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ABSTRACT

Improving software development efficiency based on existing APIs is one of the hot researches in 
software engineering. Understanding and learning so many APIs in large software libraries is not 
easy, and software developers prefer to provide only requirements descriptions to get the right API. 
In order to solve this problem, this paper proposes an API recommendation method based on WII-
WMD, an improved similarity calculation algorithm. This method firstly structures the text and 
then fully mines the semantic information in the text. Finally, it calculates the similarity between the 
user’s query problem and the information described in the API document. The experiment results 
show that the API recommendation based on WII-WMD can improve the efficiency of the API 
recommendation system.

Keywords
API Recommendation, Code Recommendation, Machine Learning, Natural Language Processing, Similarity 
Calculation, Word Embedding

1. INTRODUCTION

Nowadays, with the rapid development of information technology, various improved algorithms are 
proposed to improve the technologies’ effectiveness (Li et al. 2018, Li et al. 2019a, Li et al. 2019b, 
Wang et al. 2018, Wang et al. 2019). Furthermore, software products are becoming more and more 
complex, and APIs in software libraries are becoming more and more abundant. Improving software 
development efficiency based on existing APIs has become one of the hot researches in software 
engineering. However, understanding and learning so many APIs in large software libraries is not 
easy (Ko et al. 2004), and software developers prefer to provide only requirements descriptions to 
get the right API. Existing keyword retrieval methods are difficult to identify lexical and syntactic 
differences between requirement description and API documents, which leads to low efficiency of 
API recommendation.

In order to improve the recommendation efficiency, researchers proposed many API 
recommendation techniques (Mcmillan et al. 2011, Chan et al. 2012, Holmes et al. 2005, Rahman et 
al. 2017, Goldberg et al. 2014, Hoecker et al. 1995, Eggert et al. 2004, Bengio et al. 2009, Jang et al. 
2016, Ma et al. 2015), which include recommendation methods based on semantic and no-semantic 
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information. Word embedding based API recommendation is one of the most popular techniques. 
Word embedding is a way to transform words in text into the form of vector representation (Lai et 
al. 2016). The simplest method of word embedding is one-hot coding based on the word bag model 
(Karakasis et al. 2015). One-hot coding is the most basic vector representation method, in which 
N bit state register is used to encode N states, and the text vector is used to represent the words in 
the text, where only the position corresponding to the word is 1 and all other positions are 0. The 
commonly-used technique is Word2Vec (Frome et al. 2013), which is based on the CBOW model and 
Skip-gram model. Both models are based on the three-layer structure in the neural network language 
model. In this method, each word in the text is represented by vector and the word vector with similar 
semantic information has close spatial position. The position of synonyms in vector space will be 
closer, which guarantees semantic information in the text (Lilleberg et al. 2015).

In general, there are several ways a developer can choose to query an API. The first one is search 
engine. Studies show that 70% of developers often use search engines to find the appropriate API 
Search engines like Baibu and Google can get some API information (Brandt et al. 2009), which use 
specific strategies to retrieve valuable information from the Internet and feed it back to developers 
(Ko et al. 2006). The second one is API help document. Once developers have determined which 
API you are using, you can find its usage, function description, code specification, and so on directly 
in the corresponding API help document. The third one is developer forum such as Stack Overflow. 
Developer forum is a technical Q&A site that is currently one of the most popular developer 
communities. This site provides a platform for developers to exchange experiences with APIs. Users 
can submit questions and view relevant content posts for free on the site. However, these methods 
also have different problems, Search engines search for regular web pages, rather than APIs designed 
specifically for development, such as source code and function parameters, which are program-related. 
API help document and developer forum need developers’ experiment (Duala-Ekoko et al. 2012).

Based on above, we proposed an API recommendation method based on WII-WMD to improve 
the recommendation efficiency. The API recommendation method based on WII-WMD improves 
a text similarity calculation based on deep mining semantic information through word embedding 
technique. Firstly, the paper proposes an improved method WV-IP-IDF, which introduces the part-
of-speech influence factor and the information entropy factor based on TF-IDF. Then we combined 
WV-IP-IDF algorithm with WMD (Word Mover ‘s Distance) and put forward new method of similarity 
calculation WII – WMD. Finally, the experiments verified the effectiveness of the algorithm.

To assess WII-WMD algorithm based API recommended method, we extracted Q&A from 
Java Stack Overflow and verified the effectiveness of the algorithm by experiments. According to 
the experimental results, the API recommendation method based on WII-WMD is about 1% higher 
than that based on WV-TF-IDF in MRR and MAP indexes respectively. In the WII-WMD similarity 
algorithm, the IDF original algorithm introduces the influence factor of part-of-speech and information 
entropy and the search performance of the system is improved. The VSM-TF-IDF method only uses 
the space vector model, does not consider the semantic information in words, and only relies on the 
matching of keywords to complete the calculation, so overall performance of VSM-TF-IDF method 
is poor.

The main contributions of this paper are:

1. 	 An improved algorithm WV-IP-IDF based on TF-IDF is proposed. Firstly, we preprocessed 
the text by word embedded modeling, and then TF-IDF algorithm was used to weight the text 
information represented by word vectors.

2. 	 Combining WV-IP-IDF and WMD, we proposed WII-WMD, an improved similarity calculation 
algorithm WII-WMD. WMD word vector doesn’t consider feature extraction and only uses 
normalized word frequency information. The combination can improve the accuracy of similarity 
calculation by reducing noise data input.
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3. 	 Based on the above researches, API recommendation based on WII-WMD is proposed. The 
API recommendation system based on word embedding technique proposed in the paper is 
implemented, and the recommendation capability of the system is verified through case analysis 
and experimental research. The validity of the system is evaluated by MRR and MAP.

The remainder of the paper is organized as follows. Section II describes our approach framework. 
Section III describes the empirical study, including the datasets and the performance measure. Finally, 
Section IV discusses the conclusion and our future work.

2. OUR APPROACH

2.1. Overall Framework

The overall framework is shown in Figure 1. The detail steps are as follows.

•	 API information collection. The content of the API help document and API information, including 
methods in the API, description of the API, the class of the API and other information, is 
collected. Furthermore, the test set and API document database of API information are segmented 
and reconstructed. XML parsing of Java tag data in Stack Overflow and Q&A pairs including 
questions, answers, question ratings, answer ratings and tag information are also stored in the 
database.

•	 Preprocess. We preprocessed the collected data, including sentences separating, stop words 
removing, stem extracting and part of speech tagging.

•	 Model training. Word embedding modeling and TF-IDF modeling are carried out for the 
preprocessed text information. We converted all words into corresponding word vectors, generated 
word models and saved the value of TF-IDF.

•	 Similarity calculation. Combining WV-IP-IDF and WMD, we proposed WII-WMD, an improved 
similarity calculation algorithm WII-WMD.

•	 Implementation and validation. The API recommendation system based on word embedding 
technique is implemented, and the recommendation capability of the system is verified through 
case analysis and experimental research. We used the improved similarity computing algorithm 
WII-WMD to calculate the similarity between the user problem and the problem data set. By 

Figure 1. Overall framework
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calculation, the top-10 problem sets are sorted by similarity. The top 10 APIs in the database are 
obtained from these top 10 candidate questions. Based on the harmonic mean of the document 
similarity, the candidate top 5 API is finally recommended to the developer.

2.2. Data Collection
The API help document and the Q&A on the Stack Overflow site contain a lot of API information.

2.2.1. API documentation
API documentation contains detailed API information and is the most direct and effective way to 
learn APIs. The API help document usually introduces the inheritance relationship of API and the 
usage description of function. For different interfaces and abstract classes, and it also systematically 
introduces the corresponding constructor and the built-in function. In addition, some API help 
documentations also contain the examples of code use cases. An example of Java help document is 
shown in Figure 2.

API documents are usually stored in HTML format on websites for developers to search and 
learn online. The crawler tool makes it easy to analyze the contents of the help document. In our 
experiments, we obtained the method name MethodName, the class name BelongsClass, and API 
description Description and we stored the extracted contents in the database

2.3. Q&A on Stack Overflow
Stack Overflow is a technical Q&A website, which is one of the most popular developer communities. 
Users can submit questions on the site for free and browse questions to find relevant content. Stack 
Overflow contains not only various answers and code samples for the questioner, but also other 

Figure 2. An example of Java help document
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information such as user ratings, user adoption, tag information, the best answers, and information 
about the questioner and respondent. An example of Q&A information in Stack Overflow is shown 
in Figure 3.

In our experiment, we extracted API recommendation information of Java projects and the 
extracted Q&A pairs contain Java tags. The threshold of questions’ scores is 5 points. The answer of 
the question contains API entities and the score of the answer should be positive. So the validity of 
getting data from Stack Overflow is guaranteed. Generally, posts that contain answers and have high 
rates for their answers are of higher value.

Therefore, this experiment extracts the keywords from data dump published by Stack Overflow 
as the data set. The data in data dump has been saved in XML form.

3. PREPROCESSING

No matter the user’s API query problem or the description in the API document, data preprocessing is 
required before further calculation. Preprocess has two functions: one is to eliminate the influence of 
interference data, reduce data noise, and make the data neat; the other is to improve the efficiency of 
model calculation based on the preprocessed data. The implementation in the preprocessing process 
is based on the NLTK library in Python. The pre-processing process is shown in Figure 4.

Figure 3. An example of Q&A information in Stack Overflow
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Sentence separating. The corpus of the API recommendation is from API help document and 
Q&A pairs of Stack Overflow. The structure of sentences is characterized by the separation of period, 
question mark and exclamation mark. We separated the sentences by using the Sentence_Tokenizer 
method in Tokenizer package.

Word segmentation and lowercase processing. The WordPunctTokenizer method in the Tokenizer 
package is also used for word segmentation. Words are separated by Spaces. In the case of hyphenated 
words, such as “peace-loving”, we should remove all hyphens . At the same time, we converted all 
the words from uppercase to lowercase .

Abbreviate completing. Abbreviations are commonly used in English, such as ” ‘s “,” re “, ” ‘m 
“. We listed all the abbreviate and use replace method to complete abbreviate, such as Replace (‘ \ 
‘d ‘, ‘would’).

Stopwords Removing. NLTK library has a Stopwords table, which contains words without actual 
meaning, such as “a”, “with”, “and”, etc. We removed all the stopwords.

Part of speech tagging. In this paper, the weight information of the target word is changed through 
the influence factor of part of speech. We used the pos_tag() method to implement part of speech 
tagging of words. The list of parts of speech obtained by pos_tag() method is shown in Table 1.

Stem extracting. This step restores “ed” and “ing” in the tense and passive voice, “s” and “es” 
in the plural and third person singular, and reduces repetition. The snowballStemmer() method is 
used to extract similar stems.

Figure 4. Preprocessing

Table 1. Commonly used parts of speech
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4. MODEL TRAINING

In order to calculate the similarity between the developers questions and the descriptions in Stack 
Overflow or the API help document, we processed the API model training.

The previous section completed the preprocessing of the information in the knowledge base 
before word embedding modeling. The data has been formatted into the input style required in word 
embedding model. Based on this preprocess, the corpus is simplified, which improves the efficiency 
of modeling. Modeling includes two stages, Word embedded modeling and TF-IDF modeling.

Word embedded modeling. Word2Vec is the most commonly used word embedding modeling 
technique. When the model is initialized, Word2Vec computes the data through a three-layer structure, 
namely the input layer, the output layer, and the hidden layer.

This paper uses the Gensim package in python to invoke the Word2Vec for modeling. The 
definitions of parameter values during model training are shown in Table 2.

Algorithm 1. shows the details of the preprocessing steps

          Algorithm 1 Preprocessing algorithm

          Input: Corpus 
          Output: Corpus data1 and part-of-speech tagging data set data2 completed by preprocessing

1. for text in corpus:
2. sentecnes = text.Sentence_Tokenizer
3. for sentence in sentences:
4. List_word = WordPunctTokenizer(sentence).lower()
5. for i in List_word
6. if i not in stopwords.words(‘English’)
7. List_OutStopWords ¬ i
8. end if
9. end for
10. end for
11. end for
12. data1 = [ ],data2 = [ ]
13. for i in List_OutStopWords:
14. data1 .append(i. snowballStemmer())
15. data2 .append(i. pos_tag())
16. return data1,data2

Table 2. Parameter settings during model training
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TF-IDF modeling. We used the NLTK package in python to complete this modeling process. 
During the modeling, TextCollection method is used to build the corpus, and then tf() and idf() 
methods are used to get the TF and IDF values of the words in the corpus.

5. SIMILARITY CALCULATION BASED ON WII-WMD

We firstly combined the weighted TF-IDF and the word vectors to get the new word vectors, and then 
introduced the influence factor of part of speech and information entropy to propose WV-TF-IDF 
algorithm. Based on WV-TF-IDF, similarity calculation based on WII-WMD is proposed.

Word2Vec is used for word embedding modeling to generate word vectors containing semantic 
information. The API keywords are extracted by TF-IDF weighted algorithm. The word vectors are 
obtained from training text by Word2Vec. Combining the weighted TF-IDF and the word vectors, 
we got the new vectors as Formula 1.

vecC = ( )⋅
∈∑ k C k
v tfidf k C h, / 	 (1)

In Formula 1, vk denotes the word vector of Keyword k, tfidf(k, C) denotes the weight of Keyword 
k in API Information C, h is the length of API Information C.

Then we proposed WV-TF-IDF algorithm by introducing the influence factor of part of speech 
and information entropy. The detail of WV-TF-IDF algorithm is shown in Algorithm 2.

In the API recommendation, the similarity between the developer’s requirements and the 
description in the API document is calculated. The text or sentence is taken as a whole, and the 
overall similarity is calculated according to each word. The keywords in the text or sentence should 
take up a larger proportion in similarity calculation.

The requirements and descriptions in the API recommendation are converted to weighted vectors 
by WV-IP-IDF algorithm as the input vectors of WMD and we proposed WII-WMD based on this 
improvement.
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Let the requirement and description of API be text d and text ¢d  respectively. The steps of 
similarity calculation are as follows:
Step 1: 	 The corpus is preprocessed, including sentence separating, word segmentation and lowercase 
processing, abbreviate completing, stopwords removing, part of speech tagging and stem extracting, 
etc. The content of preprocessing is detailed in Section C.
Step 2: 	 The data in the corpus is trained to collect the word vector based on Word2Vec. The IDF 
value is got by TF-IDF model, and the part of speech information POS is obtained through the part 
of speech analytic model.
Step 3: 	 WV-IP-IDF algorithm is used for weighted word vector representation of text d and ¢d  
words, d ={w w w

m1 2
, , ,¼ } and ¢d ={w ' w w ''

n1 2
, , ,¼ }.

The WMD distance between two texts is calculated. Because Similarity is inversely proportional to 
distance, the similarity calculation formula between d and ¢d  can be obtained as Formula 2.

Algorithm 2 WV-TF-IDF algorithm

          Input: data set M (containing m documents), word vector vi trained by Word2Vec model
          Output: new vector vi’’

\\calculate the inverse document frequency IDF for all words in M 

for each word  w
i

idf
i

 = log m m w
i

/ ( )( )
end for 

\\calculate the part of speech influence factor POS w
i( )  of all words in M

for each word w
i

if w
i
 is a noun

    POS w
i( )= 0.57

if  w
i
 is a verb

      POS w
i( )= 0.24

if  w
i
 is an adverb or an adjective

    POS w
i( )= 0.15

else 

    POS w
i( ) ) = 0.04

end for 
\\calculate the information entropy factor I for all words in M 

for each feature  w
i

������I = ( )( ) = ( )f H w log n H w
i i2

/
end for 

v vecw v f H w POS w idf w M
i i i i i i
'' = = ( )( ) ( ) ( )⋅ ⋅ ⋅ ,

return  v
i
''
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Simd d
WMD d d

,
,

'
'

=
∂

∂ + ( )
	 (2)

Where ¶ is the equilibrium factor, which usually takes the value of 1.	

6. IMPLEMENTATION AND VALIDATION

Based on WII-WMD, we implemented the API recommendation. The process of recommendation 
include three times of similarity calculation.

First similarity calculation. The similarity between the users’ questions and questions in the Stack 
Overflow table in the database is calculated by the WII-WMD. The similarity is denoted as Sim

1
 

and the top-10 most relevant questions are obtained according to Sim
1
. Then, the APIs corresponding 

to the answer of the top-10 most relevant questions in the data table is obtained, that is, the candidate 
APIs are obtained.

Second similarity calculation. After candidate APIs are obtained after the first calculation, all 
the corresponding API description information can be found in the API document data table. WII-
WMD is used to calculate the similarity between the users’ requirements and candidate APIs’ 
descriptions again. In this paper, we denote the second similarity as Sim

2
.

Third similarity calculation. The harmonic average of the two similarities is calculated as the 
final similarity score, denoted as Sim

3
. Finally, the top-5 API information is recommended according 

to the similarity ranking. The third similarity is calculated as Formula 3.

Sim
Sim Sim

Sim Sim3
1 2

1 2

2
=

+
	 (3)

Algorithm 3. shows the detailed flow of the WII-WMD.

          Algorithm 3 WII-WMD algorithm

Input: data set M, word vector v
i

 trained by Word2Vec model

Output: Similarity between text d and  ¢d

calculate the inverse document frequency IDF for all words in M
calculate the part of speech influence factor POS of all words in M
calculate the information entropy factor I of all words in M (see Algorithm 2 for calculation IDF POS I� � )

w veci v idf i M POS i f H i
i i
= = ( ) ( ) ( )( )⋅ ⋅,

weighted vector between text d and ¢d represents d={ � � �w w w
m1 2

, , ,¼ } and ¢d ={ � ’ �� � ’’w w w
n1 2

, , ,¼ }
Simd d, '  is calculated by Formula 2
return �� ’Simd d,
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7. EMPIRICAL STUDY

7.1. Research Question
In this paper, we conducted experiments to study the following four questions.

RQ1: How about the similarity calculation between sentences with our proposed WII-WMD 
similarity algorithm? Is it better than the four similarity calculation algorithms of VSM-TF-IDF, 
WV-TF-IDF, Doc2Vec and WMD algorithm?

RQ2: Can our API recommendation system help users solve query problems well?
RQ3: Does our WII-WMD similarity algorithm have a better effect on API recommendation 

than VSM-TF-IDF and WV-TF-IDF?
RQ4: The word embedding technique we used is based on the Word2Vec model, does it work 

better than other word embedding models?

7.2. Datasets and Evaluation Metrics
We use open dataset SICK and the STS to evaluate the effectiveness of similarity calculation and use 
Q&A information in Stack Overflow and APIs information in JAVA SE8 to evaluate the effectiveness 
of API recommendation.

In our experiment, we firstly calculated the similarity score based on VSM-TF-IDF, WV-TF-IDF, 
Doc2Vec, WMD, WII-WMD. Pearson correlation coefficient is used to evaluate the effectiveness 
of similarity calculation (Qin et al. 2013). The value of pearson correlation coefficient can be got 
from Formula 4.

p
XY

X Y
N

X
X
N

Y
Y
N

=
∑ −

∑ ∑

∑ −
∑








∑ −

∑









2
2

2
2( ) ( )

	 (4)

In the above formula, variable X represents the sentence similarity calculated by similarity 
calculation method, variable Y represents the similarity answer given in the data set, N represents 

the number of sentence pairs in the text. The greater the value of Pearson correlation coefficient 
means is, the better the calculation result is.	

We evaluated the effectiveness of API recommendation by mean reciprocal ranking MRR and 
mean accuracy MAP.

MRR is a commonly used evaluation metric in search algorithm. The inverse of the ordinal 
number of the correct answer in the result is taken as the accuracy, and MRR is the average of all 
inverses. Its calculation is as Formula 5.

MRR =
=∑

1 1
1Q ranki

Q

i

	 (5)

In the above formula, Q  is the number of queries and rank
i
 is the ordinal number of the correct 

answer to the ith query.
MAP is an evaluation metric used in the field of information retrieval to measure the ranking 

performance of search engines. It evaluates the average query accuracy.



International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

12

In Formula 6, MAP is the mean of the AP’s for Q query problems. AP is the average accuracy 
of each query.

MAP =
( )

=∑q

Q
AP q

Q
1 	 (6)

8. RESULTS AND ANALYSIS

i. RQ1: This paper uses the Word2Vec word embedded technique. Based on the Skip-gram model, we 
set the parameters and train the word vector (Krishnamurthy et al. 2016). The parameters are set as 
follows: the vector dimension is 100 dimensions, the window size is 5, word vector iteration number 
is 50, iteration step length is 0.00005 in a stochastic gradient descent method.

After the texts are preprocessed, we calculated the similarity between sentences by WII-WMD. 
Then we compared the similarity score with that of VSM-TF-IDF, WV-TF-IDF, Doc2Vec and WMD. 
The comparison results are shown in Figure 5 and Figure 6. The abscissa is the serial number of the 
sentence pairs and the ordinate is the similarity score of the sentence pairs. In Figure 5 and Figure 6, 
the solid line is the similarity score of random 60 sentence pairs in the data set.

In Figure 5, it can be found that the three similarity calculation methods differ greatly from the 
similarity score provided by the data set, while the similarity score calculated by the WII-WMD and 
WDM algorithm are closer to the score provided by the data set in Figure 6. What’s more, the WII-
WMD algorithm proposed in this paper performs better than WMD algorithm.

To further evaluate the effectiveness of similarity calculation methods. Pearson coherence 
coefficient is used to verify the results of these five similarity calculation methods in all data sets. 
The experimental results are shown in Table 3.

Figure 5. S`imilarity comparison of Doc2Vec, VSM-TF-IDF and WV-TF-IDF`
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Obviously, the value of Pearson coherence coefficient of WII-WMD is greater than that of 
other methods, which indicates WII-WMD performs best. tWord2Vec and Doc2Vec methods are 
based on the Skip-gram model. During sentence training process, Doc2Vec introduces the word 
order characteristics in the text and the value of similarity is calculated similarly to the WV-TF-IDF. 
Therefore, the difference is small between Doc2Vec method and WV-TF-IDF method .

Compared with other algorithm, WII-WMD improved WV-TF-IDF most. The spatial vector 
model used by VSM-TF-IDF algorithm ignores the semantic relation between words. The other four 
methods all use Word2Vec model for language modeling, and the word vector contains semantic 
information, which results in the difference between similarity calculation. Compared with WMD 
algorithm, WII-WMD improve the value of Pearson correlation coefficient. The reason is WII-WMD 
algorithm takes into account the influence of part of speech and formation entropy and makes full 
use of text information when measuring text similarity.

ii. RQ2: We implemented Java API recommendation in JAVA, collect more than 100,000 question 
and answer pairs with Java label in Stack Overflow, crawl API information in Java SE8 help documents, 
and finally store them in the database. To verify the effectiveness of our API recommendation based 
WII-WMD, this section randomly selects five Java programming issues from the test set, as shown 
in Table 4. The first two recommendation result of our method is shown in Table 5.

Figure 6. Similarity comparison of WMD and WII-WMD

Table 3. Experimental results of five algorithms
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Take the first question as an example. The first question is ” How to initialize each element of 
an array with a specific value efficiently”. First, we preprocessed the question. The result is “‘how’, 
‘initialis’, ‘elemen’, ‘array’, ‘specifi’,, ‘java’, ‘constant’, ‘valu’, ‘effici’”, and then the word embedding 
model and TF-IDF model are used to calculate the similarity. The first calculation is to calculate 
the similarity between the input questions and the questions in Stack Overflow, and get the top-10 
candidate questions. The contents of the 10 candidate questions are shown in Table 6. After the 
candidate problem set is obtained, the API entity information corresponding to the problem can be 
obtained. Then, we combined the similarity of the problem and API description to obtain the final 
similarity score and top-5 API recommendations. Finally, we completed the recommendation of all 
the content.

The recommended top-5 API content and similarity value are shown in Table 7. The first 
recommendation API is java.util.arrays.fill, which is very close to the initial problem “ How to 
initialize each element of an array with a specific value efficiently ”. In the Java help document, the 
Arrays class in Java.util contains various methods for manipulating Arrays, such as sorting and search. 
The fill () method in this class assigns the specified data type to an array of the specified data type. 
Obviously, this is an initial allocation problem with a data type, related to the user input problem. The 
description of the function in the recommended result also confirms the results “Assigns the specified 
long value to each element of the specified array”. From list of top-5 questions, the questions focused

on the data types that initialized the array and these recommendations will help the user solve 
the problem. Through this example analysis, the API recommendation based on WII-WMD has a 
good effect.

iii. RQ3: We compared the effectiveness of API recommendation based on different methods, 
such as VSM-TF-ID and WV-TF-IDF and WII-WMD. To effectively evaluate different method, 
the collected data structure is shown in Table 8, including extracted high-scoring questions and 
corresponding answer APIs. The influence of different similarity algorithms on the recommendation 
system is evaluated by MRR and MAP.

Table 5. Two API recommendations for five programming problems

Table 4. Five programming problems extracted from Stack Overflow
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The recommended results of the three similarity calculation methods are shown in Figure 7. It 
can be found that the overall performance of VSM-TF-IDF method is poor, because the VSM-TF-
IDF method only uses the space vector model, which does not consider the semantic information 
in words and only relies on the matching of keywords to complete the calculation. The WII-WMD 
proposed in this paper improves WV-TF-IDF by about 0.8% in MRR and 1.4% in MAP respectively. 
Both algorithms use Word2Vec for modeling. WII-WMD introduces the influence factor of part of 
speech and information entropy, the search performance of the system is improved.

Table 6. Top-10 similarity problem and similarity of query problem

Table 7. Top-5 API and similarity of query problems
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Table 8. Collected partial data in the test set
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In addition, the query time is affected by the efficiency of similarity calculation in API 
recommended methods. The response time of the query and recommendation is determined by the 
similarity calculation algorithm. We recorded the time in the experiment. The average response time 
of WII-WMD and WV-TF-IDF is 3.6 seconds and 2.2 seconds respectively. Although WII-WMD takes 
40% more time, the calculation time is acceptable based on the accuracy of API recommendations.

iv. RQ4: The word embedding technique we used is based on the Word2Vec model. There are 
many words embedded in the models. GloVe is one of the most popular models. We evaluated the 
effectiveness of API recommendation based on Word2Vec and GloVe.

First of all, 347,222 questions in the Stack Overflow data table were used as the modeling corpus. 
The questions are preprocessed and modeled based on Word2Vec and GloVe respectively, which are 
converted into the word vectors of the same dimension, that is 100 dimensions. The effective of API 
recommendation of two word embedding models are shown in Figure 8.

Figure 7. MRR and MAP based on different similarity calculation methods

Figure 8. MRR and MAP based on different word embedding models
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The API recommendation based on Word2Vec performs better than GloVe. MAP and MRR 
based on Word2Vec are about 2.1% and 1.9% higher than GloVe.

9. THREATS TO VALIDITY

There are some threats to the validity of API recommendation based on WII-WMD.
Our experiment datasets are from open-source projects written with Java, not considering those 

written with other programing languages. The top 200 questions with the Java tag are manually 
extracted from Stack Overflow. Theses may affect the universality of our study.

10. CONCLUSION AND FUTURE WORK

In this paper, we proposed API recommendation based on WII-WMD. Firstly, we collected the API 
information, such as API help document, API method, API class, API descriptions, and so on. Then 
API document database of API information are reconstructed and Q&A pairs including questions, 
answers, question ratings, answer ratings and tag information are stored in the database. Secondly, we 
preprocessed the collected data, including clause segmentation, deletion of stop words, stem extraction 
and part of speech tagging. Thirdly, word embedding modeling and TF-IDF modeling are carried 
out for the preprocessed text information. Then based on the new vectors, we proposed similarity 
calculation algorithm WII-WMD. Finally, we compared the popular calculation algorithms and verified 
the effectiveness of WII-WMD. Then we verified the effectiveness of API recommendation based 
on WII-WMD, which improves WV-TF-IDF by about 0.8% in MRR and 1.4% in MAP respectively.

Our experiment is only based on the open-source projects and Q&A on Stack Overflow is time-
sensitive, so we will verify and improve our method on more datasets in the future.
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