
DOI: 10.4018/JDM.2017010103

Journal of Database Management
Volume 28 • Issue 1 • January-March 2017

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

A Framework for Managing Complexity 
in Information Systems
Mala Kaul, Department of Accounting and Information Systems, College of Business, University of Nevada, Reno, NV, USA

Veda C. Storey, Department of Computer Information Systems, Robinson College of Business, Georgia State University, 
Atlanta, GA, USA

Carson Woo, Sauder School of Business, University of British Columbia, Vancouver, Canada

ABSTRACT

A particularly difficult, but important, challenge in the design and development of contemporary 
information systems is dealing with complexity. Although complexity has been richly discussed 
from various perspectives in the literature, there is limited guidance on how to address complexity 
in information systems design. This research analyzes different approaches to handling complexity 
and finds that there exists a plurality of ways in which to address complexity that are dependent upon 
the given situation. This analysis results in the derivation of a framework for addressing complexity 
in information systems. The framework explicitly recognizes implications and limitations of 
decomposition, inner-outer environments, abstractions, and decentralization, and the role of Ontology. 
Application of the framework is intended to enable information researchers to identify and adapt 
applicable strategies for managing complexity in any domain.

Keywords
Abstraction, Chaos Theory, Complex Adaptive Systems, Complexity, Decomposition, Inner Environment, 
Ontology, Outer Environment

INTRODUCTION

An information system is a representation of a real world system (Wand & Weber, 1995). Today’s 
information systems operate in a complex business environment driven by rapid changes in technology 
and a highly competitive business setting. Information systems must be developed quickly and 
accurately. Challenges in designing and developing information systems involve understanding what to 
include or exclude in a design, as well as dealing with the complexity of systems development efforts. 
The latter involves identifying and deciding how information can be captured and represented (Clarke, 
Burton-Jones, & Weber, 2013; Hadar, Soffer, & Kenzi, 2014). To be practically useful, of course, an 
information system must consistently and accurately model applications (Choi, Song, & Han, 2006).

There have been a number of approaches to dealing with complexity in information systems. 
Notably, are Wand and Weber’s (1993) work on decomposition and Simon’s (1996) notion of inner 
and outer environment. These approaches are, generally, based upon the notion of abstraction, 
although they have not been presented as such. There is, thus, a need to understand and synthesize 

31



Journal of Database Management
Volume 28 • Issue 1 • January-March 2017

32

these different approaches in an effort to provide clarification and guidance on their use when dealing 
with complexity.

The objective of this research is to analyze the work that has been carried out to deal with the 
notion of information systems complexity, identifying the appropriate use of different approaches 
for a given situation. The overall contribution is to provide suggestions and guidelines for addressing 
complexity in designing information systems. Our research proposes that employing various notions 
of abstraction is useful for this purpose.

The following tasks are involved in carrying out this research.

1. 	 Analyze complexity from the perspective of using abstractions and ontologically-based 
decomposition.

2. 	 Propose a framework for positioning and conducting research centered on concepts and tradeoffs 
involved when dealing with complexity from an abstraction perspective (where abstraction is 
considered a specific mechanism associated with decomposition).

3. 	 Identify existing approaches, both in information systems and other domains (e.g., biology 
and physics), to addressing complexity. From this we populate our proposed framework for 
understanding complexity and suggesting when to use a specific approach or a combination of 
approaches.

4. 	 Illustrate the use of the framework by showing how it can help information systems developers 
identify and select strategies for managing complexity.

The remainder of the paper is organized as follows. The following section reviews related research. 
The section, Framework for Complexity in Designing Information Systems, proposes an abstraction-
based framework for dealing with complexity. The fourth section discusses the results of doing so. 
The final section concludes the paper, and proposes areas for future research.

RELATED RESEARCH

The notion of complexity has been richly examined in the literature from a variety of perspectives, 
including algorithmic complexity (in the form of mathematical complexity theory and information 
theory), deterministic complexity (in the form of chaos theory and composite theory), and aggregate 
complexity (Manson, 2001). Algorithmic complexity is primarily concerned with the problem of 
complexity that makes it difficult to describe systems’ characteristics. In the form of mathematical 
complexity theories, algorithmic complexity calculates the effort required to solve complex problems 
within information theory (Chaitin, 1992). Complexity is addressed through the simplest computation 
that can reproduce system behavior. Deterministic complexity posits that the interaction of a few 
variables creates largely stable systems that are prone to sudden discontinuities (Manson, 2001). 
Aggregate complexity finds holism and synergies resulting from the interaction of system components. 
In this form of complexity, the properties of the whole system are different than the sum of the 
constituent parts; therefore, such systems have emergent qualities that are not separable from the 
properties of the components (Baas & Emmeche, 1997) .

This section first defines complexity with respect to designing information systems. It then 
examines complexity from the different perspectives found in the literature. First, though, the main 
concepts of complexity, emergence, and abstraction are defined and described.

It is, generally, not easy to explain complexity, although a great deal of work has been carried 
out to try to specify the characteristics of a complex system (Ladyman, Lambert, & Wiesner, 2013). 
For the purpose of this paper, our definition is limited to the context of designing and developing 
information systems. The definition proposed by Simon fits this context well: “Roughly, by a complex 
system I mean one made up of a large number of parts that have many interaction. …, in such systems 



Journal of Database Management
Volume 28 • Issue 1 • January-March 2017

33

the whole is more than the sum of the parts in the … sense that, given the properties of the parts 
and the laws of their interactions, it is not a trivial matter to understand the properties of the whole” 
(pp.183-184). If a decomposed part is still too complex, it can further be decomposed, thus forming a 
hierarchy of systems and subsystems. After a decomposition, in addition to designing and developing 
the subsystems, we also need to understand the emergent behavior of the system resulting from the 
interactions of the subsystems.

For emergence, we consider the work of Wand and Weber (1989) who adapt Bunge’s (1977; 1979) 
Ontology to the analysis of information systems. The world is made of things that possess properties. 
Things can associate to form composite things. A property of a composite thing that is also a property 
of a component is termed an inherited property. A property of a composite not possessed by any of 
its components is termed an emergent property. A composite thing must possess emergent properties. 
The emergent behavior of a composite thing is the changes of its emergent properties. Emergence is 
the cause of complexity, with abstraction a way to reduce this complexity.

In discussing the relationships between idealization and abstractions, Woods and Rosales 
(2010) use the abstraction definition of Gale (1998). For the purposes of this paper, we adapted the 
same definition. Abstraction is a process “in which some features are chosen to be represented, and 
some rejected for representation [...]” (Gale, 1998, p. 167). In our context, this means abstraction 
is a mechanism for reducing complexity, either through the suppression of detail and focusing on 
the general aspects through some formal representations, or alternately, by using it as a high level, 
manageable view that can be subsequently decomposed to provide greater detail.

Complexity in Information Systems
In design science research, complexity is part of the notion of a “wicked” problem. Only through 
iterations and development will the problem and solution emerge. The problem of complexity is 
further articulated by who note that in order to capture the complexity of the problem in such a way 
that the artifact appropriately addresses the problem requirements, it may be helpful to atomize or 
decompose the problem conceptually. Similarly, Lewis (2012) proposes that decomposability provides 
a way to uncover simple answers to complex problems and lead to elegant, simple designs. Simon 
(1991) describes decomposability within the context of a hierarchy of semi-independent or “nearly 
decomposable systems”. In design-science research, complexity has been also discussed within the 
context of the more theoretical or knowledge outcomes. For example, suggest that theories at a very 
high level of abstraction often make their relationship to design, and suggestions for design, difficult 
to discern.

Inner/Outer Environment
Simon (1996) proposed that we can manage complexity by partitioning a complex system into inner 
and outer environments where we can have very little or no understanding of the inner environment 
and build artifacts to interface the inner and with the outer environments. In this case, the complexity 
is reduced to developing the artifacts and studying the outer environment. The general strategy is to 
deal with complexity by abstracting away the inner and outer environments and focusing on the design 
of the interface that fulfills the interaction between the inner and out environments. This strategy is 
general and can be used to explain other approaches, including the types of abstraction presented below.

Abstraction
Another way of addressing complexity is by abstraction. Data abstractions has long been recognized in 
information systems design, especially in the areas of database design with the work of who introduced 
the notion of data abstractions, identifying the main concepts as being generalization/specification 
(is-a), part-whole (part-of), and association (set theory). Abstraction can alleviate complexity because 
one can focus on a module and its relationship to other modules without being concerned with how 
the other modules will function. For example, when modeling a part-time student class, which is 



Journal of Database Management
Volume 28 • Issue 1 • January-March 2017

34

a specialization of a student class, one needs only to deal with the special situations of a part-time 
student, and need not be concerned with how students, in general, behave. Modeling the concept of 
a part-time student in this manner can be considered as the outer environment where the super-class, 
student, is the inner environment, and the artifact is the IS-A relationship. Abstraction can also be 
viewed as a special case of decomposition in that, when we model the details (e.g., going from a 
specialized class to a generalized one, or going from the whole to the parts), we are decomposing a 
complex system into sub-systems.

In this paper, generalization is considered to be a decomposition of specialized classes because a 
specialized class inherits all properties and behaviors from the generalized class and, thus, has more 
properties and behaviors than its corresponding generalized class. These special cases make the class 
complex if generalization is not used.special cases that make the class complex if generalization is 
not used.

Data abstractions and related research have long been applied and analyzed with respect to 
database design methodologies (e.g., Storey, 1991, 1993; Teorey, Yang, & Fry, 1986). They have 
implications for deriving and using rules for their employment. Most of the rules developed provided 
guidance for the assignment of cardinalities for conceptual modeling which are then transformed 
into logical models for use in implementations. In this way, abstractions serve as a mechanism to 
deal with the emergent properties of systems. For example, modeling a specialized class from one or 
more (multiple inheritance) generalized classes or modeling the whole from several parts are a way 
to form an emergent system using sub-systems.

Decentralization
Decentralizing systems is another way to deal with complexity. Although it can be viewed as a form of 
decomposition, or even a form of top-down abstraction (whole-part), it can also represent bottom-up 
modeling using simulation and complex adaptive systems. That is, one can model individual agents, 
actors, or modules, and the emergent behaviors of executing all of them together can be simulated. 
In the case of complex adaptive systems, the individual agents can also include adaptive capabilities 
such as learning and adjusting its own actions. When emergence can only be identified through 
simulations, philosophers refer to this type of emergence as weak1 emergence (Bedau, 1997).

Decomposition and Bunge-Wand-Weber (BWW) Ontology
The Bunge-Wand-Weber (BWW) Ontology provides meta-modeling that is strongly influenced by 
the philosophy of science. They argue that, in order to achieve a better understanding of a system, it 
needs to be decomposed, and propose a formal approach to doing so.

The BWW approach, has, at the highest level, one object. Obviously, if the details of this object 
are not known, then the BWW decomposition will not be applicable. This object is decomposed by 
defining and applying rules regarding what should, or should not, be included in the decomposition, 
when to terminate the decomposition, and related matters. More specifically, Wand and Weber (1990b) 
defined decomposition as a set of subsystems of a system where: a) every element in the composition 
of the system is included in at least one of the subsystems in the set; b) the (set) difference between 
the union of the environments of the subsystems and the composition of the system equals the 
environment of the system; and c) each element in the structure of the system is included in at least 
one of the subsystems in the set. Simply stated, a decomposition of a system is a set of subsystems 
of the system such that the composition of the system equals the union of the compositions of the 
subsystems in the set (Weber, 1997).

The BWW Ontology pre-supposes a level of modeling where the nature of a system is general. 
For example, to manage complexity, abstractions are needed. To make abstraction precise, the BWW 
Ontology provides the structure and formalisms for systems. However, it does not provide specific 
mechanisms for the actual abstractions (e.g., specialization/generalization, whole-part). Other theories 
or frameworks are needed to handle the specialized cases. For example, Parsons and Wand (2008) 



Journal of Database Management
Volume 28 • Issue 1 • January-March 2017

35

apply classification mechanisms from Cognitive Science in their instance-based work. The BWW 
Ontology is then used to provide a structure and formalism to the instance-based framework. It is 
effective in doing so and is considered a structural approach.

Applications in Database Management
Some specific examples of adoption and use of abstractions that deal with database design and data 
warehousing include the following: specialization and generalization (e.g., (Parsons & Wand, 2008)). 
Akoka, Comyn-Wattiau, and Prat (2001) propose incorporating abstractions into data warehousing, 
asserting that generalizations and mappings need to be examined for the role they can play in modeling, 
with rules and constraints specified. classify syntactic and semantic aggregation rules as well as user 
preference rules. Semantic aggregation rules are based upon the semantics of the elements of the 
conceptual multidimensional meta-model; syntactic aggregation rules express mathematical properties; 
and user preference provide aggregation rules.

Philosophy of Science
Philosophers have been studying how researchers in natural sciences (e.g., biology and physics) 
develop and study complex systems. Insights from the philosophy of science, then, should provide 
insights for this research. Techniques in natural sciences can be divided into two general categories: 
idealizations and abstractions (Woods & Rosales, 2010).

•	 Idealization: Consider, for example, general relativity. Planets are spherical but never perfectly 
spherical. When one investigates the consequences of Einstein’s equations of the gravitational 
field, one sets up an idealized system composed of two perfectly spherical bodies. In that way, one 
can take advantage of the symmetries involved. Alternatively, consider a frictionless plane. Even 
a fully polished surface will not be frictionless, but one can idealize it to be one. In economics, 
the concept of a “rational agent” is also an idealization in that it assumes an agent that can handle 
infinite amount of information in the calculation of utility functions.

•	 Abstraction: Abstraction involves selecting things we want to represent and ignoring others as a 
means to reduce complexity. It is consistent with the abstraction It is consistence the abstraction 
notion discussed above.in the section above on abstraction.

As stated by Woods and Rosales (2010): “Idealizations are expressed by statements known 
to be false. Abstractions are achieved by suppressing what is known to be true. Idealizations, we 
might say, over-represent empirical phenomena, whereas abstractions underrepresent them” (p. 3). 
Abstraction means leaving something out. Idealization means perfecting; for example, making things 
perfectly spherical or infinite. Idealization enables the abstraction to be performed. This notion of 
idealization and abstraction is consistent with abstraction mechanisms as generally employed in 
information systems design and development such as specialization/generalization, whole-part, etc. 
To illustrate, below are examples from biology and physics on how idealization and abstraction are 
used to deal with complexity.

In biology, much research addresses population genetics. The complexity challenge is that, within 
the evolution of a given population, both random facts and natural selection are relevant and important. 
Populations are idealized to be an infinite size, so, in this manner, random factors can be neglected. 
For abstraction, with respect to population level, evolution occurs both at the level of ecological 
interactions among different phenotypes, and at the level of genetic interactions. Population ecology 
assumes populations to be genetically homogeneous, and ignores (abstracts from) the underlying 
genetic detail. On the other hand, population genetics assumes constant population sizes and ignores 
(abstracts from) ecological interactions. In both cases, the abstracted interactions may not be evident, 
but are not included in the respective mathematical models.



Journal of Database Management
Volume 28 • Issue 1 • January-March 2017

36

Similar, relevant situations can be found in physics. A crucial step towards Newton’s laws of 
motion was Galileo’s notion of a frictionless motion down an inclined plane. This led to the idea of 
a “uniform rectilinear motion” which became the basis for a law of inertia which asserts that, in the 
absence of forces, a body moves uniformly in a straight line (rectilinear motion) or remains at rest. 
This is referred to as “Galilean idealization” because the surface on which motion occurs is idealized 
to be perfectly uniform. This notion also leads to abstraction in the sense that no other forces are 
considered to be at play, when, in reality, they are.

Mathematical physics in the Newtonian style proceeds by idealizing massive bodies to be 
“material points” or “mass points.” In the course of his modelling, Newton sets up the problem as a 
gravitational system of two bodies. That is, a two-body system is employed as a good approximation 
for the rest of the universe. Here, idealization (point masses) is combined with abstraction. No other 
forces; no other bodies are involved.

These examples from biology and physics utilize both idealization and abstraction at the same 
time in order to study the corresponding complex system.

FRAMEWORK FOR COMPLEXITY IN DESIGNING INFORMATION SYSTEMS

This section derives a framework, shown in Figure 1, for understanding and handling complexity that 
is inherent in designing complex information systems. The framework is derived from synthesizing 
the important, relevant perspectives to handling complexity from prior literature and proposes that 
complexity can be addressed by abstraction and decomposition.

According to Simon (1996), a complex system is hierarchical and 2near decomposable. Abstraction 
and the strategy of inner and outer environments are ways to handle complexity. The most commonly 
used abstractions are generalization and specialization. Generalization takes the commonality 
(properties and methods) of two or more classes and places them into a super-class. On the other 
hand, specialization takes a super-class and specializes it into a sub-class by inheriting properties 
and methods from the super-class and adding additional properties and/or methods. This means we 
can model abstraction from top to bottom, or from bottom to top, where top is the specialized classes 
and bottom is the super-class. This forms the causation dimension of the complexity framework.

Causation, for the purposes of this research, means causality, but not in the general / social 
science sense of cause and effect. Causation can come from a top-down or bottom-up approach to 
performing or doing something (Ladyman et al., 2013). A top-down approach involves a situation 
in which one knows how the “whole” (e.g., an enterprise information system) operates. Then, the 
whole system can be decomposed into smaller units and each unit understood individually. Another 
example could be employing an SAP system to perform data analytics on a company’s performance, 
but needing to examine the individual units to highlight any anomalies.

Bottom-up causation, in contrast, means that one does not know how the whole works, although 
each of the individual components can be identified and it is known how each component works. 
Here, we concentrate on the design and development of the components. For example, the failure of 
an information system might trigger the modification or development of a new system; frustration 
with an existing system might lead to the acquisition of a bottom-up “Shadow IT” system (Chua & 
Storey, 2017).

These top-down and bottom-up causations are consistent with Simon’s (1996) view of complexity. 
This is because Simon considers weak emergence to bridge the top-down and bottom-up causations 
since we might need both to obtain a complete picture of the system or theory. That is, certain emergent 
properties or behaviors might not be obtained when going from top down (or bottom up) and require 
bottom-up (or top-down) modeling to see them.

The conception of the second axis of the framework (dynamicity) came from examining the actual 
usage of super-classes and sub-classes resulted from generalization or specialization. A super-class can 



Journal of Database Management
Volume 28 • Issue 1 • January-March 2017

37

be an abstract class in that it has no instances; all instances belong to leaf nodes (the most specialized 
sub-classes) of the class hierarchy. In this paper, the focus is not on abstract classes. Instead, if we 
know more about the properties and methods of an instance, then more specialized sub-classes can 
be created into which the instance can fit. Conversely, the less we know about the properties and 
methods of an instance, the more generalized super-class the instance can be assigned to. This creates 
a dynamic environment in that identifying the class to which an instance belongs depends upon how 
much we know about the instance itself. If, at a later point, more information becomes available, 
then the instance can change its class automatically. This leads to our consideration of dynamicity 
in handling instances in Figure 1. Linear means no dynamicity or the result is deterministic (i.e., for 
the same instance, the outcome is the same). Non-linear corresponds to dynamicity or allows for 
exception handling (i.e., the same instance running through a system can have different results). In 
the case of decentralization, taking complex adaptive system as an example, the same instance can 
have different results depending on what each component in the system learned and adapted based 
upon past experience.

Figure 1. Framework for understanding complexity



Journal of Database Management
Volume 28 • Issue 1 • January-March 2017

38

Note that specialization is the reverse of generalization. Similarly, whole-part is the reverse of 
part-whole. Whole-part (has-a) starts from the whole to identify the parts, whereas part-whole (part-
of) considers the parts first, and then combines them together to form the whole.

The dimension of linear vs. non-linear dynamicity in Figure 1 is of the same spirit as some existing 
work in complexity. Tight-coupling is the same as our linear decomposition. However, Roberts’ 
(1990) complexity is more than our non-linear decomposition, which simply provides the ability 
to react dynamically. Similarly, the analytical dimension corresponds to our linear decomposition. 
The behavioral dimension is more general than our non-linear decomposition, similar to Robert’s 
complexity factor. Although the complexity-tight coupling and behavioral-analytical dimensions are 
useful in understanding complexity, when developing information systems, we are more restricted 
to mechanisms we can incorporate into systems. The non-linear dynamicity in our framework better 
reflects this restriction.

The philosophy of science also addresses complexity from the perspective of downwards causation 
and upwards causation, as well as linear and non-linear dimensions (Ladyman et al., 2013). Ladyman 
et al. (2013) state that “a system is linear if one can add any two solutions to the equations that describe 
it and obtain another, and multiply any solution by any factor and obtain another. Nonlinearity means 
that this superposition principle does not apply” (p.36). Note that downwards causation and upwards 
causation is fluid in that it is a continuum where some mechanisms might not clearly fit into just one 
cell. The same holds for linear and non-linear.

Thus, the complexity framework in Figure 1, is deduced from the literature and intended to provide 
a useful way to visualize and analyze mechanisms to deal with complexity. In particular, abstraction 
constructs (e.g., specialization/generalization) as found in the information system literature fit this 
framework well.

DISCUSSION

The two dimensions for understanding complexity in Figure 1 can be used to provide suggestions 
and guidelines for addressing complexity in designing information systems. That is,

•	 If emergence of the whole system is known in advance and the system behavior is rather 
predictable, then near decomposition, modularization, and/or whole-part can be used to address 
complexity.

•	 If emergence of the whole system is unknown in advance but the system behavior can be derived 
from its components, then part-whole can be used to address complexity.

•	 If emergence of the whole system is known in advance but the system behavior can be dynamic 
(e.g., depending on how much information we know about an instance), then generalization can 
be used to address complexity.

•	 If emergence of the whole system is unknown in advance and the system behavior can only 
be understand through simulations, then decentralization and/or specialization can be used to 
address complexity.

Nevertheless, the Figure 1 framework can also be used to learn from other domains and provide 
additional insights. They are discussed in the remaining of this section.

Since the philosophy of science (e.g., Ladyman et al. 2013) also discusses the same two dimensions 
as noted above, it should be helpful to identify natural sciences approaches to managing complex 
systems. Some of these approaches (e.g., Newtonian mechanics – upward causation and linear) 
might not be useful for designing information systems; however, others might be more applicable. 
This leads to the identification of the chaotic system that has been using in biology and economics 
to reduce complexity.



Journal of Database Management
Volume 28 • Issue 1 • January-March 2017

39

The idea of a chaotic system was proposed by Li and Yorke (1975). Chaotic systems exhibit 
sensitivity to initial conditions. A small variation in initial conditions of the dynamical systems can 
lead to bifurcations in the time-evolution of the system. This system, depending on how one uses 
it, can be downwards causation or upwards causation. Simon (1996) also discusses complexity and 
chaos, with the idea being that a chaotic system can help to reduce complexity.

Specifically, Simon highlights how in chaos research (non-linear dynamics), thanks to the use 
of computer simulation models, certain general patterns were discovered. For example, “numerical 
computations of simple nonlinear systems revealed unsuspected invariants (‘universal numbers’) 
that predicted, for broad classes of such systems, at what point they would change from orderly to 
chaotic behavior. Until high-speed computers were available to reveal them, such regularities were 
invisible” (p.177).

Complexity can be minimized through a chaotic system. Investigation on “chaos” in dynamical 
systems has revealed that deterministic (non-linear) systems exhibit sensitivity to initial conditions 
in their time evolution. If the initial conditions vary, the dynamical behavior becomes complex 
(chaotic): bifurcations, periodic orbits, limit cycles, etc. There are two main insights. (a) This type 
of behavior is commonly associated with stochasticity, such as stochastic noise in a system, although 
chaos theory indicates that this is wrong. (b) That type of dynamical complexity exhibits patterns 
so then one knows when to expect “chaos” in the dynamical evolution of a system. This becomes a 
situation where complexity is understood and reduced in the sense that one can rule out stochasticity 
in the face of erratic behavior in a data set (e.g., time series). Alternatively, one cannot assume that 
wild fluctuations are the result of stochastic factors with checking for chaos.

Although chaos theory is known to the information systems field it is not as widely used as 
abstraction mechanisms such as generalization/specialization. The Bunge-Wand-Weber (BWW) 
Ontology (Wand & Weber, 1989, 1990a, 1990b) is very good in providing structure and formalisms 
but lacks specificity which is found in chaos theory. Given the importance of the BWW Ontology, 
we, therefore, suggest that chaos theory could be more widely employed if the BWW Ontology can 
be used to structure and formalize it for adaption to information systems.

Some further observations can be made from Figure 1 and the complexity work conducted 
in natural science. First, note that real-world systems are non-linear, but linearity can be used to 
understand non-linearity and vice versa. Second, idealization and abstraction are ways in which to 
preserve linearity. They can, therefore, also can be considered as a way to manage non-linearity. 
Finally, computer modeling, specifically conceptual modeling and computer simulations, can make 
the study of non-linear systems possible.

CONCLUSION

This paper has proposed a framework for recognizing and understanding complexity in information 
systems. The work is motivated, in part, by the recognition that today’s businesses and society operate 
in a complex world and that information systems are continuously being developed to help streamline 
and automate some of this complexity. It was also inspired by the work of Simon (1996) whose 
understanding of inner and outer environments has been proposed as a way to deal with complexity. 
Wand and Weber (1989, 1990a, 1990b) insights on decomposition provided further guidance on how 
complexity might be approached. Then, with further grounding in the philosophy of science, the 
derived framework is based on the important concept of abstraction which appears in various forms.

There does not appear to be much guidance for explicitly understanding specifically how to deal 
with complexity in information systems design. Therefore, the intended contribution of this research 
is the framework for recognizing different kinds of complexity to provide a meaningful first step for 
managing complexity. This paper extends work in the area of abstraction and decomposition to provide 
a systems view. Note that complexity has been especially recognized, but perhaps in a different form, 
by research in design science that deals with wicked problems. However, despite such recognition 



Journal of Database Management
Volume 28 • Issue 1 • January-March 2017

40

of complexity both in the development of the artifact as well as in the development and application 
of knowledge at an abstract/theoretical level, there has been limited discussion in the design science 
literature on how to deal with complexity.

Finally, complexity is a problem that will continue to challenge designers and researchers as we 
develop and apply more complicated applications that, in some way, reflect the everyday complexity 
of business and society. Future research is needed to apply the framework to a number of problems 
in different application domains, both to understand the nature of the environment in which an 
information system must operate and to assess whether the framework can be used to identify and 
then help to effectively managing complexity.

ACKNOWLEDGMENT

This work was supported by J. Mack Robinson School of Business, Georgia State University and the 
Natural Sciences and Engineering Research Council of Canada (NSERC). Special thanks to Alirio 
Rosales, for assisting with concepts from philosophy of science, Yair Wand and Ron Weber, for 
inspiration on this research, and the reviewers and the Editor-in chief.



Journal of Database Management
Volume 28 • Issue 1 • January-March 2017

41

REFERENCES

Akoka, J., Comyn-Wattiau, I., & Prat, N. (2001). Dimension hierarchies design from UML generalizations and 
aggregations. Paper presented at the International Conference on Conceptual Modeling. doi:10.1007/3-540-
45581-7_33

Baas, N. A., & Emmeche, C. (1997). On emergence and explanation. Intellectica, 25(2), 67–83.

Bedau, M. A. (1997). Weak emergence. Noûs (Detroit, Mich.), 31(s11), 375–399. doi:10.1111/0029-4624.31.
s11.17

Bunge, M. A. (1977). Treatise on Basic Philosophy: Ontology I: The Furniture of the World. Dordrecht: D: 
Reidel Publishing Company.

Bunge, M. A. (1979). Treatise on Basic Philosophy: Ontology II: A World of Systems. Dordrecht: D: Reidel 
Publishing Company.

Chaitin, G. J. (1992). Information-theoretic incompleteness. Applied Mathematics and Computation, 52(1), 
83–101. doi:10.1016/0096-3003(92)90099-M

Choi, N., Song, I.-Y., & Han, H. (2006). A survey on ontology mapping. SIGMOD Record, 35(3), 34–41. 
doi:10.1145/1168092.1168097

Chua, C. E. H., & Storey, V. C. (2017). Bottom-up enterprise information systems: Rethinking the roles of central 
IT departments. Communications of the ACM, 60(1), 66–72. doi:10.1145/2950044

Clarke, R., Burton-Jones, A., & Weber, R. (2013). Improving the Semantics of Conceptual-Modeling Grammars: 
A New Perspective on an Old Problem. Academic Press.

Gale, G. (1998). Idealization in cosmology: A case study. In N. Shanks (Ed.), Idealization IX: Idealization in 
Contemporary Physics (pp. 165–182). Amsterdam: Rodopi.

Hadar, I., Soffer, P., & Kenzi, K. (2014). The role of domain knowledge in requirements elicitation via interviews: 
An exploratory study. Requirements Engineering, 19(2), 143–159. doi:10.1007/s00766-012-0163-2

Ladyman, J., Lambert, J., & Wiesner, K. (2013). What is a complex system? European Journal for Philosophy 
of Science, 3(1), 33–67. doi:10.1007/s13194-012-0056-8

Lewis, K. (2012). Making sense of elegant complexity in design. Journal of Mechanical Design, 134(12), 
120801. doi:10.1115/1.4023002

Li, T.-Y., & Yorke, J. A. (1975). Period three implies chaos. The American Mathematical Monthly, 82(10), 
985–992. doi:10.2307/2318254

Manson, S. M. (2001). Simplifying complexity: A review of complexity theory. Geoforum, 32(3), 405–414. 
doi:10.1016/S0016-7185(00)00035-X

Parsons, J., & Wand, Y. (2008). Using cognitive principles to guide classification in information systems modeling. 
Management Information Systems Quarterly, 839–868.

Roberts, K. H. (1990). Some characteristics of one type of high reliability organization. Organization Science, 
1(2), 160–176. doi:10.1287/orsc.1.2.160

Simon, H. A. (1991). The Architecture of Complexity Facets of Systems Science. Boston, MA: Springer US. 
doi:10.1007/978-1-4899-0718-9_31

Simon, H. A. (1996). The sciences of the artificial. MIT Press.

Storey, V. C. (1991). Meronymic relationships. Journal of Database Management, 2(3), 22–36.

Storey, V. C. (1993). Understanding semantic relationships. The VLDB Journal—The International Journal on 
Very Large Data Bases, 2(4), 455-488.

Teorey, T. J., Yang, D., & Fry, J. P. (1986). A logical design methodology for relational databases using the 
extended entity-relationship model. ACM Computing Surveys, 18(2), 197–222. doi:10.1145/7474.7475

http://dx.doi.org/10.1007/3-540-45581-7_33
http://dx.doi.org/10.1007/3-540-45581-7_33
http://dx.doi.org/10.1111/0029-4624.31.s11.17
http://dx.doi.org/10.1111/0029-4624.31.s11.17
http://dx.doi.org/10.1016/0096-3003(92)90099-M
http://dx.doi.org/10.1145/1168092.1168097
http://dx.doi.org/10.1145/2950044
http://dx.doi.org/10.1007/s00766-012-0163-2
http://dx.doi.org/10.1007/s13194-012-0056-8
http://dx.doi.org/10.1115/1.4023002
http://dx.doi.org/10.2307/2318254
http://dx.doi.org/10.1016/S0016-7185(00)00035-X
http://dx.doi.org/10.1287/orsc.1.2.160
http://dx.doi.org/10.1007/978-1-4899-0718-9_31
http://dx.doi.org/10.1145/7474.7475


Journal of Database Management
Volume 28 • Issue 1 • January-March 2017

42

Mala Kaul is Assistant Professor of Information Systems in the College of Business at the University of Nevada, 
Reno. Her research focuses on information systems design methodology, evaluation methods, cybersecurity and 
privacy issues, and health information technology. She has extensive industry experience as an information systems 
professional in a wide variety of verticals including manufacturing, finance and hospitality. She received her BCom 
and MA in Industrial and International Economics from Kanpur University, India, and her MBA and PhD degrees 
from the Managerial Sciences Department and the Computer Information Systems Department, respectively, in 
the Robinson College of Business at Georgia State University.

Veda C. Storey is the Tull Professor of Computer Information Systems and Professor of Computer Science at the J. 
Mack Robinson College of Business, Georgia State University. Her research interests are in conceptual modeling, 
ontologies, intelligent information systems, big data, and design science research. She serves on the Steering 
Committee of the International Conference of Conceptual Modeling where she is an ER Fellow.

Carson Woo is Stanley Kwok Professor of Business, Sauder School of Business, University of British Columbia. His 
research interests include conceptual modeling, systems analysis and design, and requirements engineering. Dr. 
Woo is editor of Information Technology and Systems Abstracts Journal at the Social Science Research Network 
(ITS-SSRN), and serves or has served on several editorial boards, including ACM Transactions on Management 
Information Systems, Business & Information Systems Engineering Journal, and Requirements Engineering. He 
serves as Vice-Chair (2017-2018) and later as Chair (2019-2020) of Conceptual Modeling Conference Steering 
Committee and has served as President of Workshop on Information Technology and Systems (WITS), Inc. 
(2004-2006) and chair of the ACM Special Interest Group on Office Information Systems (SIGOIS) 1991-1995.

Wand, Y., & Weber, R. (1989). An ontological evaluation of systems analysis and design methods. Academic Press.

Wand, Y., & Weber, R. (1990a). An ontological model of an information system. IEEE Transactions on Software 
Engineering, 16(11), 1282–1292. doi:10.1109/32.60316

Wand, Y., & Weber, R. (1990b). Toward a theory of the deep structure of information systems. University of 
British Columbia, Faculty of Commerce and Business Administration.

Wand, Y., & Weber, R. (1993). On the ontological expressiveness of information systems analysis and design 
grammars. Information Systems Journal, 3(4), 217–237. doi:10.1111/j.1365-2575.1993.tb00127.x

Wand, Y., & Weber, R. (1995). On the deep structure of information systems. Information Systems Journal, 
5(3), 203–223. doi:10.1111/j.1365-2575.1995.tb00108.x

Weber, R. (1997). Ontological foundations of information systems. Coopers & Lybrand and the Accounting 
Association of Australia and New Zealand Melbourne.

Woods, J., & Rosales, A. (2010). Virtuous Distortion Model-based reasoning in science and technology. Springer. 
doi:10.1007/978-3-642-15223-8_1

ENDNOTES

1 	 Bedau (1997) considered strong emergence to be scientifically irrelevant (p.376), thus outside the scope 
of this paper.

2 	 In this paper we use the term decomposition similar to Simon’s notion of “near decomposable.”

http://dx.doi.org/10.1109/32.60316
http://dx.doi.org/10.1111/j.1365-2575.1993.tb00127.x
http://dx.doi.org/10.1111/j.1365-2575.1995.tb00108.x
http://dx.doi.org/10.1007/978-3-642-15223-8_1

