Using Machine Learning Techniques in Student Dropout Prediction

Rajeev Bukralia (Dakota State University, USA), Amit V. Deokar (Dakota State University, USA), Surendra Sarnikar (Dakota State University, USA) and Mark Hawkes (Dakota State University, USA)
Copyright: © 2012 |Pages: 131
EISBN13: 9781466609907|DOI: 10.4018/978-1-60960-857-6.ch007
OnDemand PDF Download:
$30.00
List Price: $37.50
OnDemand PDF Download
Download link provided immediately after order completion
$30.00
List Price: $37.50
Current Promotions:
20% off Autumn Sale

Abstract

This chapter outlines a case of identifying students at-risk of dropping out of online courses by using institutional research data. The case delineates this step-by-step process that includes identification of appropriate constructs and variables, data collection, data pre-processing, data analysis, and model evaluation to develop a predictive model for student dropout in online courses at a small, public, Midwest university in the United States. Included is a comparative data analysis of various machine learning techniques, such as Artificial Neural Networks (ANN), Decision Trees, and Support Vector Machines (SVM), with statistical Logistic Regression (LR) analysis. The chapter provides steps for data analysis and predictive modeling using the open source, downloadable data mining software, WEKA. The chapter concludes with a discussion on the challenges and suggestions for building a predictive model in the context of institutional research.
InfoSci-OnDemand Powered Search