency of the algorithm. The responses serve 
as the objective criteria to measure how well the algorithm performs on the chosen test problems for 
tuning. The gap between the fitness value of the obtained solution by running the proposed algorithm 
with different values of parameters and the best-known solution represented as the response. The gap 
is calculated based on Equation)5(.

​Relative GAP  =  ​ Obtained Solution − Best Known Solution   _____________________________   Best Known Solution  ​ × 100​� (5)

Figure 7. Procedure of parameter tuning using design of experiments

Table 4. Range of parameters

Row Parameter Unit Low High

1 Bee_Num Number 150 250

2 max_improvement_try Number 150 250

3 Pc_Uniform Percent 0.2 0.6

4 Pm Percent 0.005 0.015
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4.4. Design of Experiments
For tuning metaheuristic algorithms, designing experiments is a critical step that involves 

designing a set of experiments to systematically explore the parameter space. The goal is to collect 
data that will be used to build a response surface model, allowing for a deeper understanding of 
how algorithm parameters impact performance. This involves selecting combinations of parameter 
values to assess their impact on the algorithm's performance. In this study, Central Composite Design 
(CCD) that introduced in Montgomery (2008), has been used. After entering the parameter values, 
the Design Expert software provided a total of 81 runs with different combinations of parameter 
values. A sample table of runs is presented in Table 5.

4.5. Running the Algorithm and Gathering Data
After designing the experiments, the next step is to execute the proposed algorithm for each set 

of the parameter values as defined by the experimental design. In this stage, the gap values of the 
responses obtained are calculated for further analysis. The calculated gaps have been entered into 
the Design Expert software.

4.6. ANOVA Test
After running the algorithm and collecting data, the next step is to apply the Analysis of Variance 

(ANOVA) test. ANOVA is a statistical technique used to analyze the variance in the response data and 
assess the significance of different factors (parameters) and their interactions. This step helps identify 
which parameters have a significant impact on the selected response. In Table 6, we delve into the 
implementation and analysis of the ANOVA test. Degrees of freedom (df) signifies the number of 
independent pieces of information present in the data, or in other words, the number of independent 
parameters used in computing the data.

According to Table 6, the overall model is significant (p-value < 0.0001), indicating that at least 
one of the factors significantly influences the dependent variable. Factor B (max_improvement_try), 
Factor C (Pc_Uniform), and Factor D (Pm) are individually significant (p-values = 0.0039, < 0.0001, 
< 0.0001, respectively) and Factor A (Bee_num) is not significant. Among the interactions, AC and 
BC are significant (p-value = 0.0012, 0.0067), suggesting that the interaction between factors A and 
C and between B and C also have significant effects. Other interactions are not found to be statistically 
significant in this analysis.

In the following, we will proceed with the analysis of the ANOVA diagrams. Figure 8 illustrates 
the relationship between the GAP level and Pc-Uniform and Pm. As observed in Figure 8, with a 
decrease in the Pm and increase in Pc-Uniform, the GAP tends to decrease.

Table 5. Sample of runs

Run Block Factor 1 Factor 2 Factor 3 Factor 4 Response 1

A:Bee_num B:max_improvement_try C:Pc_Uniform D:pm GAP

Number Number Percent Percent Percent

1 0 150 150 0.2 0.015

2 0 150 250 0.6 0.015

3 0 250 250 0.2 0.015

4 0 150 150 0.6 0.005

5 0 250 250 0.6 0.005

… … … … … …
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To illustrate the performance of parameter tuning, Figure 9 displays the actual values against 
the predicted values. It allows us to visually inspect how well the model's predicted fitness values 
align with the actual fitness values and identify any discrepancies or areas for improvement. In this 

Table 6. ANOVA test outputs

Source Sum of 
Squares

df Mean Square F-value p-value Status

Model 13.55 14 0.9679 15.22 < 0.0001 significant

A-Bee_num 0.0145 1 0.0145 0.2276 0.6349

B-max_improvement_try 0.5703 1 0.5703 8.97 0.0039

C-Pc_Uniform 5.07 1 5.07 79.65 < 0.0001

D-Pm 2.43 1 2.43 38.27 < 0.0001

AB 0.1592 1 0.1592 2.50 0.1185

AC 0.7358 1 0.7358 11.57 0.0012

AD 0.0159 1 0.0159 0.2502 0.6186

BC 0.4989 1 0.4989 7.84 0.0067

BD 0.0498 1 0.0498 0.7830 0.3795

CD 2.86 1 2.86 45.02 < 0.0001

Figure 8. Pm and Pc-uniform contour diagram
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diagram, points closer to the line indicate accurate predictions. As observed in Figure 9, the most 
points are close to the line. This indicates the good performance of the statistical model.

4.7. Optimization of Parameters
The optimization of parameters refers to the process of finding the optimal values for input 

parameters in a DOE study. In this step, we want to optimize the model that are created in Step 6. 
In this step, the type of the objective function (target value, maximum, or minimum) needs to be 
specified and the well-established Nelder-Mead downhill simplex is then applied to optimize the 
function that explained in Design-Expert Tutorials (2022). The optimal values of the parameters 
were obtained and presented in Table 7.

Figure 9. Predicted vs. actual diagram

Table 7. The optimal parameter values

Row Parameter Unit Optimal Parameter Value

1 Bee_num Number 223

2 max_improvement_try Number 226

4 Pc_Uniform Percent 0.55

5 Pm Percent 0.014
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5. RESULTS

After obtaining the values of the proposed algorithm's parameters, this section focuses on 
evaluating the algorithm's performance on test problems. As mentioned before, the algorithm 
described has undergone testing using 30 benchmark instances of the MDKP with tightness of 0.25, 
0.5, and 0.75. Each of these instances contains 100 items to be packed into knapsacks. Additionally, 
the problem instances are characterized by having 5 knapsacks available.

The program is run on a personal computer with Intel(R) Core (TM) i7-6650U CPU 2.20GHz and 
8 GB RAM. The algorithm has been implemented using the Python programming language version 
3.11.5, and the NumPy library version 1.26.2. For each problem, it has been executed 30 times, and 
each run has a time limit capped at 60 seconds.

Additionally, the obtained results are compared with the results from the published paper by He et 
al. (2019). In that paper, two hybrid algorithms, SACRO1-BPSO2-TVAC3 and SACRO-CBPSO4-TVAC, 
have been introduced called SBT (SACRO-BPSO-TVAC) and SCT (SACRO-CBPSO-TVAC) here, 
respectively. The proposed algorithm in this paper has been compared with these two algorithms. 
Table 8 displays the results obtained from these three algorithms. In each row, the best results obtained 
are highlighted in bold font. In this table, the first column represents the problem number, and the 
second column indicates the tightness level. For each algorithm, there are three columns that present 
the best solution (Best), the average of solutions (Mean), and the standard deviation (Std) of solutions.

As shown in Table 8, our proposed algorithm achieved the best solution in 29 problems (97%) 
compared to the SBT and SCT. Out of these 29 problems, the proposed algorithm exclusively obtained 
high-quality solutions in 17 problems (57%). In 12 problems, all three algorithms reached identical 
solutions. Among the obtained mean solutions, the proposed algorithm had the highest mean in 
26 problems (87%) compared to the other two algorithms. Additionally, in comparing the standard 
deviation (Std) of the obtained solutions, our proposed ABC algorithm had the lowest standard 
deviation compared SBT and SCT algorithms. The proposed algorithm has a better standard deviation 
in 27 problems. The results indicate that the proposed algorithm performs better in problems with 
high tightness levels.

In Table 9, the extent of improvement in solutions by the proposed algorithm compared to the 
other two algorithms indicates that this algorithm shows a significant improvement in terms of Best, 
Mean, and Std values compared to SBT and SCT. The average improvement in solutions for the 
proposed algorithm, compared to SBT and SCT, is 0.021% and 0.030%, respectively. Additionally, 
this algorithm has increased the average mean values compared to SBT and SCT by 0.1% and 0.09%, 
respectively. Comparison of standard deviations shows that the proposed ABC algorithm has reduced 
the standard deviation by 36.5%.

Figure 10 compares the gap values of the proposed algorithm with SBT and SCT algorithms. The 
numbers above zero indicate better solutions of our proposed algorithm. In Figures 11 and 12, the 
same type of comparison is done for the average solutions and their standard deviations. Comparing 
the gap values of the proposed algorithm with SCT indicates improvements in the best solutions in 
13 problems, mean values in 27 problems, and standard deviations in 26 problems.

6. CONCLUSION

In this paper, an ABC algorithm was developed to enhance the quality of solutions generated 
for the MDKP. The proposed ABC algorithm incorporates a novel heuristic method to generate the 
employed bees, which significantly contributes to the efficiency of the search process. Additionally, 
the Design of Experiments (DOE) method was employed for parameter tuning, ensuring optimal 
performance of the algorithm. The effectiveness of the proposed ABC algorithm was rigorously 
evaluated using well-known benchmark problems. The quality of the solutions generated by the 
ABC algorithm was compared against results from a published paper, demonstrating substantial 
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improvements. Specifically, the performance comparison indicated that the proposed algorithm 
improved the best-known solutions for 13 benchmark problems, highlighting its ability to produce 
high-quality solutions. Furthermore, the proposed algorithm showed a significant reduction in the 
standard deviation (Std) of the solutions by 36.5% when compared to the SBT and SCT algorithms. 
This reduction in variability underscores the robustness and consistency of the ABC algorithm 
in generating optimal or near-optimal solutions. The improvement in the mean of the best values 
achieved by the proposed ABC algorithm compared to the SCT and SBT algorithms further indicates 

Table 8. Algorithm's outputs

Prob. No. Tig. SBT SCT Proposed ABC Algorithm

Best Mean Std Best Mean Std Best Mean Std

0 0.25 24343 24296.0 49.20 24343 24301.7 45.30 24381 24312.9 29.09

1 0.25 24274 24153.5 44.57 24274 24153.3 64.67 24274 24251.7 35.47

2 0.25 23538 23510.2 24.74 23538 23509.7 33.17 23551 23519.1 21.72

3 0.25 23527 23432.9 57.41 23527 23457.6 50.27 23534 23482.4 15.20

4 0.25 23991 23932.5 37.59 23966 23924.3 39.56 23966 23961.5 3.34

5 0.25 24601 24516.4 64.26 24601 24546.2 66.42 24613 24569.3 23.07

6 0.25 25591 25440.1 58.63 25591 25451.0 65.48 25591 25503.4 58.54

7 0.25 23410 23321.8 67.56 23410 23349.0 46.47 23410 23373.5 39.63

8 0.25 24204 24163.5 46.86 24216 24148.5 62.90 24216 24205.2 3.60

9 0.25 24399 24295.2 56.44 24411 24320.6 67.43 24411 24294.4 57.76

10 0.50 42705 42660.9 48.73 42705 42666.2 32.49 42757 42722.6 37.48

11 0.50 42494 42441.8 26.50 42471 42434.2 33.57 42545 42471.2 29.70

12 0.50 41959 41904.0 36.11 41959 41904.8 32.11 41967 41951.7 8.66

13 0.50 45090 45021.8 31.63 45090 45010.0 35.17 45090 45043.0 26.31

14 0.50 42218 42149.4 60.37 42218 42173.1 56.35 42218 42170.2 41.35

15 0.50 42927 42899.2 36.86 42927 42890.3 45.15 42927 42870.1 47.71

16 0.50 42009 41904.0 54.30 42009 41871.4 63.49 42009 41975.3 34.09

17 0.50 45010 44910.7 65.67 45020 44948.8 42.16 45020 44970.3 44.27

18 0.50 43441 43300.9 62.78 43381 43290.0 48.71 43441 43315.9 87.76

19 0.50 44554 44493.8 37.41 44529 44472.4 45.34 44540 44512.5 6.32

20 0.75 59822 59776.4 78.76 59822 59791.9 73.47 59822 59815.0 10.70

21 0.75 62081 61936.9 68.42 62081 61960.3 58.38 62081 62010.3 39.39

22 0.75 59802 59696.5 46.56 59754 59693.3 46.11 59802 59754.9 35.49

23 0.75 60478 60404.0 66.05 60478 60388.8 91.93 60479 60438.1 32.44

24 0.75 61055 60996.4 49.77 61079 61005.6 43.54 61091 61041.4 31.10

25 0.75 58959 58904.2 43.54 58937 58886.3 47.92 58959 58938.0 12.39

26 0.75 61538 61437.2 57.87 61538 61469.1 46.88 61538 61470.0 42.83

27 0.75 61489 61411.0 46.08 61520 61428.1 70.13 61520 61462.0 57.02

28 0.75 59453 59301.2 68.92 59453 59295.1 65.54 59453 59379.6 47.33

29 0.75 59960 59928.2 51.00 59960 59943.6 32.95 59960 59958.5 2.29
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its superior performance. This enhancement in the mean values suggests that the ABC algorithm 
consistently finds better solutions across different instances of the MDKP.

The method described faces constraints as problem complexity increases, leading to longer 
solution times and diminished solution quality with larger dimensions. To address these challenges, 
hybrid algorithms combining exact and heuristic methods can be employed. Exact methods ensure 

Table 9. Comparing the improvement of proposed ABC algorithm solution

Problem No. Tightness Gap Best - 
SBT- ABC 
(%)

Gap Mean 
- SBT- ABC 
(%)

Gap Std - 
SBT- ABC 
(%)

Gap Best - 
SCT- ABC 
(%)

Gap Mean 
- SCT- 
ABC (%)

Gap Std - 
SCT- ABC 
(%)

0 0.25 0.1561 0.0696 -40.9 0.1561 0.0461 -35.8

1 0.25 0.0000 0.4066 -20.4 0.0000 0.4074 -45.2

2 0.25 0.0552 0.0379 -12.2 0.0552 0.0400 -34.5

3 0.25 0.0298 0.2112 -73.5 0.0298 0.1057 -69.8

4 0.25 -0.1042 0.1212 -91.1 0.0000 0.1555 -91.6

5 0.25 0.0488 0.2158 -64.1 0.0488 0.0941 -65.3

6 0.25 0.0000 0.2488 -0.2 0.0000 0.2059 -10.6

7 0.25 0.0000 0.2217 -41.3 0.0000 0.1049 -14.7

8 0.25 0.0496 0.1726 -92.3 0.0000 0.2348 -94.3

9 0.25 0.0492 -0.0033 2.3 0.0000 -0.1077 -14.3

10 0.5 0.1218 0.1446 -23.1 0.1218 0.1322 15.4

11 0.5 0.1200 0.0693 12.1 0.1742 0.0872 -11.5

12 0.5 0.0191 0.1138 -76.0 0.0191 0.1119 -73.0

13 0.5 0.0000 0.0471 -16.8 0.0000 0.0733 -25.2

14 0.5 0.0000 0.0493 -31.5 0.0000 -0.0069 -26.6

15 0.5 0.0000 -0.0678 29.4 0.0000 -0.0471 5.7

16 0.5 0.0000 0.1702 -37.2 0.0000 0.2481 -46.3

17 0.5 0.0222 0.1327 -32.6 0.0000 0.0478 5.0

18 0.5 0.0000 0.0346 39.8 0.1383 0.0598 80.2

19 0.5 -0.0314 0.0420 -83.1 0.0247 0.0902 -86.1

20 0.75 0.0000 0.0646 -86.4 0.0000 0.0386 -85.4

21 0.75 0.0000 0.1185 -42.4 0.0000 0.0807 -32.5

22 0.75 0.0000 0.0978 -23.8 0.0803 0.1032 -23.0

23 0.75 0.0017 0.0565 -50.9 0.0017 0.0816 -64.7

24 0.75 0.0590 0.0738 -37.5 0.0196 0.0587 -28.6

25 0.75 0.0000 0.0574 -71.5 0.0373 0.0878 -74.1

26 0.75 0.0000 0.0534 -26.0 0.0000 0.0015 -8.6

27 0.75 0.0504 0.0830 23.7 0.0000 0.0552 -18.7

28 0.75 0.0000 0.1322 -31.3 0.0000 0.1425 -27.8

29 0.75 0.0000 0.0506 -95.5 0.0000 0.0249 -93.1

Average 0.0216 0.1075 -36.5 0.0302 0.0919 -36.5
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optimal solutions but may lack scalability, while heuristics offer efficiency but may sacrifice optimality. 
By integrating both approaches, hybrid algorithms leverage the precision of exact methods and the 
scalability of heuristics, allowing for more effective exploration of the solution space and improved 
performance in terms of both solution quality and computational efficiency, particularly for complex 
optimization problems. The results of this future study should be compared with an exact method to 
validate the effectiveness and efficiency of the proposed ABC algorithm. Such a comparison would 
provide a benchmark for evaluating the trade-offs between solution quality and computational time. 
Overall, the results unequivocally demonstrate the superiority of the proposed ABC algorithm.

Figure 10. Proposed ABC- SBT-SCT best gap comparison

Figure 11. Proposed ABC- SBT-SCT mean gap comparison
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ENDNOTES

1 	 Self-Adaptive Crossover and Repair Operator (SACRO)
2 	 Binary Particle Swarm Optimization (BPSO)
3 	 Time-Varying Acceleration Coefficients (TVAC)
4 	 Comprehensive Binary Particle Swarm Optimization (CBPSO)
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