
DOI: 10.4018/IJCINI.20211001.oa16

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

ABSTRACT

Improving software development efficiency based on existing APIs is one of the hot researches in
software engineering. Understanding and learning so many APIs in large software libraries is not
easy, and software developers prefer to provide only requirements descriptions to get the right API.
In order to solve this problem, this paper proposes an API recommendation method based on WII-
WMD, an improved similarity calculation algorithm. This method firstly structures the text and
then fully mines the semantic information in the text. Finally, it calculates the similarity between the
user’s query problem and the information described in the API document. The experiment results
show that the API recommendation based on WII-WMD can improve the efficiency of the API
recommendation system.

Keywords
API Recommendation, Code Recommendation, Machine Learning, Natural Language Processing, Similarity
Calculation, Word Embedding

1. INTRODUCTION

Nowadays, with the rapid development of information technology, various improved algorithms are
proposed to improve the technologies’ effectiveness (Li et al. 2018, Li et al. 2019a, Li et al. 2019b,
Wang et al. 2018, Wang et al. 2019). Furthermore, software products are becoming more and more
complex, and APIs in software libraries are becoming more and more abundant. Improving software
development efficiency based on existing APIs has become one of the hot researches in software
engineering. However, understanding and learning so many APIs in large software libraries is not
easy (Ko et al. 2004), and software developers prefer to provide only requirements descriptions to
get the right API. Existing keyword retrieval methods are difficult to identify lexical and syntactic
differences between requirement description and API documents, which leads to low efficiency of
API recommendation.

In order to improve the recommendation efficiency, researchers proposed many API
recommendation techniques (Mcmillan et al. 2011, Chan et al. 2012, Holmes et al. 2005, Rahman et
al. 2017, Goldberg et al. 2014, Hoecker et al. 1995, Eggert et al. 2004, Bengio et al. 2009, Jang et al.
2016, Ma et al. 2015), which include recommendation methods based on semantic and no-semantic

API Recommendation Based on WII-WMD
Wanzhi Wen, Nantong University, China*

Shiqiang Wang, Nantong University, China

Bingqing Ye, Nantong University, China

XingYu Zhu, Nantong University, China

Yitao Hu, Nantong University, China

Xiaohong Lu, Nantong University, China

Bin Zhang, Nantong University, China

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

2

information. Word embedding based API recommendation is one of the most popular techniques.
Word embedding is a way to transform words in text into the form of vector representation (Lai et
al. 2016). The simplest method of word embedding is one-hot coding based on the word bag model
(Karakasis et al. 2015). One-hot coding is the most basic vector representation method, in which
N bit state register is used to encode N states, and the text vector is used to represent the words in
the text, where only the position corresponding to the word is 1 and all other positions are 0. The
commonly-used technique is Word2Vec (Frome et al. 2013), which is based on the CBOW model and
Skip-gram model. Both models are based on the three-layer structure in the neural network language
model. In this method, each word in the text is represented by vector and the word vector with similar
semantic information has close spatial position. The position of synonyms in vector space will be
closer, which guarantees semantic information in the text (Lilleberg et al. 2015).

In general, there are several ways a developer can choose to query an API. The first one is search
engine. Studies show that 70% of developers often use search engines to find the appropriate API
Search engines like Baibu and Google can get some API information (Brandt et al. 2009), which use
specific strategies to retrieve valuable information from the Internet and feed it back to developers
(Ko et al. 2006). The second one is API help document. Once developers have determined which
API you are using, you can find its usage, function description, code specification, and so on directly
in the corresponding API help document. The third one is developer forum such as Stack Overflow.
Developer forum is a technical Q&A site that is currently one of the most popular developer
communities. This site provides a platform for developers to exchange experiences with APIs. Users
can submit questions and view relevant content posts for free on the site. However, these methods
also have different problems, Search engines search for regular web pages, rather than APIs designed
specifically for development, such as source code and function parameters, which are program-related.
API help document and developer forum need developers’ experiment (Duala-Ekoko et al. 2012).

Based on above, we proposed an API recommendation method based on WII-WMD to improve
the recommendation efficiency. The API recommendation method based on WII-WMD improves
a text similarity calculation based on deep mining semantic information through word embedding
technique. Firstly, the paper proposes an improved method WV-IP-IDF, which introduces the part-
of-speech influence factor and the information entropy factor based on TF-IDF. Then we combined
WV-IP-IDF algorithm with WMD (Word Mover ‘s Distance) and put forward new method of similarity
calculation WII – WMD. Finally, the experiments verified the effectiveness of the algorithm.

To assess WII-WMD algorithm based API recommended method, we extracted Q&A from
Java Stack Overflow and verified the effectiveness of the algorithm by experiments. According to
the experimental results, the API recommendation method based on WII-WMD is about 1% higher
than that based on WV-TF-IDF in MRR and MAP indexes respectively. In the WII-WMD similarity
algorithm, the IDF original algorithm introduces the influence factor of part-of-speech and information
entropy and the search performance of the system is improved. The VSM-TF-IDF method only uses
the space vector model, does not consider the semantic information in words, and only relies on the
matching of keywords to complete the calculation, so overall performance of VSM-TF-IDF method
is poor.

The main contributions of this paper are:

1. 	 An improved algorithm WV-IP-IDF based on TF-IDF is proposed. Firstly, we preprocessed
the text by word embedded modeling, and then TF-IDF algorithm was used to weight the text
information represented by word vectors.

2. 	 Combining WV-IP-IDF and WMD, we proposed WII-WMD, an improved similarity calculation
algorithm WII-WMD. WMD word vector doesn’t consider feature extraction and only uses
normalized word frequency information. The combination can improve the accuracy of similarity
calculation by reducing noise data input.

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

3

3. 	 Based on the above researches, API recommendation based on WII-WMD is proposed. The
API recommendation system based on word embedding technique proposed in the paper is
implemented, and the recommendation capability of the system is verified through case analysis
and experimental research. The validity of the system is evaluated by MRR and MAP.

The remainder of the paper is organized as follows. Section II describes our approach framework.
Section III describes the empirical study, including the datasets and the performance measure. Finally,
Section IV discusses the conclusion and our future work.

2. OUR APPROACH

2.1. Overall Framework

The overall framework is shown in Figure 1. The detail steps are as follows.

•	 API information collection. The content of the API help document and API information, including
methods in the API, description of the API, the class of the API and other information, is
collected. Furthermore, the test set and API document database of API information are segmented
and reconstructed. XML parsing of Java tag data in Stack Overflow and Q&A pairs including
questions, answers, question ratings, answer ratings and tag information are also stored in the
database.

•	 Preprocess. We preprocessed the collected data, including sentences separating, stop words
removing, stem extracting and part of speech tagging.

•	 Model training. Word embedding modeling and TF-IDF modeling are carried out for the
preprocessed text information. We converted all words into corresponding word vectors, generated
word models and saved the value of TF-IDF.

•	 Similarity calculation. Combining WV-IP-IDF and WMD, we proposed WII-WMD, an improved
similarity calculation algorithm WII-WMD.

•	 Implementation and validation. The API recommendation system based on word embedding
technique is implemented, and the recommendation capability of the system is verified through
case analysis and experimental research. We used the improved similarity computing algorithm
WII-WMD to calculate the similarity between the user problem and the problem data set. By

Figure 1. Overall framework

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

4

calculation, the top-10 problem sets are sorted by similarity. The top 10 APIs in the database are
obtained from these top 10 candidate questions. Based on the harmonic mean of the document
similarity, the candidate top 5 API is finally recommended to the developer.

2.2. Data Collection
The API help document and the Q&A on the Stack Overflow site contain a lot of API information.

2.2.1. API documentation
API documentation contains detailed API information and is the most direct and effective way to
learn APIs. The API help document usually introduces the inheritance relationship of API and the
usage description of function. For different interfaces and abstract classes, and it also systematically
introduces the corresponding constructor and the built-in function. In addition, some API help
documentations also contain the examples of code use cases. An example of Java help document is
shown in Figure 2.

API documents are usually stored in HTML format on websites for developers to search and
learn online. The crawler tool makes it easy to analyze the contents of the help document. In our
experiments, we obtained the method name MethodName, the class name BelongsClass, and API
description Description and we stored the extracted contents in the database

2.3. Q&A on Stack Overflow
Stack Overflow is a technical Q&A website, which is one of the most popular developer communities.
Users can submit questions on the site for free and browse questions to find relevant content. Stack
Overflow contains not only various answers and code samples for the questioner, but also other

Figure 2. An example of Java help document

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

5

information such as user ratings, user adoption, tag information, the best answers, and information
about the questioner and respondent. An example of Q&A information in Stack Overflow is shown
in Figure 3.

In our experiment, we extracted API recommendation information of Java projects and the
extracted Q&A pairs contain Java tags. The threshold of questions’ scores is 5 points. The answer of
the question contains API entities and the score of the answer should be positive. So the validity of
getting data from Stack Overflow is guaranteed. Generally, posts that contain answers and have high
rates for their answers are of higher value.

Therefore, this experiment extracts the keywords from data dump published by Stack Overflow
as the data set. The data in data dump has been saved in XML form.

3. PREPROCESSING

No matter the user’s API query problem or the description in the API document, data preprocessing is
required before further calculation. Preprocess has two functions: one is to eliminate the influence of
interference data, reduce data noise, and make the data neat; the other is to improve the efficiency of
model calculation based on the preprocessed data. The implementation in the preprocessing process
is based on the NLTK library in Python. The pre-processing process is shown in Figure 4.

Figure 3. An example of Q&A information in Stack Overflow

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

6

Sentence separating. The corpus of the API recommendation is from API help document and
Q&A pairs of Stack Overflow. The structure of sentences is characterized by the separation of period,
question mark and exclamation mark. We separated the sentences by using the Sentence_Tokenizer
method in Tokenizer package.

Word segmentation and lowercase processing. The WordPunctTokenizer method in the Tokenizer
package is also used for word segmentation. Words are separated by Spaces. In the case of hyphenated
words, such as “peace-loving”, we should remove all hyphens . At the same time, we converted all
the words from uppercase to lowercase .

Abbreviate completing. Abbreviations are commonly used in English, such as ” ‘s “,” re “, ” ‘m
“. We listed all the abbreviate and use replace method to complete abbreviate, such as Replace (‘ \
‘d ‘, ‘would’).

Stopwords Removing. NLTK library has a Stopwords table, which contains words without actual
meaning, such as “a”, “with”, “and”, etc. We removed all the stopwords.

Part of speech tagging. In this paper, the weight information of the target word is changed through
the influence factor of part of speech. We used the pos_tag() method to implement part of speech
tagging of words. The list of parts of speech obtained by pos_tag() method is shown in Table 1.

Stem extracting. This step restores “ed” and “ing” in the tense and passive voice, “s” and “es”
in the plural and third person singular, and reduces repetition. The snowballStemmer() method is
used to extract similar stems.

Figure 4. Preprocessing

Table 1. Commonly used parts of speech

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

7

4. MODEL TRAINING

In order to calculate the similarity between the developers questions and the descriptions in Stack
Overflow or the API help document, we processed the API model training.

The previous section completed the preprocessing of the information in the knowledge base
before word embedding modeling. The data has been formatted into the input style required in word
embedding model. Based on this preprocess, the corpus is simplified, which improves the efficiency
of modeling. Modeling includes two stages, Word embedded modeling and TF-IDF modeling.

Word embedded modeling. Word2Vec is the most commonly used word embedding modeling
technique. When the model is initialized, Word2Vec computes the data through a three-layer structure,
namely the input layer, the output layer, and the hidden layer.

This paper uses the Gensim package in python to invoke the Word2Vec for modeling. The
definitions of parameter values during model training are shown in Table 2.

Algorithm 1. shows the details of the preprocessing steps

 Algorithm 1 Preprocessing algorithm

 Input: Corpus
 Output: Corpus data1 and part-of-speech tagging data set data2 completed by preprocessing

1. for text in corpus:
2. sentecnes = text.Sentence_Tokenizer
3. for sentence in sentences:
4. List_word = WordPunctTokenizer(sentence).lower()
5. for i in List_word
6. if i not in stopwords.words(‘English’)
7. List_OutStopWords ¬ i
8. end if
9. end for
10. end for
11. end for
12. data1 = [],data2 = []
13. for i in List_OutStopWords:
14. data1 .append(i. snowballStemmer())
15. data2 .append(i. pos_tag())
16. return data1,data2

Table 2. Parameter settings during model training

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

8

TF-IDF modeling. We used the NLTK package in python to complete this modeling process.
During the modeling, TextCollection method is used to build the corpus, and then tf() and idf()
methods are used to get the TF and IDF values of the words in the corpus.

5. SIMILARITY CALCULATION BASED ON WII-WMD

We firstly combined the weighted TF-IDF and the word vectors to get the new word vectors, and then
introduced the influence factor of part of speech and information entropy to propose WV-TF-IDF
algorithm. Based on WV-TF-IDF, similarity calculation based on WII-WMD is proposed.

Word2Vec is used for word embedding modeling to generate word vectors containing semantic
information. The API keywords are extracted by TF-IDF weighted algorithm. The word vectors are
obtained from training text by Word2Vec. Combining the weighted TF-IDF and the word vectors,
we got the new vectors as Formula 1.

vecC = ()⋅
∈∑ k C k
v tfidf k C h, / 	 (1)

In Formula 1, vk denotes the word vector of Keyword k, tfidf(k, C) denotes the weight of Keyword
k in API Information C, h is the length of API Information C.

Then we proposed WV-TF-IDF algorithm by introducing the influence factor of part of speech
and information entropy. The detail of WV-TF-IDF algorithm is shown in Algorithm 2.

In the API recommendation, the similarity between the developer’s requirements and the
description in the API document is calculated. The text or sentence is taken as a whole, and the
overall similarity is calculated according to each word. The keywords in the text or sentence should
take up a larger proportion in similarity calculation.

The requirements and descriptions in the API recommendation are converted to weighted vectors
by WV-IP-IDF algorithm as the input vectors of WMD and we proposed WII-WMD based on this
improvement.

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

9

Let the requirement and description of API be text d and text ¢d respectively. The steps of
similarity calculation are as follows:
Step 1: 	 The corpus is preprocessed, including sentence separating, word segmentation and lowercase
processing, abbreviate completing, stopwords removing, part of speech tagging and stem extracting,
etc. The content of preprocessing is detailed in Section C.
Step 2: 	 The data in the corpus is trained to collect the word vector based on Word2Vec. The IDF
value is got by TF-IDF model, and the part of speech information POS is obtained through the part
of speech analytic model.
Step 3: 	 WV-IP-IDF algorithm is used for weighted word vector representation of text d and ¢d
words, d ={w w w

m1 2
, , ,¼ } and ¢d ={w ' w w ''

n1 2
, , ,¼ }.

The WMD distance between two texts is calculated. Because Similarity is inversely proportional to
distance, the similarity calculation formula between d and ¢d can be obtained as Formula 2.

Algorithm 2 WV-TF-IDF algorithm

 Input: data set M (containing m documents), word vector vi trained by Word2Vec model
 Output: new vector vi’’

\\calculate the inverse document frequency IDF for all words in M

for each word w
i

idf
i

 = log m m w
i

/ ()()
end for

\\calculate the part of speech influence factor POS w
i() of all words in M

for each word w
i

if w
i
 is a noun

 POS w
i()= 0.57

if w
i
 is a verb

 POS w
i()= 0.24

if w
i
 is an adverb or an adjective

 POS w
i()= 0.15

else

 POS w
i()) = 0.04

end for
\\calculate the information entropy factor I for all words in M

for each feature w
i

������I = ()() = ()f H w log n H w
i i2

/
end for

v vecw v f H w POS w idf w M
i i i i i i
'' = = ()() () ()⋅ ⋅ ⋅ ,

return v
i
''

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

10

Simd d
WMD d d

,
,

'
'

=
∂

∂ + ()
	 (2)

Where ¶ is the equilibrium factor, which usually takes the value of 1.	

6. IMPLEMENTATION AND VALIDATION

Based on WII-WMD, we implemented the API recommendation. The process of recommendation
include three times of similarity calculation.

First similarity calculation. The similarity between the users’ questions and questions in the Stack
Overflow table in the database is calculated by the WII-WMD. The similarity is denoted as Sim

1

and the top-10 most relevant questions are obtained according to Sim
1
. Then, the APIs corresponding

to the answer of the top-10 most relevant questions in the data table is obtained, that is, the candidate
APIs are obtained.

Second similarity calculation. After candidate APIs are obtained after the first calculation, all
the corresponding API description information can be found in the API document data table. WII-
WMD is used to calculate the similarity between the users’ requirements and candidate APIs’
descriptions again. In this paper, we denote the second similarity as Sim

2
.

Third similarity calculation. The harmonic average of the two similarities is calculated as the
final similarity score, denoted as Sim

3
. Finally, the top-5 API information is recommended according

to the similarity ranking. The third similarity is calculated as Formula 3.

Sim
Sim Sim

Sim Sim3
1 2

1 2

2
=

+
	 (3)

Algorithm 3. shows the detailed flow of the WII-WMD.

 Algorithm 3 WII-WMD algorithm

Input: data set M, word vector v
i

 trained by Word2Vec model

Output: Similarity between text d and ¢d

calculate the inverse document frequency IDF for all words in M
calculate the part of speech influence factor POS of all words in M
calculate the information entropy factor I of all words in M (see Algorithm 2 for calculation IDF POS I� �)

w veci v idf i M POS i f H i
i i
= = () () ()()⋅ ⋅,

weighted vector between text d and ¢d represents d={ � � �w w w
m1 2

, , ,¼ } and ¢d ={ � ’ �� � ’’w w w
n1 2

, , ,¼ }
Simd d, ' is calculated by Formula 2
return �� ’Simd d,

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

11

7. EMPIRICAL STUDY

7.1. Research Question
In this paper, we conducted experiments to study the following four questions.

RQ1: How about the similarity calculation between sentences with our proposed WII-WMD
similarity algorithm? Is it better than the four similarity calculation algorithms of VSM-TF-IDF,
WV-TF-IDF, Doc2Vec and WMD algorithm?

RQ2: Can our API recommendation system help users solve query problems well?
RQ3: Does our WII-WMD similarity algorithm have a better effect on API recommendation

than VSM-TF-IDF and WV-TF-IDF?
RQ4: The word embedding technique we used is based on the Word2Vec model, does it work

better than other word embedding models?

7.2. Datasets and Evaluation Metrics
We use open dataset SICK and the STS to evaluate the effectiveness of similarity calculation and use
Q&A information in Stack Overflow and APIs information in JAVA SE8 to evaluate the effectiveness
of API recommendation.

In our experiment, we firstly calculated the similarity score based on VSM-TF-IDF, WV-TF-IDF,
Doc2Vec, WMD, WII-WMD. Pearson correlation coefficient is used to evaluate the effectiveness
of similarity calculation (Qin et al. 2013). The value of pearson correlation coefficient can be got
from Formula 4.

p
XY

X Y
N

X
X
N

Y
Y
N

=
∑ −

∑ ∑

∑ −
∑








∑ −

∑









2
2

2
2() ()

	 (4)

In the above formula, variable X represents the sentence similarity calculated by similarity
calculation method, variable Y represents the similarity answer given in the data set, N represents

the number of sentence pairs in the text. The greater the value of Pearson correlation coefficient
means is, the better the calculation result is.	

We evaluated the effectiveness of API recommendation by mean reciprocal ranking MRR and
mean accuracy MAP.

MRR is a commonly used evaluation metric in search algorithm. The inverse of the ordinal
number of the correct answer in the result is taken as the accuracy, and MRR is the average of all
inverses. Its calculation is as Formula 5.

MRR =
=∑

1 1
1Q ranki

Q

i

	 (5)

In the above formula, Q is the number of queries and rank
i
 is the ordinal number of the correct

answer to the ith query.
MAP is an evaluation metric used in the field of information retrieval to measure the ranking

performance of search engines. It evaluates the average query accuracy.

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

12

In Formula 6, MAP is the mean of the AP’s for Q query problems. AP is the average accuracy
of each query.

MAP =
()

=∑q

Q
AP q

Q
1 	 (6)

8. RESULTS AND ANALYSIS

i. RQ1: This paper uses the Word2Vec word embedded technique. Based on the Skip-gram model, we
set the parameters and train the word vector (Krishnamurthy et al. 2016). The parameters are set as
follows: the vector dimension is 100 dimensions, the window size is 5, word vector iteration number
is 50, iteration step length is 0.00005 in a stochastic gradient descent method.

After the texts are preprocessed, we calculated the similarity between sentences by WII-WMD.
Then we compared the similarity score with that of VSM-TF-IDF, WV-TF-IDF, Doc2Vec and WMD.
The comparison results are shown in Figure 5 and Figure 6. The abscissa is the serial number of the
sentence pairs and the ordinate is the similarity score of the sentence pairs. In Figure 5 and Figure 6,
the solid line is the similarity score of random 60 sentence pairs in the data set.

In Figure 5, it can be found that the three similarity calculation methods differ greatly from the
similarity score provided by the data set, while the similarity score calculated by the WII-WMD and
WDM algorithm are closer to the score provided by the data set in Figure 6. What’s more, the WII-
WMD algorithm proposed in this paper performs better than WMD algorithm.

To further evaluate the effectiveness of similarity calculation methods. Pearson coherence
coefficient is used to verify the results of these five similarity calculation methods in all data sets.
The experimental results are shown in Table 3.

Figure 5. S`imilarity comparison of Doc2Vec, VSM-TF-IDF and WV-TF-IDF`

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

13

Obviously, the value of Pearson coherence coefficient of WII-WMD is greater than that of
other methods, which indicates WII-WMD performs best. tWord2Vec and Doc2Vec methods are
based on the Skip-gram model. During sentence training process, Doc2Vec introduces the word
order characteristics in the text and the value of similarity is calculated similarly to the WV-TF-IDF.
Therefore, the difference is small between Doc2Vec method and WV-TF-IDF method .

Compared with other algorithm, WII-WMD improved WV-TF-IDF most. The spatial vector
model used by VSM-TF-IDF algorithm ignores the semantic relation between words. The other four
methods all use Word2Vec model for language modeling, and the word vector contains semantic
information, which results in the difference between similarity calculation. Compared with WMD
algorithm, WII-WMD improve the value of Pearson correlation coefficient. The reason is WII-WMD
algorithm takes into account the influence of part of speech and formation entropy and makes full
use of text information when measuring text similarity.

ii. RQ2: We implemented Java API recommendation in JAVA, collect more than 100,000 question
and answer pairs with Java label in Stack Overflow, crawl API information in Java SE8 help documents,
and finally store them in the database. To verify the effectiveness of our API recommendation based
WII-WMD, this section randomly selects five Java programming issues from the test set, as shown
in Table 4. The first two recommendation result of our method is shown in Table 5.

Figure 6. Similarity comparison of WMD and WII-WMD

Table 3. Experimental results of five algorithms

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

14

Take the first question as an example. The first question is ” How to initialize each element of
an array with a specific value efficiently”. First, we preprocessed the question. The result is “‘how’,
‘initialis’, ‘elemen’, ‘array’, ‘specifi’,, ‘java’, ‘constant’, ‘valu’, ‘effici’”, and then the word embedding
model and TF-IDF model are used to calculate the similarity. The first calculation is to calculate
the similarity between the input questions and the questions in Stack Overflow, and get the top-10
candidate questions. The contents of the 10 candidate questions are shown in Table 6. After the
candidate problem set is obtained, the API entity information corresponding to the problem can be
obtained. Then, we combined the similarity of the problem and API description to obtain the final
similarity score and top-5 API recommendations. Finally, we completed the recommendation of all
the content.

The recommended top-5 API content and similarity value are shown in Table 7. The first
recommendation API is java.util.arrays.fill, which is very close to the initial problem “ How to
initialize each element of an array with a specific value efficiently ”. In the Java help document, the
Arrays class in Java.util contains various methods for manipulating Arrays, such as sorting and search.
The fill () method in this class assigns the specified data type to an array of the specified data type.
Obviously, this is an initial allocation problem with a data type, related to the user input problem. The
description of the function in the recommended result also confirms the results “Assigns the specified
long value to each element of the specified array”. From list of top-5 questions, the questions focused

on the data types that initialized the array and these recommendations will help the user solve
the problem. Through this example analysis, the API recommendation based on WII-WMD has a
good effect.

iii. RQ3: We compared the effectiveness of API recommendation based on different methods,
such as VSM-TF-ID and WV-TF-IDF and WII-WMD. To effectively evaluate different method,
the collected data structure is shown in Table 8, including extracted high-scoring questions and
corresponding answer APIs. The influence of different similarity algorithms on the recommendation
system is evaluated by MRR and MAP.

Table 5. Two API recommendations for five programming problems

Table 4. Five programming problems extracted from Stack Overflow

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

15

The recommended results of the three similarity calculation methods are shown in Figure 7. It
can be found that the overall performance of VSM-TF-IDF method is poor, because the VSM-TF-
IDF method only uses the space vector model, which does not consider the semantic information
in words and only relies on the matching of keywords to complete the calculation. The WII-WMD
proposed in this paper improves WV-TF-IDF by about 0.8% in MRR and 1.4% in MAP respectively.
Both algorithms use Word2Vec for modeling. WII-WMD introduces the influence factor of part of
speech and information entropy, the search performance of the system is improved.

Table 6. Top-10 similarity problem and similarity of query problem

Table 7. Top-5 API and similarity of query problems

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

16

Table 8. Collected partial data in the test set

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

17

In addition, the query time is affected by the efficiency of similarity calculation in API
recommended methods. The response time of the query and recommendation is determined by the
similarity calculation algorithm. We recorded the time in the experiment. The average response time
of WII-WMD and WV-TF-IDF is 3.6 seconds and 2.2 seconds respectively. Although WII-WMD takes
40% more time, the calculation time is acceptable based on the accuracy of API recommendations.

iv. RQ4: The word embedding technique we used is based on the Word2Vec model. There are
many words embedded in the models. GloVe is one of the most popular models. We evaluated the
effectiveness of API recommendation based on Word2Vec and GloVe.

First of all, 347,222 questions in the Stack Overflow data table were used as the modeling corpus.
The questions are preprocessed and modeled based on Word2Vec and GloVe respectively, which are
converted into the word vectors of the same dimension, that is 100 dimensions. The effective of API
recommendation of two word embedding models are shown in Figure 8.

Figure 7. MRR and MAP based on different similarity calculation methods

Figure 8. MRR and MAP based on different word embedding models

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

18

The API recommendation based on Word2Vec performs better than GloVe. MAP and MRR
based on Word2Vec are about 2.1% and 1.9% higher than GloVe.

9. THREATS TO VALIDITY

There are some threats to the validity of API recommendation based on WII-WMD.
Our experiment datasets are from open-source projects written with Java, not considering those

written with other programing languages. The top 200 questions with the Java tag are manually
extracted from Stack Overflow. Theses may affect the universality of our study.

10. CONCLUSION AND FUTURE WORK

In this paper, we proposed API recommendation based on WII-WMD. Firstly, we collected the API
information, such as API help document, API method, API class, API descriptions, and so on. Then
API document database of API information are reconstructed and Q&A pairs including questions,
answers, question ratings, answer ratings and tag information are stored in the database. Secondly, we
preprocessed the collected data, including clause segmentation, deletion of stop words, stem extraction
and part of speech tagging. Thirdly, word embedding modeling and TF-IDF modeling are carried
out for the preprocessed text information. Then based on the new vectors, we proposed similarity
calculation algorithm WII-WMD. Finally, we compared the popular calculation algorithms and verified
the effectiveness of WII-WMD. Then we verified the effectiveness of API recommendation based
on WII-WMD, which improves WV-TF-IDF by about 0.8% in MRR and 1.4% in MAP respectively.

Our experiment is only based on the open-source projects and Q&A on Stack Overflow is time-
sensitive, so we will verify and improve our method on more datasets in the future.

ACKNOWLEDGMENT

This research was supported by Natural Science Foundation of China [grant number 61602267],
the Open Project of Key Laboratories of Ministry of Industry and Information Technology for
Software Development and Verification Technology of High Safety Systems at Nanjing University
of Aeronautics and Astronautics [grant number NJ2018014], Outstanding Young Talents Program
in Colleges and Universities of Anhui Province[grant number gxyq2017086].

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

19

REFERENCES

Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and Trends in Machine Learning, 2(1),
1–127. doi:10.1561/2200000006

Brandt, J., Guo, P. J., Lewenstein, J., & Dontcheva, M. (2009). Two Studies of Opportunistic Programming:
Interleaving Web Foraging, Learning, and Writing Code. SIGCHI. doi:10.1145/1518701.1518944

Chan, W. K., Cheng, H., & David, Lo. (2012). Searching Connected API Subgraph Via Text. Proceedings of the
20th ACM International Symposium on the Foundations of Software Engineering (FSE), 1-11.

Duala-Ekoko, E., & Robillard, M. P. (2012). Asking and answering questions about unfamiliar APIs: An
exploratory study. International Conference on Software Engineering, 266-276.

Eggert, J., & Korner, E. (2004). Sparse Coding and NMF. International Joint Conference on Neural Networks,
2529-2533.

Frome, A., Corrado, G. S., & Shlens, J. (2013). DeViSE: A deep visual - semantic embedding model. Proceedings
of the 26th International Conference on Neural Information Processing Systems, 2121-2129.

Goldberg & Levy. (2014). Word2vec Explained: deriving Mikolov et al.’s negative sampling word-embedding
method. ArXiv E-Prints, 432-456.

Hoecker, A., & Kartvelishvili, V. (1995). SVD Approach to Data Unfolding. Journal of Arxiv Cornell University
Library, 372(3), 469–481.

Holmes, R., Walker, R. J., & Murphy, G. C. (2005). Strathcona Example Recommendation Tool. Software
Engineering Notes, 307(5), 237–240. doi:10.1145/1095430.1081744

Jang, , & Gu, , & Poole. (2016). Categorical Reparameterization with Gumbel-Softmax. Italian Journal of
Linguistics, 20(1), 33–54.

Karakasis, E. G., Amanatiadis, A., Gasteratos, A., & Chatzichristofis, S. A. (2015). Image moment invariants
as local features for content based Image retrieval using the bag-of-visual Words model. Pattern Recognition
Letters, 55, 22–27. doi:10.1016/j.patrec.2015.01.005

Ko, A. J., Myer, B. A., & Aung, H. H. (2004). Six Learning Barriers in end-user Programming systems. IEEE
Symposium on Visual Languages & Human Centric Computing, 199-206.

Ko, A. J., Myer, B. A., Coblenz, M., & Aung, H. H. (2006). An Exploratory Study of How Developers Seek,
Relate, and Collect Relevant Information during Software Maintenance Tasks. IEEE Transactions on Software
Engineering, 32(12), 971–987. doi:10.1109/TSE.2006.116

Krishnamurthy, B., Puri, N., & Goel, R. (2016). Learning latter-space keyword of Items for Recommendations
Using Word Embedding Models. Procedia Computer Science, 80, 2205–2210. doi:10.1016/j.procs.2016.05.380

Lai, S., Liu, K., He, S., & Zhao, J. (2016). How to Generate a Good Word Embedding. IEEE Intelligent Systems,
31(6), 5–14. doi:10.1109/MIS.2016.45

Li, K., Chen, Y., Li, W., He, J., & Xue, Y. (2018). Improved gene expression programming to solve the inverse
problem for ordinary differential equations. Swarm and Evolutionary Computation, 38, 231–239. doi:10.1016/j.
swevo.2017.07.005

Li, K., Liang, Z., Yang, S., Chen, Z., Wang, H., & Lin, Z. (2019b). Performance Analyses of Differential Evolution
Algorithm Based on Dynamic Fitness Landscape. International Journal of Cognitive Informatics and Natural
Intelligence, 13(1), 36–61. doi:10.4018/IJCINI.2019010104

Li, K., Wang, H., & Li, S. (2019a). A mobile node localization algorithm based on an overlapping self-adjustment
mechanism. Information Sciences, 481, 635–649. doi:10.1016/j.ins.2018.12.006

Lilleberg, J., Zhu, Y., & Zhang, Y. (2015). Support Vector Machines and Word2vec for text Classification
with Semantic features. International Conference on Cognitive Informatics & Cognitive Computing, 136-140.
doi:10.1109/ICCI-CC.2015.7259377

http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1145/1518701.1518944
http://dx.doi.org/10.1145/1095430.1081744
http://dx.doi.org/10.1016/j.patrec.2015.01.005
http://dx.doi.org/10.1109/TSE.2006.116
http://dx.doi.org/10.1016/j.procs.2016.05.380
http://dx.doi.org/10.1109/MIS.2016.45
http://dx.doi.org/10.1016/j.swevo.2017.07.005
http://dx.doi.org/10.1016/j.swevo.2017.07.005
http://dx.doi.org/10.4018/IJCINI.2019010104
http://dx.doi.org/10.1016/j.ins.2018.12.006
http://dx.doi.org/10.1109/ICCI-CC.2015.7259377

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

20

Wanzhi Wen received the MS and PhD degrees from Southeast University, China in 2009 and 2013. Now he is an
associate professor in School of Information Science and Technology, Nantong University. His current research
interests include software testing and intelligent computing.

Shiqiang Wang received the Bachelor’s degree from Suzhou University,China in 2019. Now he is a graduate
student in School of Information Science and Technology, Nantong University. His current research interests
include intelligent computing.

BingQing Ye now is an undergraduate student in School of Information Science and Technology, Nantong University.
Her current research interests include intelligent computing.

Xingyu Zhu now is an undergraduate student in School of Information Science and Technology, Nantong University.
His current research interests include intelligent computing.

Yitao Hu now is an undergraduate student in School of Information Science and Technology, Nantong University.
His current research interests include intelligent computing.

Xiaohong Lu now is an undergraduate student in School of Information Science and Technology, Nantong University.
Her current research interests include intelligent computing.

Bin Zhang received the Bachelor’s degree from Nantong University, China in 2018. Now he is a graduate student
in School of Information Science and Technology, Nantong University. His current research interests include
intelligent computing.

Ma, L., & Zhang, Y. (2015). Using Word2Vec to Process Big Text Data. IEEE International Conference on Big
Data (Big Data), 2895-2897.

McMillan, C., Grechanik, M., Poshyvanyk, D., & Xie, Q. (2011). Portfolio: Finding relevant functions and their
Usage. International Conference on Software Engineering, 111-120. doi:10.1145/1985793.1985809

Qin, B., Liu, T., Wang, Y., Zheng, S., & Sheng, L. (2013). Research on Chinese Question answering System
based on FAQ. Journal of Harbin Institute of Technology, 2013(10), 1179–1182.

Rahman, M. M., Roy, C. K., & Lo, D. (2017). Code Search in the IDE using Crowdsourced Knowledge.
Proceedings of the 39th International Conference on Software Engineering, 51-54. doi:10.1109/ICSE-C.2017.11

Wang, F., Li, Y., Zhang, H., Hu, T., & Shen, X. (2019). An adaptive weight vector guided evolutionary algorithm
for preference-based multi-objective optimization. Swarm and Evolutionary Computation, 49, 220–233.
doi:10.1016/j.swevo.2019.06.009

Wang, F., Zhang, H., Li, K., Lin, Z., Yang, J., & Shen, X.-L. (2018). A Hybrid Particle Swarm Optimization
Algorithm Using Adaptive Learning Strategy. Information Sciences, 436-437, 162–177. doi:10.1016/j.
ins.2018.01.027

http://dx.doi.org/10.1145/1985793.1985809
http://dx.doi.org/10.1109/ICSE-C.2017.11
http://dx.doi.org/10.1016/j.swevo.2019.06.009
http://dx.doi.org/10.1016/j.ins.2018.01.027
http://dx.doi.org/10.1016/j.ins.2018.01.027

