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ABSTRACT

Cloud computing, as a trend technology, has stemmed from the concept of virtualization. Virtualization 
makes the resources available to the public to use without any concern for ownership or maintenance 
cost. In addition, the hosted applications in cloud computing platforms are highly interactive and 
require intensive resources. The new trend is to duplicate these applications in multiple virtual 
machines based on demand. Such a scheme needs an efficient resource provisioning to manage the 
resource assignment to multiple virtual machines properly. One of the issues in the current resource 
provisioning technique is assigning the resources proactively without predicting the workload of hosted 
applications, which cause load imbalance and resource wasting. Thus, this paper proposes a new 
model to predict the application workload. The experimental results show the ability of the proposed 
model to allocate more virtual machines and to balance the workload among the physical machines.
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INTRodUCTIoN

Due to its unique characteristics, Cloud computing became a trend technology and gained a huge 
attention. Out of these distinctive characteristics are cost-effectiveness, elasticity, resource pooling, 
measured services, and adaptability (Armbrust et al., 2010). The importance of cloud computing 
comes from the concept of utility computing, which allows the people to utilizing the computing 
resources in the same way of utilizing the utility services (e.g. electricity, water, gas, etc.) (Buyya, 
Yeo, Venugopal, Broberg, & Brandic, 2009). In cloud computing, the user can rent the computing 
resources instead of owning it and pay based on his/her consumption.

The idea Cloud computing comes from the abundance of computing resources in the datacenters, 
which are surplus. Such huge resources represents the resource pooling that can be rented to the 
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others upon the user’s demands (Pandya & Bheda, 2014). Elevating cloud computing as a prominent 
technology is due to many enabler technologies such as Service Oriented Architecture (SOA) and 
virtualization (L. Wang et al., 2010). SOA allows the user to use the resources as a service, while 
virtualization allows cloud computing provider to offer the single resource to multiple users based 
on multi-tenancy concept (AlJahdali et al., 2014). Consequently, these computing resources can be 
offered to the public over the internet to be used on demand basis. Cloud computing can be offered 
in different service models based on the offered services such as infrastructure as a service (IaaS), 
Platform as a service (PaaS), Software as a service (SaaS). In IaaS, the hardware is virtualized and 
offered to the users as virtual resources. Rackspace, Amazon Web Services (AWS), Cisco Metapod 
famous examples of IaaS paradigm. Platform as a service (PaaS) offered the development tools to the 
professional people to design their systems. Microsoft Azure and Google Compute Engine (GCE) 
represent this model. Besides, Google apps, Google sheets, and Google Docs are examples of SaaS, 
wherein the software application will be offered to the end users without any customization. The 
main advantage of SaaS is to avoid the burden of software licensing, batch updates, and operating 
systems independency. Other recent service models have been invented recently as Security as a 
service (SECaaS), Business Process as a service (BPaaS), Containers-as-a-Service (CaaS), and so 
on. Thus, the concept of anything as a service (XaaS) was introduced to represent the possibility of 
offering any service as cloud-based (Rimal, Choi, & Lumb, 2009).

Despite the cost-effectiveness of cloud computing, the cost reduction is still one of the service 
providers’ worries. In service provider side, cost reduction can be achieved throughout an effective 
resources provisioning process (Joe, Yi, & Sohn, 2011). Resource provisioning is an essential feature 
in cloud computing whereby estimating the computing resources for different computation tasks based 
on the expected/real workload. Accordingly, resource allocation process determines the locations 
and the amount of resources needed for each user to minimize the cost under certain constraints. In 
cloud computing, many users may share resources with different needs and expectation. Each user 
expects to use the resources freely and with a certain level of quality. Besides, each virtual machine 
is characterized with variable size, interactivity, and rapidly changing effective period (Rimal et al., 
2009). Such characteristics make the design of cloud computing platform challengeable. For that, 
these resources should be shared in a more effective manner (Patel, Ranabahu, & Sheth, 2009). 
However, the virtual machines hosted in cloud computing platforms overwhelmingly suffer from 
the workload fluctuation and/or sudden peak workloads, which may cause a degradation in quality 
of service (QoS) and quality of experience (QoE).

Particularly, the fluctuation in the workload (i.e. the number of incoming requests targeting 
the hosted virtual machines) is a serious issue threatens cloud computing (Patel et al., 2009). For 
instance, allocating a large amount of resources for a virtual machine to cope with the sudden workload 
leads to low resources utilization at non-peak hours, while ignoring the peak workload leads to user 
dissatisfaction during the peak hours. Therefore, pay-as-you-go scheme is introduced as an elasticity 
feature to solve the workload fluctuation issues by scaling up/down the allocated resources based 
on the user demand immediately to avoid service interruption or resource wastage. Amazon Cloud 
Front is a global example of this scheme. In this scheme, the user has to pay for the used resources 
only without any up-front, commit, or service contract.

Although its efficiency to react to the user needs by allocating the needed resources timely, pay-
as-you go scheme still suffers from the resource wastage due to the lack workload prediction. Thus, 
predicting the status of the virtual machines based on their characteristics is a crucial factor to affiliate 
the issues of load imbalance and waste of resources (Vicari, 2008). Virtual machine status prediction 
can be defined as estimating the portion of concurrent requests that target the VM according to its 
characteristics. Such estimation helps a lot in handling both the load balancing and resource allocation 
based on the anticipated load of applications and virtual machines (Li & Wu, 2010).

According to the authors in (Fati & Sumari, 2018; Fati, Sumari, Yuhaniz, & Sjarif, n.d.; A. 
Gaber, Mohamed, Sumari, & Budiarto, 2012; García, Pañeda, Melendi, & Garcia, 2009), modeling 
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the workload for is essential factor to improve the performance, enhance the QoS, and increase the 
reliability. Therefore, the idea of this paper is to build a mathematical model that formulate the 
virtual machine workload as a function of its characteristics. However, virtual machine behavior is 
an unsteady as these VMs are huge size with non-uniform patterns of both lifetime and users request 
access. For this reason, modeling VM status is a challenge. Many works in the literature review focus 
on the VM mitigation to solve load imbalance problem. However, reactive load balancing algorithms 
cause overhead on the datacenter. Hence, the aim of this paper is how to model the VM status in 
cloud computing environment. Such status modelling my help in affiliating the load imbalance and 
resources waste problems. To the best of our knowledge, there is no work formulate the workload 
status of cloud-based application and/or virtual machines. The rest of this paper is organized as follows. 
Section 2 reviews the background and related works of workload modelling for virtual machines. 
Section 3 introduces the proposed workload prediction model. Section 4 discusses the experimental 
results. Finally, Section 5 concludes this paper.

BACKGRoUNd ANd ReLATed WoRK

In cloud computing, the resources are virtualized and managed to create virtual machines, which 
can accomplish jobs that are similar to the jobs executed in a host environment. Virtual machine is a 
software program or operating system that imitate the behavior of a computer and capable of executing 
jobs, like running applications and programs similar to a separate computer. Virtual machines (VMs) 
are becoming more commercial with the advancement of virtualization technology. In virtualization, 
the hypervisor or virtual machine monitor (VMM) is computer software, firmware or hardware that 
creates and runs virtual machines (Golden, 2011). Virtualization utilize a hypervisor to proficiently 
manage several VMs running on a single physical server and to efficiently utilize cloud resources 
(Barham et al., 2003; Bugnion, Devine, Rosenblum, Sugerman, & Wang, 2012; J. Wang & Fan, 2014; 
Younge et al., 2011). The process of creating and managing is referred to as resource management.

In cloud computing, resource management shares the resources pooling among multiple users 
based on the concept of multi-tenancy. Resource management requires complex policies to achieve 
the optimal usage under diverse objectives as cost reduction, quality enhancement, and power 
efficiency. In case of improper resource management policies, utilizing the computing resource might 
be inefficiently. For instance, the service providers are usually sacrifice by doing the over-provisioned 
to guarantee the high service availability and application quality of service (QoS) (Beloglazov & 
Buyya, 2013). Such an over-provisioning is not free, but it costs a lot. According to (Uddin, Shah, 
Alsaqour, Memon, & Saqour Rahasraha, 2013), around 30% of cloud servers, in average, use 10–15% 
of resource volume most of the time. Besides, virtual machine (VM) migration takes place to transfer 
VMs across the cloud servers and/or across the datacenters to achieve different purposes, such as 
server maintenance, power saving, load balancing, and fault tolerance (Koomey, 2008).

As cloud computing is about hosting huge and interactive applications, which require intensive 
computing resources, co-hosting multiple VMs cut down application performance because of high 
resource contention (Åsberg, Forsberg, Nolte, & Kato, 2011; Habib, 2008; Hu, Zhao, Xu, Ding, & 
Chu, 2013; Nathan, Kulkarni, & Bellur, 2013). Therefore, in order to enhance application performance, 
a proper mitigation technique should be implemented to send VM to underutilized or resource rich 
server to cut the level of resource contention (Jeong, Kim, Kim, Lee, & Seo, 2013; Mishra & Jaiswal, 
2012; Pop, Anghel, Cioara, Salomie, & Vartic, 2012; Shuja et al., 2012; Silva, Alonso, & Torres, 2009; 
Yao, Wu, Ren, Zhu, & Li, 2013). Moreover, VM migration techniques migrate VMs within either 
LAN or WAN boundaries. To optimize power consumption, VM migration technology uses server 
consolidation frameworks to switch off unnecessary servers (Deshpande, Kulkarni, & Gopalan, 2012).

CloudCom is a one of the platforms, which used for cloud resource management. CloudCom gives 
very reliable and scalable services to subscribers. Emerging technologies, including Vehicular Adhoc 
Network (VANET) (Whaiduzzaman, Sookhak, Gani, & Buyya, 2014), Wireless Sensor Networks 
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(WSN), and mobile computing applications (e.g., online games, bio-medical image processing, etc.). 
Khan et al. (Khan, Kiah, Khan, & Madani, 2013) used cloud-hosted services (e.g. infrastructure as a 
service (IaaS), platform as a service (PaaS) (Kremer, 2010; Mell & Grance, 2009). and Software as a 
service (SaaS) to advance and extend functionalities. An example, Vehicular cloud computing (VCC) 
merges VANET and CloudCom to assist vehicle drivers to minimize traffic congestion, accidents, 
and travel time (Huang et al., 2014; Whaiduzzaman et al., 2014). Alike, a sensor cloud merges WSN 
and CloudCom to develop distant healthcare, vehicular transport systems (VTS), and environmental 
monitoring (J. Wang & Fan, 2014; Whaiduzzaman et al., 2014) by using cloud services.

Again, such resource management/provisioning schemes are reacting to the current workload by 
creating virtual machines when needed without considering the available capacity and the expected 
prices. Moreover, assigning the resources proactively without considering the expected workload of the 
applications may increase the cost of application hosting due to the unplanned resource consumption. 
As well, the mitigation process, which happened frequently to react to the load fluctuation, is another 
issue in cloud computing platforms. For instance, Social networking websites are perhaps the most 
notable example of highly dynamic and interactive Web 2.0 applications, which gained popularity 
over the past few years. Their growing attractiveness has spurred demand for a highly scalable and 
flexible solution for hosting applications. Many larger sites are growing at 100% a year, and smaller 
sites are expanding at an even more rapid pace, doubling every few months (Subramanyam, Smith, 
van den Bogaard, & Zhang, 2009). These web applications present additional features that make 
them different from traditional static workloads but till now they still static and need to be hosted in 
dynamic cloud (Sobel et al., 2008). For example, their social networking features make each users’ 
actions affect many other users, which makes static load partitioning unsuitable as a scaling strategy. 
In addition, by means of blogs, photo streams and tagging, users now publish content to one another 
rather than just consuming static content. Overall, these features show a new sort of workload with 
particular server/client communication patterns, write patterns and server load. Conversely, most 
available performance studies use particularly simple static file retrieval tests to evaluate Web servers, 
often leading to erroneous conclusions (Subramanyam et al., 2009). Authors of (Voorsluys, Broberg, 
Venugopal, & Buyya, 2009) have implemented a series of experimentations to evaluate the cost of 
live migration of virtual machines but they did not bring up a procedure describes dynamically when 
and where to replicate. In a scenario where a modern Internet application is hosted on a set of virtual 
machines. Live migration experimentations have carried out in scenarios where several levels of load 
have driven against the application. The results show that, in an instance of a nearly oversubscribed 
system (serving 600 concurrent users), live migration causes a significant downtime (up to 3 seconds).

Authors of (Rochwerger et al., 2009) proposed provision multiple instances of the same 
application for different tenants with different customizations but this work did not address the load 
fluctuations and did not show how to overcome peak hours. Amazon reports several case studies that 
leverage their EC2 platform, including video processing, genetic simulation and Web applications 
(Pratt, Howbert, Tasman, & Nilsson, 2011). In particular, such platforms are useful for multi-tier 
Web applications, which require intensive computing resources. The multi-tiers include web server 
(e.g. Apache), an application server/dynamic content generation (e.g. PHP, Java EE), and a backend 
database (e.g. MySQL, Oracle). Amazon EC2 platform adds extra flexibility to scale up/down such 
web applications, which intensive computing resources. Scaling these applications is achieved by 
replicating the application instances in multiple virtual machines. The resultant virtual machines are 
provisioned on demand without predicting the workload of these applications. Thus, provisioning 
VMs utilizes migration, which is costly and time consuming.

Authors in (Varia, 2011) propose a mechanism for dynamic VM provisioning in IaaS data centers 
based on clustering. In such an effort, it is essential not only to decide the number of virtualized 
application instances but also their types. In this research, type of instance is not part of the problem. 
Hence, use deployed instances, which can all the time, to serve requests. Authors in (Zhu & Agrawal, 
2010) proposed a dynamic mechanism for VM provisioning based on control theory considering 
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user budget. However, such a work considers reconfiguration of available virtual instances (increase 
or decrease their capacity) and not increasing/decreasing number of instances for a customer, 
conversely to the proposed approach that applies the latter approach for VM provisioning. (Bi, Zhu, 
Tian, & Wang, 2010) proposed a model for provisioning multitier applications in Cloud data centers 
based on queueing networks. However, such a model does not perform recalculation of number of 
required VMs based on expected load and monitored performance as does our approach. (Chieu, 
Mohindra, Karve, & Segal, 2009) proposed a reactive algorithm for dynamic VM provisioning of 
PaaS and SaaS applications, whereas our approach is proactive in the sense that number of instances 
is changed based on the expected arrival rate of requests. (Lee, Wang, Zomaya, & Zhou, 2010) 
proposed a queueing network to model SaaS mashup applications. The goal is to maximize profit 
or reduce costs of the SaaS provider by finding an optimal number of instances for the application, 
but they did not estimate the upcoming load. (Rodero-Merino et al., 2010) proposed a system called 
Claudia, where provisioning is based on performance indicators and elasticity rules defined by 
users. In both approaches number of instances vary reactively to incoming request rate, whereas 
the proposed work proactively applies adaptive provisioning to the expected load. (Jung, Hiltunen, 
Joshi, Schlichting, & Pu, 2010) proposed the Mistral system, which performs management at the 
host level in datacenter to manage power consumption of resources and performance of applications. 
However, this approach requires access to the physical infrastructure, which typical IaaS providers do 
not provide to consumers. Therefore, Mistral is suitable in places where the same provider offers both 
the infrastructure and the application, while the proposed approach can both applied in the same case 
or in cases where IaaS and PaaS/SaaS providers are different organizations. Calheiros et al. (2011) 
introduced automatic workload adaptation model that automatically fit to the change in application 
workload. Alheiros et al. modeled the application behavior based on the analytical indicators and 
QoS criteria of application performance. The simulation-based experimental results proves the effect 
of arrival patterns and resource demands on the workload change of the application. Foroushha and 
Reza (2018) proposed a workload modelling for cloud-based application for both stream and batch 
processing data-intensive systems. Their proposed model was based on statistical measures about 
the application performance during the run-time.

VIRTUAL MACHINe STATUS ModeLLING

As mentioned above, the workload of any virtual machine can be estimated by considering the virtual 
machine characteristics. For example, the virtual machine workload means the number of active 
requests targeting that virtual machine at the same time during the peak busy period. In the case of 
estimating the workload for individual virtual machine, there is a population of cloud users H issuing 
different requests targeting diverse virtual machines at the peak busy period. Each cloud user can 
issue a number of normal requests λ  and interactive request λ

vcr
 with holding times t

i
 and t

vcr
 for 

normal and interactive requests, respectively. For instance, the cloud user can request a web page in 
web server, in addition to, playing an interactive game online in an interactive online gaming platform 
like Pokémon Go. Thus, the workload for a cloud-based application i can be estimated as the portion 
of concurrent normal and interactive requests targeting the cloud datacenter by the cloud users to 
access/interact with that cloud-based application during the peak busy period. This can be interpreted 
mathematically as in Equation 1:

L
p H

T
t t

i
i

peak
i vcr vcr

= ( )+( )( )*
* *λ λ  (1)
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where the terms L
i
, p

i
 and t

i
 denote the expected workload, the popularity and the running time 

of the particular cloud-based application i, respectively. The popularity takes a value between 0 and 
1, which follow the applications popularity scheme on the internet (Hameed et al., 2016). The term 
H  denotes the number of cloud users, and T

peak
 denotes the peak busy period of that application in 

minutes. In addition, the terms λ  and λ
vcr

 denote the request arrival rate and VCR commands request 
arrival rate, respectively. Both arrival rates follow Poisson distribution. In Equation (1), the term 
H t t

i vcr vcr
λ λ* *( )+ ( )( )  represents the total sum of all requests issued by the cloud user s within 

the peak busy period. By multiplying this term by the cloud-based application popularity value p
i
, 

the number of requests targeting this cloud-based application is obtained. Finally, the concurrent 
requests per a unit time are estimated by dividing on the term T

peak
.

After cloud-based application workload estimation, the replication degree (i.e. the number of 
virtual machines that are required to handle the expected load of cloud-based application) is calculated. 
The replication degree must be controlled by the cloud-based application popularity. For instance, 
cloud-based application i  can be allocated on all physical machines if its popularity is extremely 
high. This is to ensure that the expected load can be distributed on as a large number of physical 
machines as possible to minimize the request rejection rate. On the other hand, there is no need to 
replicate the remarkably low popular cloud-based applications so that one copy is enough to catch 
its low expected load. Based on the above explanation, the replication degree (i.e. number of copies) 
for a cloud-based application i  can be formulated as a function of the number of physical machines 
and the normalized popularity as shown in Equation (2). According to (Nafaa, Murphy, & Murphy, 
2008), normalizing the popularity distribution improve the overall performance by building a strong 
relationship between the content popularity and the replication degree:

r S p
i a i

n= 

*  (2)

where the term r
i
 denotes the number of replicas for cloud-based application i , S

a
 represents the 

number of physical machines in cloud datacenter a , and finally the term p
i
n  represented the normalized 

value of p
i
 that should be within [0,1]. The normalized popularity value has been obtained using 

Min-Max Normalization Law. Min-max normalization performs a linear transformation on the original 
data (Fati et al., n.d.). Min-max normalization maps p

i
 to p

i
n  value in the range new  new_min, _max



 . 

In this case, the new_max  value equals one where the highest popularity value in the dataset will 
be scaled to equal the value (1) and the other values will be scaled successively. The operator .


  is 

a ceiling function operator to take the largest integer nearest to the calculated term.
After computing the expected number of virtual machines for a cloud-based application i , the 

expected load for each virtual machine can be calculated by dividing the expected load for that video 
on its number of replicas as follows:

L L r
ri i i
= /  (3)

where L
ri

 represents the load of one virtual machine for cloud-based application i , L
i
 denotes the 

load of cloud-based application i, and r
i
 represents the replication degree for cloud-based application 

i , which obtained from Equation (2).
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According to the proposed virtual machine status model, the content of high popularity value, 
which has a highly expected load, is replicated more to handle the increasing demands. On the other 
hand, the contents of low popularity value can be replicated as less as possible for serving the low 
expected load. Furthermore, allocating the virtual machines and distributing the incoming requests 
according to this proposed virtual machine status model can be useful in maintaining the load as 
balanced as possible within the datacenter.

eXPeRIMeNTAL ReSULTS

To investigate the performance of our proposed virtual machine status model, we have tested the 
model on an empirical data set that is sampled according to Zipf’s like popularity distribution, which 
widely used in web world. There are a set of assumptions taken into account during the experimental 
study of the proposed model as following: the population of subscribers H=1000, each subscriber 
can issue a number of normal requests λ=2 request/user/minutes and interactive request λ_vcr=2 
request/user/minutes with holding times t_vcr=10 seconds for interactive requests. The popularity 
distribution of cloud-based application is being affected with users’ preference skewness according 
to the users’ habits and/or behaviors, as depicted in Figure 1. In this figure, we can notice that only 
some cloud-based applications are popular during the running time.

The applications popularity is computed according to Zipf’s Law (Adamic & Huberman, 2002) as 
in Equation 4 where i , N , and θ  represent the content rank, the total number of contents, and the 
skewness degree respectively. The application rank refers to the position of application in the sorted list 
according to the popularity values. In this list, the first video is the highest popular video, and so on:

P i N i

nn

N
, ,θ

θ

θ

( ) =
( )=∑

1

1
1

 (4)

Figure 1. Popularity distribution for cloud-based applications based on users’ preferences skewness
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These popular cloud-based applications will be accessed frequently and will utilize more 
resources than the other applications. Figure 2 depicts the resources consumption distribution for 
the cloud-based applications.

Then, the workload is computed using our proposed virtual machine status model. Note that the 
expected load of server j  can be expressed by summing the load of all applications stored in this 
server. Figure 3 depicts the expected load for the cloud-based applications, which is obtained from 
the proposed virtual machine status model.

Figure 2. Resource consumption for cloud-based applications

Figure 3. The distribution of expected content load
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Figure 4 plots the relationship between the expected workload of cloud-based applications and 
the popularity distribution. What is apparent is the fact that the expected load of applications follows 
the popularity distribution, but with a slight difference. This difference comes out the other factors 
that contribute in the workload estimation like the running time and interactivity.

Another experiment is conducted on a datacenter with 100 blade servers whereby each application 
will be replicated among a certain number of virtual machines according to two factors: application 
popularity and expected application workload. The rationale behind this experiment is to estimate 
how many virtual machines needed for each application, and the workload distribution among these 
virtual machines. In this case, the workload of each application will be distributed among the virtual 
machines to ensure serving all the incoming requests without delay or interruption. Figure 5 depicts 
the number of virtual machines and estimated average load distribution. In this figure, the number 
of virtual machines for each application is following the popularity distribution. This means that 
the popular application with high demand will be replicated in more virtual machines than those 
applications having less demand or not requested frequently. In the figure, we can notice that there 
are some applications with high workload, but with less popularity. These kinds of applications will 
be replicated in a less number of virtual machines, and the average workload for the resultant virtual 
machines will be a bit high, as shown in the applications between the numbers 20 and 40 in the x-axis.

After that, we deployed a request distribution algorithm, which proposed by (S. M. A. Gaber & 
Sumari, 2014) wherein the incoming requests will be assigned to the virtual machines based on the 
expected and current load for both virtual machines and the physical machines hosting that virtual 
machines. This algorithm, which named CARDA, has been tailored to run on the top of our proposed 
virtual machine status model. The findings from CARDA has been compared with the widely used 
request distribution algorithm, called Round Robin (RR) algorithm. The experiment showed that 
tailored CARDA algorithm outperforms RR algorithm in terms of physical machines workload balance, 
as well as, the amount of served requests. Figure 6 depicts the distribution of workload among the 
physical machines. Moreover, it is interesting to say that the popularity distribution has a significant 
effect on expecting the workload for applications and virtual machines, which helps in planning the 

Figure 4. The relation between expected load and popularity
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virtual machines allocation; however, it has no effect on the incoming requests distribution. The 
influential factor in request distribution is the request arrival rate.

CoNCLUSIoN

In cloud computing platforms, huge applications with diverse characteristics are hosted and replicated 
among multiple virtual machines to absorb the incoming workload. Many resource-provisioning 

Figure 5. The number of virtual machine and the average workload

Figure 6. The distribution of workload among the physical machines
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techniques are proposed to deal with load fluctuation proactively. The main aim of these techniques is 
to improve the user satisfaction and enhance the quality of service. However, such resource provisioning 
techniques suffer from the intensive overhead of mitigation and sometime load imbalance. To the best 
of authors’ knowledge, there is no estimation/prediction for the cloud-based application according to 
its characteristics. Thus, this paper introduces the concept of workload estimation as a mathematical 
formula that consider the different characteristics as interactivity, popularity, request arrival rate (e.g. 
normal requests and interactive requests), and size. Estimating the workload of each application. The 
proposed model estimates the maximum workload for each application. The load is estimated as the 
number of active concurrent requests that access the application at the peak busy period based on 
application popularity. The experimental results showed promising performance for proposed model 
against the traditional models used currently.
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