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ABSTRACT

Understanding the current situation is critical in every natural disaster or crisis. Therefore, there is a 
need for accurate and up-to-date information about the scope, extent and impact of a disaster. The basis 
for this information is data that is available through a variety of sensors. Decision Support Systems 
(DSSs) support decision makers in disaster management, response, and recovery by providing early 
warnings, insights into the current situation and recommendations for mitigation actions. For this 
purpose, raw sensor data needs to be collected, analyzed, integrated, and its semantics need to be 
automatically understood by the system. This series of processes forms a generic sensor to decision 
chain. In this paper, we present solutions and technologies to integrate those steps seamlessly, also 
demonstrating how each step of the pipeline can be visualized.
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INTRODUCTION

The World Meteorological Organization expects a global temperature increase of 3°C caused by climate 
change (World Meteorological Organization, 2018). This increases the probability for the occurrence 
of critical natural events, such as floods, dry periods (resulting in forest fires) or heatwaves. To face 
these challenges, the United Nations have called to intensify the development of early warning systems 
(UNISDR, 2005). In 2015, the call was renewed, now also including chained disasters (UNISDR, 
2015). Through the support of early warning and risk management systems, authorities aim to limit 
the impact of natural disaster crises.

In this paper, we propose a generic approach to improve the quality of decision support and foster 
early warning systems. Our method, called the “sensor to decision chain,” covers the steps from sensor 
data acquisition1, semantic data analysis, data integration and eventual decision support. The chain 
forms the basis of an integration framework supported by a variety of cutting-edge technologies. 
Therefore, the main goal of the framework is to support authorities through a decision support system 
that implements the sensor to decision chain.

The following subsections describe each step of the sensor to decision chain and present 
appropriate technologies for its implementation. The rest of this paper is structured as follows: 
Section “Background” discusses existing decision support workflows and respective implementations; 
“Motivation” presents the beAWARE project, which serves as a practical example of our 
implementation and offers the possibility to test our approach in three large-scale pilots; the general 
approach is discussed in “The sensor to decision chain” section, followed by an thorough description of 
each step. Finally, “Conclusion” summarizes our findings and discusses directions for further research.

Background
Since the 1980s, computer systems provide decision support to human actors in complex situations. 
A decision support system (DSS) is an interactive computer-based system, which supports decision 
makers in solving unstructured problems by using data and models (Sprague, 1980). In their recent 
survey on current decision support systems for natural hazard risk reduction, Newman et al. (2017) 
assessed the capabilities and drawbacks of DSSs with the help of a classification system and found 
that a key shortcoming of current approaches is the limitation to single hazard situations. Based on 
our “sensor to decision chain,” we propose to overcome this limitation through a flexible framework 
of sensors and semantic components, allowing the integration of various data sources. This exactly is 
the main contribution of this work in comparison to other related works in the literature. We present 
below a subset of representative examples from existing approaches.

Fang et al. (2014) propose a DSS for environmental monitoring that integrates various 
technologies, like Internet of Things (IoT), Cloud Computing and Geographic Information Systems 
(GIS). The authors pointed out the importance of data acquisition and data fusion and proposed a 
layered architecture, which we also adopted to some degree in our sensor to decision chain. Similarly, 
di Pietro et al. (2017) discuss a DSS for crisis management based on an architecture structured along 
functional blocks, covering different aspects in crisis management like monitoring natural phenomena 
or predicting damage scenarios.

However, neither of the aforementioned approaches considers adding a semantic integration 
layer for integrating the various data sources. Nevertheless, semantic technologies play a vital role 
in modern DSSs and their deployment has indeed been discussed in recent works. Indicatively, 
Wanner et al. (2014) present an ontology-structured knowledge base, which helps deduce information 
relevant to the specific user that is communicated in the language of their preference. Moßgraber et 
al. (2015) demonstrate another usage of semantic technologies, where an ontology is used to improve 
the understanding of the use case domain, as well as to structure and visualize information of the 
current situation. Finally, Burel et al. (2017) encapsulated a layer of semantics into a deep learning 
model for automatically classifying information from social media posts.
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The deployment of semantics is also adopted in early warning systems, which constitute a 
specific type of DSS. Moßgraber (2017) provided an overview of current architectural designs and 
technologies for such systems. The operation of such DSSs is complex and challenging. Therefore, in 
order to facilitate the development of new DSSs, Moßgraber developed, based on the aforementioned 
overview, a framework for the architecture of next generation early warning systems. This framework 
includes semantic technologies and workflow automation. Moreover, Poslad et al. (2015) presented 
an Internet of Things (IoT) early warning system for environmental crisis management, where the 
deployment of semantics facilitated sensor and data source plug-and-play, offering simpler, richer, 
and more dynamic metadata-driven data analysis and easier service interoperability and orchestration.

Finally, research and development has been invested in crowdsourcing as well. For instance, 
the Finnish Meteorological Institute (FMI) offers a way to report weather measurements through 
a mobile application. Furthermore, the Ushahidi platform was developed as a response to riots in 
Kenya after the 2007 elections, in order to report and document such incidents (Okolloh, 2009). 
Since then, the system has been extended to be applicable to other events as well. A student project 
from the University of Bremen developed a mobile application that collects reports during a crisis 
and offers means of communication with the involved people (Frommberger, 2013). Finally, the 
i-REACT project (http://www.i-react.eu/) is going one-step further by integrating messages from 
citizens as well as first responders into a decision support system. The focus of all those projects is 
the collection of reports from citizens. Yet, integration into a bigger system, offering sophisticated 
analysis capabilities, is not foreseen.

Motivation
This section outlines the need for an integrated platform for data acquisition, analysis, evaluation, 
and visualization for DSSs with the help of project beAWARE (Enhancing decision support and 
management services in extreme weather climate events – http://beaware-project.eu/). The main goal 
of the beAWARE project is to provide an integrated decision support solution, covering all phases 
of an extreme weather event. Next to situational awareness, command and control aspects were 
considered as well. To provide sophisticated situational awareness capabilities, all phases need to 
be considered, from forecasting and early warning before the crisis, as well as informing authorities 
together with workforce management while the event is taking place.

During the pre-warning phase, when a critical situation is predicted before it comes in effect, the 
extent of the disaster should be estimated through forecasts and with the help of available knowledge. 
This information can be used to dispatch early warnings, allocate first responder forces and prepare for 
the event, in order to reduce its impact as much as possible. Once the disaster occurs, it is important 
to get accurate information about scope, geographical distribution, affected people and assets as 
quickly as possible. In a natural disaster event, it is important to know what happened in previous 
(comparable) events, what is happening in this moment and what can happen in the context of the 
event. Situational awareness requires the collection of available information in (near) real-time, as well 
as background knowledge and experiences of past events. This information supports the command 
and control of the available workforce and other resources to mitigate the effect of the critical event.

The sensor to decision chain provides a generic approach to facilitate decision support and early 
warning by drawing a picture of the ongoing situation through available sensors and their raw readings. 
Key challenges include the collection of data from heterogeneous sources (such as environmental 
data, social media, first responders and people in danger), data analysis and integration, as well as 
deducing and extracting important information and presenting it to the responsible persons.

Pilot Use Cases and Sensor Data
To ensure the usability of the development, the work relies on the use cases and the feedback of the 
end-users in the beAWARE project. This ensures realistic scenarios of extreme weather events (flood, 
fire and heatwave) and heterogeneous data availability. The sensors collecting these data are included 



International Journal of Information Systems for Crisis Response and Management
Volume 10 • Issue 4 • October-December 2018

68

in the first step of the sensor to decision chain. Later in the paper, it is argued that the chosen approach 
is not limited to these scenarios and sensors, but can easily be extended to other events as well. The 
following subsections introduce the use cases and end-users.

Flood
The flood use case is located in Vicenza, a city in northern east Italy, crossed by the Bacchiglone 
River. In this area, the Italian Alto Adriatico Water Authority (AWAA) has deployed nearly 50 
weather stations, measuring air humidity, pressure and temperature, precipitation and wind, as 
well as water-level sensors in the river. These sensors are all connected to the Internet and this 
allows automatically importing the latest measurements into the system. These observations 
are extremely valuable since they provide reliable real-time information about the situation. 
In comparison to other extreme weather events, a flood is easier to predict, as precipitation in 
the river basin can result in a higher water level in the lower parts of the river. To substantiate 
this prediction, the Finnish Meteorological Institute (FMI) provides the necessary weather 
data; especially precipitation forecasts are considered. Additionally, through expert knowledge, 
a prediction model for the water level in the river has been developed. The exceeding of 
thresholds in these forecasts is the main indicator for an upcoming event, which results in 
issuing early warnings.

Fire
Similar to the flood use case, the current and predicted weather data, which is periodically 
updated, are important indicators for fire hazards. A high temperature combined with a low 
humidity and little precipitation increases the risk of fire. These conditions do not necessarily 
lead to a critical event, but should draw increased attention. In this case, the fire brigade is 
set on standby. There are several possibilities to detect a fire. The most efficient and reliable 
way is to constantly record the area of interest by the means of static cameras and analyzing 
the data (near real-time) by applying video analysis software. Nevertheless, static cameras and 
sensors in general are typically expensive in acquisition and operation. Therefore, it is usually 
not possible to monitor the whole area at risk and other data sources need to be considered. 
The pilot region for the beAWARE use case is a forest area near Valencia in Spain, where, like 
in most rural areas, unfortunately no static cameras are deployed. To overcome this, the pilot 
is supported by the usage of drones, which are capable of monitoring a larger area. By flying 
over the region of interest, pictures and videos are recorded and analyzed to detect critical 
events, especially starting fires.

Heatwave
In this use case, the weather situation and forecast are factors as well. In contrast to the fire use case, 
where a low humidity increases the risk of fire, high humidity increases the severity of a heatwave. To 
mitigate the impact of a heatwave, it is common to offer citizens the possibility to visit public shelters 
that are cooled down by air conditioning. For the authorities, the condition and status of these places 
(e.g. available space, problems with sanitary facilities etc.) is of interest. Collecting this data with 
technical sensors can be very challenging. Therefore, the people themselves can be considered as an 
additional data source: by analyzing data from social media (e.g. Twitter) or by using a dedicated 
mobile application from which people can send multimodal reports (text, audio, images, videos) 
directly to authorities, one can harvest further helpful information. Citizen involvement is not limited 
to this use case and can help in other scenarios as well.

The above three use cases describe the variety of sensor data and data sources in the project. 
By overcoming the challenges of heterogeneity, one can offer a detailed description of an ongoing 
disaster. Furthermore, the importance of each sensor type highly depends on the specific use case.
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The sensor to decision chain
As already stated, there is a broad variety of sensors available today. Sensors are accessible via 
Internet of Things (IoT), Machine-2-Machine (M2M) standards, from social media or from a mobile 
application (human sensors) (Meissen, 2014). To make use of the available data, it needs to be collected 
and analyzed. This is a prerequisite for gaining a better understanding of a crisis, for finding critical 
events like people in need of rescue or for coordinating countermeasures.

To approach this problem Moßgraber et al. (2018) presented a generic approach for decision 
support and early warning in climate-related crises by applying a pipeline to get from raw sensor data 
to a model about the ongoing situation (see Figure 1). The key contribution of the paper at hand is to 
provide tools, models and technologies to execute and visualize this pipeline. The parts of this method 
cover the steps from sensor data acquisition, data integration and aggregation, semantic modeling and 
data analysis to provide decision support and early warning capabilities. The challenge of integrating 
a variety of heterogeneous sensor data to understand the current situation often occurs in the context 
of crisis management. The presented approach offers the needed flexibility to be applicable for a 
broad variety of situations. We show this by applying it to three different large-scale use cases within 
the beAWARE project.

As a first step, the data needs to be collected from the sensors. It then needs to be aggregated, 
fused and analyzed to understand the semantics. A knowledge base (KB), formalized as an ontology, 
provides a global schema to support the semantic integration from heterogeneous sources (Noy, 2004). 
The ontology describes the concepts of interest and their interrelationships, covering various domains 
like sensor metadata, climate change and crisis management. Once the schema is established, it can 
be populated with results from various analysis components processing the raw sensor data. Since the 
KB knows not only the plain data but also its underlying semantics, a DSS can recommend actions 
or provide information about the situation.

In the following sections, each individual step is presented in detail. After a generic description, 
applicable techniques and technologies are presented. Then we will show how the aforementioned 
use cases can be implemented with our approach, including visualizations adjusted to specific 
stakeholders, who interact with the sensor to decision chain.

Sensors

To allow well-grounded decision support and early warning, reliable up-to-date information is 
crucial. Usually it is not possible for decision makers to visit the affected area of the crisis in-
situ, and it is not possible to overview all relevant aspects without technical support. Therefore, 
the situation needs to be captured by sensors, to be considered in the decision-making process. 
In the use case section, necessary information and their possible sources have been presented. 
This section will present three generic types of sensors, their characteristics and the existing 
challenges. These categories are namely static sensors in the context of IoT, social media, and 
mobile app technology. Depending on the use case, available resources and infrastructure, the 
appropriate sensors to be used need to be selected.

Figure 1. The sensor to decision chain
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Static Sensors and IoT
Spatially distributed static sensors can observe a specific area. There are various types of sensors 
like weather stations, river level sensors as well as video cameras, offering reliable information 
about the physical phenomena in the covered region. However, they are expensive in installation and 
operation. Additionally, they usually have a fixed position, which limits the coverage to the deployed 
area. Still, the upcoming Internet of Things (IoT) technologies lead to a growing market of new and 
cheap sensors. These devices can be used to deploy additional sensors in the observed area. Despite 
their lower measurement accuracy when compared to traditional sensors, the correlations of their 
outputs can lead to valuable insights.

Social Media
Another important data source in a crisis is the public itself. Social media services like Twitter 
offer new possibilities to retrieve information (e.g. (Terpstra et al., 2012)). A lot of research has 
been focused on collecting and analyzing social media messages. While collecting this data is 
comparatively easy, the automated analysis can be very challenging. The content of the message 
needs to be understood by applying text analysis. Due to the ambiguity of natural language, this 
process is rather complex. Even more challenging is the individual textual style applied in social 
media, e.g. the use of abbreviations, hashtags or emojis, which prevents the application of traditional 
text analysis and content extraction mechanisms.

Besides textual analysis of individual messages, research has been also conducted on clustering 
and classifying similar messages determining ongoing events (Angaramo & Rossi, 2018). Furthermore, 
researchers try to derive the sentiment of the message (Schulz et al., 2013) to infer the emotional 
state of the author.

To utilize this information, the authors and their electronic devices can be seen as a sensor 
in the sensor to decision chain. It allows insights into incidents, thoughts and feelings that are not 
directly communicated to the authorities, but are openly available and can be very helpful to get a 
better picture of the ongoing situation. Still, social media data often has no geo information attached. 
Thus, if the position of a message is missing (which is the common case) it can only be inferred 
by applying text analysis. These methods are not reliable through well-known challenges in natural 
language processing techniques. Additionally, an exact geographic location needs to be mentioned 
in the text (e.g. the name of a well-known building), which makes assigning social media data to a 
concrete position rather challenging.

Mobile App Technology
Another communication possibility for the public is a mobile application for user-optimized provision 
of information. This is a more direct way in comparison to social media: on social media, the recipients 
of the messages are not clear, and people might not be aware that their published information is useful 
for decision-making. Thus, we are currently working on incorporating data from a dedicated mobile 
application into the sensor to decision chain (see Figure 2).

The variety of sensors embedded in modern smartphones can provide precise information. People 
can choose the appropriate input modality depending on the current situation and their personal 
preferences. This can be done by allowing text input as well as utilizing the smartphone camera 
to take pictures/videos or the microphone to record audio. The real-world context can be added by 
utilizing the GPS data of the mobile device.

Aggregation & Integration

The outcome of the first step of the sensor to decision pipeline is raw data. Integrating this data is 
difficult, because of the multiple ways accessing this data and the different formats in which the 
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measurements and metadata are available. To allow decision support and early warning, the data 
needs to be harmonized and aggregated in the next step. Just as the sensor selection is dependent 
on the use cases, the integration step is dependent on the selected sensors. This section will present 
methods to integrate different types of sensors.

Figure 2. Sending reports from a mobile application
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Integrating Time Series Data
The most prominent method to integrate data from various sources is to rely on standards. One 
example is the OGC SensorThings API (Liang et al., 2016), which offers the possibility to manage 
time series based sensor data as well as sensor metadata. Besides an underlying data model, an 
API has been specified, based on the representation state transfer (REST) paradigm, which is very 
common in the context of web applications (Fielding & Richard, 2002). The REST interface allows 
easy access from different applications and programming languages. The SensorThings API integrates 
selection and filter operators from the OASIS Open Data Protocol (Pizzo et al., 2014), which offers 
the possibility to query data.

Next to this REST-based API, which allows CRUD (create, read, update, delete) operations, a 
Message Queue Telemetry Transport (MQTT) extension was specified. This allows the notification 
of new and changed entities through a listener/subscriber pattern. Due to these characteristics, 
the SensorThings API standard offers an appropriate solution to integrate time series data (like 
sensor measurements) into a decision support system. In the presented use case scenarios, we 
use the Fraunhofer IOSB open source implementation of the OGC SensorThings API to integrate 
measurements from weather stations, river gauges or weather models. To this moment, both current 
measurements as well as forecasts are stored on the FROST server (van der Schaaf, 2016).

To get an understanding of the current situation and the provided results in the decision support 
step, transparency of each chain link is crucial. To do so, the data provided by the sensors can be 
visualized in an interactive graph. Even though this data can be analyzed automatically, it is important 
to offer a possibility to get a detailed view of single measurements. Experts might have to validate 
recommendations of the decision support module. In addition, correlations between two measured 
values can be discovered through visual inspection. Figure 3 shows an example for the correlation 
between precipitation and water level.

At this point, we need to keep in mind that the data volume might exceed the volume that can 
be handled by subsequent modules. A data aggregation step reduces the data amount for further 
processing and displaying. Examples for aggregation functions are the calculation of average, minimum 
or maximum values. Another possibility is to monitor the measurements and pass single events to 
the following steps e.g. the exceeding of a threshold.

Integrating Mobile App Technology
In the background section, we pointed out that there are various mobile applications allowing 
citizens to provide data to authorities in a crowd-sourcing manner and we pointed out that all of these 
approaches lack a deep integration into a DSS. To facilitate this, we propose to regard data coming 
from mobile applications as additional sensor data running through our sensor to decision chain. 
By this approach, we achieve a deep integration through applying analysis components to this data. 
Semantically integrating these results allows an automated utilization for decision support as well. 
The semantic model section demonstrates how this aspect can be integrated in the overall model.

Integration of Analysis Components
Due to the variety and amount of available sensor data, a tight integration is only possible by applying 
advanced analysis methods. Especially visual content (images, videos) provided by static cameras, 
citizens or via social media is only helpful when useful information can be extracted in a machine 
interpretable format. This can be achieved through image and video analysis tools. Audio content 
firstly needs to be transcribed to written text in order to extract information by applying text analysis 
and Natural Language Processing (NLP) methodologies.

Certain analysis processes tend to be demanding in processing power and time, vastly depending 
on the incoming media characteristics (e.g. length, resolution of pictures or videos) and the system’s 
hardware setup. As a result, a large volume of incoming resources can prevent a real-time approach. 
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Thus, from a system architecture point of view, the various analysis components operate independently 
and provide results asynchronously. For instance, a citizen’s submission of data via the Mobile App 
might contain textual and visual attachments. This results in the creation of an incident report in 
the main pipeline, which later on will be enriched with findings from the text and image analysis 
components. Therefore, all analysis components need to monitor all reported data and decide about 
which data artefact they can provide information.

For the implementation of the beAWARE platform, a standalone web application called beAWARE 
Bus Logger (see Figure 4) has been developed to track, log and visualize these asynchronous 
communications between sensors, analysis components, the semantic model (see next section) and 
other system modules. This greatly facilitates the establishment and debugging of communication 
protocols, allowing visual interpretation of the system and providing advanced testing capabilities. 
However, the Logger is an excellent tool for decision makers to visualize the progress of information 
exchange during an ongoing crisis.

Semantic Model

This section describes the semantic model of our pipeline, which is formalized as an ontology (Gruber, 
1993), offering a unified representation of all relevant domain-specific information in a formal way. 
The ontology is a lightweight model for crisis management in the context of climate-related natural 
disasters and plays a two-fold role. First, it serves as common uniform model for semantically 
integrating heterogeneous information from the diverse sources and sensors. Ontologies are an 

Figure 3. Visualization of precipitation and water level
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excellent fit for addressing this issue of semantic heterogeneity, and for establishing interoperability 
through a process called “semantic integration” or, less frequently, “semantic fusion” (Wache et al., 
2001). The second role played by the semantic model is serving as the backbone of the decision 
support system deployed within the context of the beAWARE project (see later subsection).

Contrary to other existing ontologies for crisis management that only focus on specific aspects 
of the occurring natural disasters, the beAWARE ontology is an all-around model integrating all 
pertinent aspects, including associated conditions and climate parameters, results of the analyzed 
data (e.g. text, audio, images, videos), as well as workforce management. Nevertheless, parts of the 
ontology are inspired from existing models for representing similar notions. MOAC (Management 
of a Crisis) (Ortmann et al., 2011) constituted the basis of our representation for disaster impacts, 
SoKNOS (Service-Oriented Architectures Supporting Networks of Public Security) (Babitski et al., 
2011) was adopted to categorize damages and resources, and the PESCaDO ontologies (Rospocher 
& Serafini, 2012) were extended to represent environmental and meteorological conditions.

The key notions of the beAWARE ontology are presented in (Kontopoulos et al., 2018), while 
the ontology itself is publicly available (beAWARE, 2018a). Figure 5 displays an overview of the 
main concepts and their relationships, based on the Grafoo notation for ontology visualization (Falco 
et al., 2014).

In order to assist the unfamiliarized users and to encourage further ontology reuse, the beAWARE 
model embodies extensive definitions and representative examples, via the use of SKOS properties 
skos:definition and skos:example, respectively (Miles & Bechhofer, 2009).

The following subsections briefly present the various representational aspects of the ontology.

Natural Disasters
To understand the crisis and to provide decision support, a basic understanding of the underlying 
phenomena is needed. The involved concepts are visualized in Figure 6. In our presented case of 
climate-related crises, a Natural Disaster is the main concept. Figure 7 shows a possible instantiation 
for the UK heatwave that occurred in between the 17th and 22nd of June 2017 (BBC, 2017). This 
particular disaster is characterized by a Natural Disaster Type, in this case “heatwave”. By using this 
modelling approach, other types of natural disasters like floods, forest fires, storms or earthquakes can 
be categorized as well. Disasters can interfere among one another (modeled by the leads to relation): 
e.g., a heatwave may lead to forest fires or a storm may lead to floods. Each Natural Disaster Type 
is characterized by measurable parameters, the types of which are modeled as Climate Parameter 

Figure 4. The beAWARE Bus Logger interface
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Types. Their concrete manifestations are instances of a Climate Parameter, which are described by 
a measured value in a specific unit at a specific time. Since those measurements are conducted at a 
specific location, the Climate Parameter concept has a relation to the Location concept. Furthermore, 
to describe the effects of natural disasters, the Impact concept is introduced (analogous split into 
Impact Type and Impact). To limit the extent of an impact, counteractions might be needed; we refer 
to such problems that can be tackled by an action as Incident. In the next sections, we can see that 
the Incident is relevant in all the three domains of our ontology.

Figure 5. Main concepts of the beAWARE ontology

Figure 6. Model of natural disasters together with impacts and risks

Figure 7. Instantiation of a concrete natural disaster
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Sensors and Analysis
Information about the ongoing situation is fed into the system by sensors and it is automatically 
analyzed by the appropriate analysis components. These results are semantically integrated into the 
beAWARE ontology, as shown in Figure 8. The raw data is represented via Media Item. An instance 
of a Task analyzes a Media Item and produces a Dataset. Analyzing tasks might be the processing of 
a video or image analysis component, where the Dataset contains the relevant output, which is mainly 
a set of Detections. Each Detection is described by a confidence degree, denoting the probability 
of the detected element by the analysis component. Objects involved in an Incident are Vulnerable 
Objects (e.g. assets, persons, infrastructure, buildings, etc.). They can be distinguished by extending 
the Vulnerable Objects concept by corresponding sub-concepts, which are not displayed. Additional 
properties, like detection risk or severity level can be added to the detection. The relation of a media 
item to an incident can be given directly or it can contain a location, from where the incident can be 
inferred. The relations from Datasets and Detection to Incident can be inferred from the Media Item, 
and can be inserted manually or can be asserted as a result from the analysis.

First Responder Units and Assignments
Managing a crisis is only possible through the coordinated use of available forces. Therefore, first 
responder assignments are also part of our semantic model, as shown in Figure 9. A first Responder 
might be assigned to a Mission, which is characterized by several properties like status or priority. A 
mission is related to an Incident and therefore mitigates an Impact. To get an overview of locations 
of the available forces, the current location of a first responder is modelled as well.

Figure 8. Representing sensors and analysis

Figure 9. Rescue teams and assignments
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Visualization of the Ontology
An ontology covering several domains and topics can be extremely complex and sophisticated. 
Therefore, visualization plays an important role in (a) helping end users to understand the model’s 
inherent structure, enabling them to work efficiently with the ontology, and, (b) giving a more thorough 
overview of an ongoing crisis and its potential impacts, thus, improving the quality of decision support. 
Besides the visualization of the structure, the contained data (e.g. specific instances, measurements 
and incidents) needs to be displayed as well. Therefore, our implementation of the sensor to decision 
chain also contains a module to visualize the ontology (structure and instances), offering an additional 
tool that supports decision makers by providing a clearer picture of the underlying model, data and 
situation. In this context, we implemented an interactive visualization that allows browsing and 
analyzing the complete semantic content.

The fully automated generation of graphs of an ontology is difficult, since the importance of 
individual parts is highly dependent on the use case. While displaying all concepts and their relations 
might lead to an unmanageable amount of information, we decided not to adopt an automated 
generation approach. A full manual solution, on the other hand, would involve the use of an external 
tool to generate a visualization and uploading the result. This is very time-consuming and error-prone, 
especially when the underlying ontology is changing. Hence, we are implementing an integrated 
solution. By following this approach, there is the guarantee that the visualization matches the currently 
used ontology and therefore avoids inconsistencies, which may prove too confusing for users. Thus, a 
tool was integrated into the DSS to allow end users to compose images of the ontology, including both 
concepts as well as instances. When creating an image, the current concept or instance is automatically 
added. Related concepts and images can be added for each item in the picture, by selecting them 
from the recommended list, which is automatically populated with all related elements existing in 
the underlying ontology. This allows the automatic naming of the relations (drawn by arrows) and 
ensures that the picture is aligned with the ontology. This accordance is verified every time the image 
is shown. Entities that no longer exist are removed automatically. Applying relations dynamically 
to the image (see Figure 10) ensures that relations added to the ontology at a later point in time are 
automatically added to the image, without further interaction of the user. Depending on the use case, 
different relationships are of interest each time. It is possible to attach multiple ontology images to 
a concept or instance. This allows the visualization of different aspects.

Figure 11 shows the visualization of an instance. The instance itself is described through text 
and image. On the right side, the concept of that instance together with all relations is shown. At 
the bottom, there is the ontology visualization, showing the relationship of that instance with other 
concepts. Since these concepts and relationships on the right-hand side are linked to the target entity, 
the ontology can be easily browsed and analyzed.

Decision Support & Early Warning

The last part of the sensor to decision chain is decision support and early warning. All previous 
modules work towards this step by collecting, analyzing, integrating and modeling the input data. 
Decision support and early warning aims for the generation of an accurate model of the current crisis 
that contains past information (experiences of previous events), current real-time information as well 
as predictions and forecasts. The main goal is to capitalize on this model for supporting end users in 
decision making for crisis response.

One aspect of decision support and early warning is the monitoring of available data to detect 
critical situations in an early stage. This can be achieved by continuously evaluating predefined 
metrics, which can directly be derived from sensor values (e.g. current water level) or from more 
complex relations (e.g. used capacity of rescue forces). In addition, they can refer to a single point 
(e.g. current water level at specific latitude/longitude coordinates) or a region (e.g. rescue forces in 
this area). Next to metrics, which can be grouped geographically, the data model can be observed 
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regarding critical events that require an instant action by a rescue team (e.g. a static camera captures 
an incident with injured persons).

Decision support and early warning are very use-case specific. Therefore, in this subsection we 
demonstrate only a proposed generic approach based on a flexible query mechanism for providing 
authorities and human operators with decision support and early warning capabilities. The concrete 
implementation each time needs to be materialized when applying the sensor to decision chain 
methodology to specific use cases.

Therefore, starting with the risk assessment phase (i.e. before a disaster actually occurs), the 
Crisis Classification (CRCL) system, which is the main component responsible for this task fuses 
and analyses information acquired from heterogeneous data sources, in order to support authorities 
and local stakeholders during the risk assessment as well as during the decision-making process. To 
achieve this, the system has been equipped with functionalities and capabilities to collect multiple 
types of data and information related with the crisis during the emergency phase. Specifically, sensing 
data from weather stations, as well as aggregated data from other components, are available to CRCL 

Figure 10. Creating a visualization of the ontology
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for assessing the risk and for classifying the impending crisis. Thus, a proposed holistic multimodal 
fusion approach considers the analysis results from multimedia analysis, including image, video and 
audio analysis, multilingual text analysis, mobile applications for citizens and first responders as 
well as social media.

Entering the phase when the disaster is ongoing, in order to retrieve information from the semantic 
model, integrating all the relevant knowledge, SPARQL can be used to query the information and 
derive inferences. SPARQL is a set of specifications for querying and manipulating ontology models, 
standardized by the W3C (W3C, 2012). The expressive power of SPARQL allows not only the retrieval 
of explicitly asserted data, but also inferring new information via calculations or semantic reasoning. 
For example, incidents can be spatially grouped, so that events happening very close to each other are 
visible as a single event. Another example is the automated rating of events based on their severity 
(see Figure 12). This can be done by utilizing the analysis results, especially when people are involved.

In addition, it is possible to dynamically calculate an incident’s certainty, severity and potential 
impact, based on the available information. For instance, Figure 13 displays a query for retrieving 
fire or flood incidents involving at least one human, which can then be assigned with a high priority.

The inference results can optionally be appended to the ontology in order to retrieve them in 
further queries. In knowledge engineering, queries which can be answered by the use of an ontology 
are typically called competency questions (CQs). In the context of our use case, a list of CQs was 
created, which assisted in formulating a list of initial requirements for the decision-making process. 
Each CQ was formalized as a SPARQL query to be answered by the semantic model. The full list of 
CQs, together with the corresponding queries, can be found online (beAWARE, 2018b) and some 
indicative sample queries are:

Figure 11. Visualization of an instance
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•	 What are the locations affected by a natural disaster?
•	 What are the impacts caused by a natural disaster?
•	 What are the vulnerable objects that suffer the greatest risks?
•	 Which rescue unit is assigned the most severe incident?

Those CQs need to be executed and evaluated and the execution of the respective SPARQL 
queries must be explicitly triggered. This can be done at periodic intervals (e.g. every minute) or 
on explicit request by the end-user (e.g. because the user is currently analyzing a given situation).

To reduce unnecessary evaluation that would consequently increase the response time, it 
is also possible to estimate the importance of data that is added to the ontology. Based on this, 
trigger rules for the CQs can be created. This possibility has not been evaluated yet but will be 
part of our future research.

As already mentioned, our sensor to decision chain will be evaluated in three pilot use cases, 
based on the outcomes of which, decision support and early warning capabilities will be extended in 
the future. The use of SPARQL query capabilities allow an easy integration of further CQs.

Pilot Execution
At the point when writing this article, two out of three use-case tests have been executed successfully. 
Each pilot was split into two sections executing the same scenario: one time using legacy tools and 
one time using the beAWARE platform. In this platform, the sensor to decision chain, described in 
this article together with the presented technologies was deployed. The double execution of the pilot 
enabled a direct comparison of crisis management between the currently used tools and the support 
of the beAWARE platform.

In November 2018, a heat wave was simulated in Thessaloniki, Greece. Due to high temperatures, 
the authorities decided to warn the citizens and they provided recommended actions, which included 
visiting air-conditioned places. The main task of the authorities was to monitor the capacity of places 
of relief (public buildings with air condition), as well as the traffic situation, in order to facilitate the 

Figure 12. SPARQL query that retrieves all high severity incidents

Figure 13. SPARQL query that retrieves incidents involving at least one human
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way to those places. The situation on the street as well as in the buildings was reported by citizens 
either through the mobile application or through Twitter. It has been shown that using the integrated 
and processed data increased the overview of the authorities to manage the situation in comparison 
to the legacy tools, like e-mail, phone or radio. A detailed evaluation of the pilot can be found in the 
publically available deliverable (Lombardo et al., 2018).

The second use-case test took place in Vicenza, Italy. A flooding of the city center was simulated: 
due to heavy precipitation, the water level of the Bacchiglione River increased. Since the forecasts 
of the water level prediction model exceeded the normal thresholds, the emergency protocol was 
activated by the authorities, which triggered precautionary measure in the city. These tasks were 
arranged, organized and monitored with support of the beAWARE platform. Weather forecasts, water 
level measurements and predictions together with reports coming from the mobile application and 
Twitter were integrated and shown to the authorities to help them better understand the situation. 
A full description of the steps executed during the pilot can be found in the publically available 
deliverable (Muhic et al., 2019). A detailed evaluation is currently ongoing and can later be found 
on the beAWARE project website. The pilot execution and debriefing session afterwards showed 
that the situational awareness for the responsible decision maker was higher than when using legacy 
tools alone.

The successful execution of the two pilots (a third pilot is underway) proved that the methodology 
described with the sensor to decision chain is fully capable to be applied in crises and it helps to 
increase the situational awareness of the decision maker.

CONCLUSION

This paper presented the sensor to decision chain, which is being applied to three large-scale use-case 
tests within the beAWARE EU-funded project. A methodology was presented utilizing various sensors 
and data sources to implement sophisticated decision support and early warning capabilities. Different 
sensor categories, their integration and analysis capabilities were discussed. A semantic model was 
shown to allow a common understanding and integration of various data sources. Based on this model, 
reasoning algorithms are applied to support decision support and early warning. The practicability 
was proven by the successful execution of two pilot use cases. The preparations of the pilot use cases 
have shown that all end user requirements can be realized by the presented methodology. It turned 
out that the semantic model can satisfy its role as the central integration point. On the one hand, 
it was possible to integrate new use-case specific sensors and, on the other hand, use-case specific 
decision support capabilities were implemented by formalizing the according SPARQL-queries. 
Through applying the sensor to decision chain, analysis and integration techniques are available for 
all integrated data. It turned out that the ontology covered all the needed aspects, with the exception 
of slight extensions being adopted to fully support all aspects of the use cases. This, however, does 
not limit the applicability of our approach. The sensor to decision chain describes a methodology 
along with respective technologies to facilitate decision support and therefore it is not directly visible 
by the decision maker. In any case, visualizing each step, making the chain transparent and decisions 
comprehensible is a key challenge to increase the acceptance by all involved users.

In future work, it should be evaluated what kind of additional data can be integrated into the 
sensor step. It should be examined if static data sources (like topographic information, building 
development and points of interest) can be used to improve decision support capabilities. A first 
attempt has already been conducted in including external sematic data sources. In addition, adoptions 
to the semantic model might be considered to represent the new aspects. Further research needs to 
be conducted on reasoning techniques applied to the semantic data in addition to the described query 
mechanisms. This will allow more advanced decision support and early warning capabilities, e.g. 
generating automated warnings or reports of the current situation. Finally, the practical evaluation 
of the beAWARE DSS, which is based on the sensor to decision chain methodology, is still ongoing. 
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First results are available and proved the applicability of our approach, while the final results will 
soon be available.
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ENDNOTES

1 	 In the context of this paper, a sensor is a device that delivers data about an ongoing crisis. This explicitly 
contains sensors delivering unstructured information, such as pictures, recordings, videos or even data 
from social media.
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