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ABSTRACT

The level of malondialdehyde (MDA) in wet tissue of different organs is utilized as a measure of toxic 
effect. The numerical data on the concentration of MDA in wet tissue of liver, kidneys, brain, and 
heart of rat is examined as the endpoint which are impacted by different dose (mg/kg), exposure time 
(3 and 14 days) and single oral treatment of aluminium nano-oxide (Al2O3) with 30 nm or 40 nm. An 
attempt to develop predictive model for this endpoint has been carried out in this work. SMILES is a 
traditional tool to represent molecular structure for QSPRs/QSARs. In contrast to traditional SMILES, 
so-called quasi-SMILES can be a tool to build up quantitative features – property / activity relationships 
(QFPRs/QFARs) for endpoints which are not defined by solely molecular structure, but by a group 
of physicochemical and/or biochemical conditions. The quasi-SMILES is the representation of the 
above eclectic conditions whereas the QFPR/QFAR are models of endpoints which are modified 
under impacts of these eclectic conditions.
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1. INTRODUCTION

The influence of various nanomaterials on the everyday life gradually increase owing to their high 
functional potential be very useful materials for different applications (Vanić and Škalko-Basnet, 
2013; Ma et al., 2013; Singh and Gupta, 2014; Melagraki and Afantitis, 2014; Panneerselvam and 
Choi, 2014; Potrč et al., 2015; Sauer et al., 2015; Speck-Planche et al., 2015). However, a tool to 
risk assessment for nanomaterials similar to quantitative structure – property /activity relationships 
(QSPRs/QSARs) (Toropova et al., 2012; Yilmaz et al., 2015) as research field is in an initial phase of 
the development (Muthu, 2012; Oksel et al., 2015). The solution of this task for regulatory purposes in 
the case of nanomaterials involved in the agriculture, food, cosmetics, drug discovery, etc. needs to be 
reached in the near future (Arts et al., 2014; Arts et al., 2015; Filon et al., 2015; Amenta et al., 2015).

In general, different measures of danger acting of nanomaterials upon cells are known (Long et 
al., 2009; Prabhakar et al., 2012; Diez-Ortiz et al., 2015; Toropova et al., 2015a; Hadrup et al., 2015). 
In particular, the level of malondialdehyde (MDA) in wet tissue of different organs is considered as 
a measure of toxic effect of nanomaterials (Long et al., 2009; Prabhakar et al., 2012).
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Attempts which are aimed to build up models for such acting of nanomaterials using the traditional 
QSPR/QSAR approaches (De Abrew et al., 2015), as rule, are impossible excepting the cases of 
acting of small molecules together with a nanomaterial (Fourches et al., 2010; Toropov et al., 2013).

In the case of traditional materials where the molecular structure represented by SMILES is 
available to mathematical and computational analyses, the QSPR/QSAR is a tool to more or less 
satisfactory prediction of different endpoints (Veselinović et al., 2013; Achary, 2014a, 2014b; Comelli 
et al., 2014; Nesmerak et al., 2014; Worachartcheewan et al., 2014; Toropova and Toropov, 2014; 
Veselinović et al., 2015).

A possible way to build up such models can be expressed by paradigm: “Endpoint = f(SMILES)”. 
In the case of nanomaterials where weak variation of molecular structure accompanied by intensive 
variation of conditions more appropriate paradigm is “Endpoint = f(Eclectic data)”.

The quasi-SMILES can be the representation of eclectic data (Toropov and Toropova, 2015). The 
quasi-SMILES are analogies of traditional SMILES, but symbols involved in the quasi-SMILES are 
representations of features and/or conditions that are not representation of features of the molecular 
architecture only. (Toropova and Toropov, 2013; Toropov and Toropova, 2014; Toropova et al., 2015b).

The aim of this work is to build up models for level of MDA in wet tissue of different organs of 
rat under different action of Al2O3 nanoparticles.

2. METHOD

2.1. Data
The experimental data on the level MDA in wet tissue (nanomoles of MDA per gram wet tissue) of 
liver, kidneys, brain, and heart of rat under different conditions taken in the literature (Prabhakar et 
al., 2012). Table 1 contains the representation of different conditions of acting Al2O3 nanoparticles by 
quasi-SMILES. These data (quasi-SMILES together with endpoint values) were three times randomly 
split into the training, calibration, and validation set. The length of quasi-SMILES (the number of 
symbols) is important indicator for possibility of a model to be successful.

It is to be noted that length 1 for quasi-SMILES is nonsense, because in this case the prevalence 
of each attribute is zero in the training or in calibration set (the presence in both mentioned set is 
impossible), i.e. for each attribute, A, one can obtain:

Ntraining(A) × Ncalibration(A) = 0	
Ptraining(A) × Pcalibration(A) = 0	

where Ntraining(A) and Ncalibration(A) are the numbers of attribute into the training and calibration sets, 
respectively; Ptraining(A) and Pcalibration(A) are probabilities of presence of the attribute A in the training 
and calibration sets, respectively.

The length 2 gives possibility to obtain at least for part of attributes:

Ntraining(A) × Ncalibration(A) ≠ 0	
Ptraining(A) × Pcalibration(A) ≠ 0	

The total number of quasi-SMILES involved in built model has significant meaning:

Length 2 …Nmax = N1 × N2	
Length 3 …Nmax = N1 × N2 × N3	
Length 4 …Nmax = N1 × N2 × N3 × N4	



Journal of Nanotoxicology and Nanomedicine
Volume 1 • Issue 1 • January-June 2016

19

Table 1. The definition of quasi-SMILES
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For instance, two situations for quasi-SMILES with length 2 which are represented by a pairs of 
< Impact, Condition > are represented in Table 2. From practical point of view, the second situation 
is preferable, because 10 variables are more information about a phenomenon than 6 variables.

Using the formalism of the quasi-SMILES which are utilized to integrate eclectic data for the 
nanomaterials one can build up model for endpoints related to nanomaterials. Apparently, increase 
of length of quasi-SMILES is promoter of improving for the statistical quality of a model. In this 
work, the length of used quasi-SMILES is four.

2.2. Optimal Descriptors
The optimal descriptors are calculated as the following:

DCW Threshold N CW Cepoch k( , ) ( )=∑ 	 (1)

where Ck is code of k-th feature (condition); CW(Ck) is the correlation weight for Ck; The Threshold 
and Nepoch are parameters of the Monte Carlo optimization. The Threshold is a tool to define two classes 
of features (conditions): rare (noise) and not rare, i.e. active. The optimal descriptors are calculated 
with the correlation weights of active features. Correlation weights for rare features (conditions) 
are fixed equal to zero, i.e. these are not involved in building up model; The Nepoch is the number of 
epochs of the Monte Carlo optimization.

The Threshold = T* and Nepoch =N* which give preferable statistical characteristics for the 
calibration set of quasi-SMILES should be defined by means of several runs of the Monte Carlo 
optimization. These parameters should be used to build up the final model for endpoint, E (Toropova 
et al., 2015a):

E C C DCW T N= + ×0 1 ( *, *) 	 (2)

Table 2. Different eclectic sources for construction of the quasi-SMILES
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Figure 1 represents the scheme of the selecting T* and N*.
The predictive potential of the model calculated with Equation 2 should be checked up with the 

external validation set.
All operations with quasi-SMILES are carrying out by the same algorithms which were developed 

for the traditional SMILES (Toropov et al., 2012a, b; Roy, 2015).

3. RESULTS AND DISCUSSION

The optimal descriptors give for three random splits the following models:

E =-1357.4 (±57.96) + 344.21 (±14.61) * DCW(1,3)	 (3)

n=26, r2=0.7382, q2=0.6524, s=3.55, F=68 (training set)	
n=9, r2=0.7456, s=4.30 (calibration set)	
n=13, r2=0.7735, s=3.42 (validation set)	

E =-617.60 (±17.64) + 155.21 (± 4.379) * DCW(1,3)	 (4)

n=29, r2=0.7976, q2=0.7479, s=3.52, F=106 (training set)	
n=9, r2=0.7711, s=3.76 (calibration set)	
n=10, r2=0.7234, s=3.51 (validation set)	

E =-218.59 (± 7.953) + 54.172 (± 1.900) * DCW(1,3)	 (5)

Figure 1. The scheme of selecting of the T* and N*
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n=28, r2=0.7674, q2=0.7007, s=3.76, F=86 (training set)	
n=9, r2=0.7041, s=2.71 (calibration set)	
n=11, r2=0.8254, s=4.08 (validation set)	

In Equations 3-5, the n is the number of quasi-SMILES in a set (i.e. training set, calibration set, 
or validation set); the r2 is the correlation coefficient; the q2 is leave-one-out cross-validated r2; the s 
is root-mean squared error; and the F is Fischer F-ratio.

Table 3 contains the correlation weights CW(Ck) for split 1 (Equation 3), split 2 (Equation 4) and 
split 3 (Equation 5) together with frequencies of Ck in the training and calibration sets.

Table 4 contains quasi-SMILES together with the numerical data on E for the models.
The third distribution into the training set, the calibration set, and the validation set should be 

estimated as the worst since attribute of quasi-SMILES “L” is absent in the calibration set. However, 
even for this distribution the prediction for the endpoint characterized by quite satisfactory statistical 
quality.

The mechanistic interpretation of a QSPR/QSAR model is important principle of building up 
predictive model (OECD, 2007; REACH 2011). The mechanistic interpretation for models similar 
to ones suggested in this work can be defined as the following. Having the numerical data on the 
correlation weights of features obtained in several runs of the Monte Carlo optimization, one can 
classify the features as promoters of endpoint increase (if the correlation weight of a feature every 
time is large) and promoters of endpoint decrease (if the correlation weight of a feature every time 
is small). In the examined dataset (Table 3), one can select doses (‘1’ and ‘2’) together with the 
liver (‘L’) as promoters of increase the endpoint. Only heart (‘H’) is the promoter of the endpoint 
decrease. It can be interpreted as the following: the high doses (2000 and 1000 mg/kg) give increase 
of nanomoles of MDA per gram in wet tissue, liver accumulates the MDA more intensively than 
other organs, and heart accumulates the MDA less intensively than other organs.

Thus, the thesis that optimal descriptor can be a translator of eclectic data into endpoint prediction 
is confirmed.

Table 3. Correlation weights of quasi-SMILES attributes (conditions) for calculation of the DCW(1,3) for split 1, 2, and 3; T and 
C are frequencies of Ck in the training set and calibration set, respectively
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Table 4. Distributions into the training (T), calibration (C), and validation (V) sets for splits 1, 2, and 3; together with 
experimental and calculated level ADM in wet tissue of rats



Journal of Nanotoxicology and Nanomedicine
Volume 1 • Issue 1 • January-June 2016

24

4. CONCLUSION

The suggested scheme of the prediction for level of malondialdehyde in wet tissue of rat under action of 
the Al2O3 nanoparticles (oral exposure) based on described quasi-SMILES (Table 1) gives quantitative 
prediction for this endpoint. Since the suggested model is validated with a group of distribution into 
visible the training and calibration sets and invisible validation set, the approach can be used for 
regulatory purposes according to OECD principles (OECD, 2007) and REACH (REACH, 2011).
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