
DOI: 10.4018/IJCINI.20211001.oa41

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4 • October-December 2021

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

1

A Greedy Clustering Algorithm for
Multiple Sequence Alignment
Rabah Lebsir, Computer Science Department, Faculty NTIC, University Constantine 2, MISC Laboratory, University
Constantine 2, Algeria & University of Guelma, Algeria

 https://orcid.org/0000-0002-4418-1814

Abdesslem Layeb, Computer Science Department, Faculty NTIC, University Constantine 2, Algeria

Tahi Fariza, University of Évry Val d’Essonne, France & Université Paris-Saclay, France

ABSTRACT

This paper presents a strategy to tackle the multiple sequence alignment (MSA) problem, which is
one of the most important tasks in the biological sequence analysis. Its role is to align the sequences
in their entirety to derive relationships and common characteristics between a set of protein or
nucleotide sequences. The MSA problem was proved to be an NP-Hard problem. The proposed strategy
incorporates a new idea based on the well-known divide-and-conquer paradigm. This paper presents
a novel method of clustering sequences as a preliminary step to improve the final alignment; this
decomposition can be used as an optimization procedure with any MSA aligner to explore promising
alignments of the search space. In their solution, the authors proposed to align the clusters in a parallel
and distributed way in order to benefit from parallel architectures. The strategy was tested using
classical benchmarks like BAliBASE, Sabre, Prefab4, and Oxm, and the experimental results show
that it gives good results by comparing to the other aligners.

Keywords
Biological Sequences, Clustering, Local Search, Multi-Core, Multiple Sequence Alignment, Parallel Algorithm

INTRODUCTION

The multiple sequence alignment (MSA) consists to align more than two biological sequences
like DNA or protein to bring out similar or homologous regions. MSA plays an important task in
Bioinformatics and it is widely used like in protein analysis, identification of functional sites in
genomic sequences, structural prediction, etc. Unfortunately, finding an optimal MSA has been
demonstrated NP-hard (Wang & Jiang, 1994). Indeed, MSA is an optimization problem, which
exhibits a high time and space complexity. Accordingly, to solve this problem, several methods were
proposed. They can be categorized into three classes (Notredame, 2002): exact methods, progressive
methods and iterative methods.

The exact methods are based on a generalization of Needleman algorithm (Needleman & Wunsch,
1970) to align sequences simultaneously. Although the exact methods provide optimal solutions, their
main disadvantage is their high complexity in time and space. Consequently, they quickly became
impracticable in the case of high number and length of sequences. The second class contains methods

https://orcid.org/0000-0002-4418-1814

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4 • October-December 2021

2

based on a progressive approach (Feng & Doolittle, 1987). The MSA is built up by combining pairwise
alignments, starting by the pair with high similarity and succeeding to the most distantly related one.
Progressive methods are widely used and are effective, simple, fast and give generally a good quality
alignment. However, their main disadvantage is the local minima problem and they, therefore, may
lead to poor solutions. The third class consists of iterative methods (Hirosawa, Totoki, Hoshida, &
Ishikawa, 1995). The idea is to start by a preliminary alignment and then refine it iteratively through
appropriate improvements called iterations. The process is repeated until the satisfaction of certain
criteria. Due to the computationally intensive operation of MSA algorithms and large amount of
available sequence data, MSA has been gaining importance again in recent years and many parallel
MSA algorithms were developed, such as Clustal Omega (Sievers & Higgins, 2014).

In this paper, another idea to perform the multiple alignment problem is investigated. The objective
of the proposal work is to increase the accuracy while avoiding wasting too much time. The proposed
approach uses primarily a clustering strategy based on a local search to divide sequences into subsets,
and then uses an alignment algorithm in each subset to build a multiple alignment for each cluster,
and at the end, it uses the same algorithm to build an alignment for the consensus of the subsets to
generate the MSA for all sequences.

Experiments on a wide range of biological data benchmarks have shown the effectiveness of the
proposed technique and its ability to generate an alignment with good accuracy. Experiments show
also the ability of the proposed technique to be used in the case of parallel or distributed architectures
to further improve the processing time for large-scale biological data.

The paper is organized as follows. In Section 1, a formulation of the tackled problem is given.
Section 2 presents state-of-the-art methods for resolving the MSA problem. Section 3 presents the
techniques used to improve the speed of MSA. Section 4 is devoted to the presentation of our proposed
algorithm. Section 5 performs experimentations for monitoring and evaluating the performance of
the proposed work. Finally, Section 6 outlines the main conclusions.

MSA PROBLEM FORMULATION

In this section, the formulation of MSA problem is given to show its combinatorial nature. Let
S s s s s

n
= …{ }1 2 3

, , , , a set of n sequences with n ≥ 2 . Each sequence s
i
 is a string well-defined

over an alphabet. The lengths of the sequences are not necessarily the same and in most of time are
different. The MSA problem can be well-defined by identifying a pair (,Ω C) where Ω is the set of
all potential alignments and C define a function ΩR called the alignment score. Each possible
alignment is seen as a set S' s' s' s' s'

n
= …{ }1 2 3

, , , , satisfying the following criteria:

• Each sequence s'
i
 is an extension of s

i
 and is defined over the alphabet ∆ ∆’ = ∪ −{ } . The symbol

' '− denotes a gap. When gaps are deleted from s'
i
, s'

i
 and s

i
 are identical.

• For all i,j ,length s' length s'
i j() = () .

• An alignment score of S' represented by C S’() is defined as: C S sim s s'
i j i j

′ ′() = ()∑∑ , where

Sim s s'
i j
′(), represents similarities between each pair of sequences ′s

i
 and ′s

j
. The optimum

value of C can be defined as: C C S S'
best
= () ∈{ }′max / Ω and the optima set Ω

best
 as:

Ω Ω
best best

S C S C= ∈ () ={ }′ ′/

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4 • October-December 2021

3

Example: Let S s s s= { }1 2 3
, , a set of 3 protein sequences, s

1
= AGMASGYD; s

2
= KASYD;

and s
3

= AGASYD. A possible alignment can be presented as a set S' s' s' s'= { }1 2 3
, , where: s'

1
=

AGMASGYD; s'
2

= KA--S-YD and s'
3

= AG-AS-YD. The MSA can be presented as the following:

A G M A S G Y D	
K A - - S - Y D	
A G - A S - Y D	

The addressed task is clearly a combinatorial optimization problem. The method proposed
here does not make explicit use of a score function to assess the quality of a whole alignment and
therefore to guide the search in the space of alignments. Instead, it uses a domain decomposition
strategy and a heuristic based on the distance between sequences that allows exploring the search
space in a specific way.

STATE-OF-THE-ART METHODS FOR MSA

Since generating an optimal MSA is characterized by its high complexity in terms of time and space,
many algorithms have been developed to find near optimal solutions, the MSA methods are generally
divided in three main classes:

Exact Alignments
Exact algorithms were developed to align sequences simultaneously. They are able to generate an
optimal alignment, but they can only support a small number of sequences. Thus, high memory
requirement, high computational effort and limitation on the number of sequences are the main
weakness of these methods.

Generally, the exact methods are a generalization of the Needleman-Wunsch dynamic
programming algorithm for the multiple alignment of n sequences by using an n-dimensional score
matrix. The value of each box in the matrix depends on its neighbors, so for N sequences of length
L, the size of the matrix is N*L. This approach is so greedy in terms of resources that it becomes
impracticable for N> 4.

Progressive Alignments
Progressive methods are the most popular methods. Progressive alignment methods repetitively apply
pairwise alignment algorithms to build a MSA. These methods are simple, fast and don’t need a large
memory. Given n sequences of length L, the runtime for progressive alignment is O(nL2) (Wang &
Jiang, 1994). Basically, the main steps of these algorithms are the following:

1. 	 Choose two sequences and align them.
2. 	 Choose another one and align it with the consensus of sequences previously aligned.
3. 	 Repeat step 2 until the alignment of all sequences.

However, the problem in these methods is to determine the order according to which the sequences
are aligned. One of the more promising solutions is the use of the guide tree suggested by Feng
and Doolittle (Feng & Doolittle, 1987). The alignment will be constructed following the guide tree
containing the order. After the alignment of the two closest sequences, more sequences are added by
aligning them with the existing alignment. Aligning partial alignments is also possible. Alignment
along a tree does not necessarily yield an optimal alignment, even if the tree is perfect. For example,
errors made in early stages are propagated to later stages and cannot be fixed. A variety of MSA

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4 • October-December 2021

4

programs are created based on the Feng and Doolittle algorithm such as CLUSTAL (Thompson,
Higgins, & Gibson, 1994). The construction of the similarity tree is the main difference between
these programs; for example, CLUSTAL uses the Neighbor-Joining algorithm to generate the guide
tree. Generally, the basic steps of Feng-Doolittle algorithm are the following:

1. 	 Calculate all possible pairwise alignments scores between all sequences.
2. 	 Convert the alignments scores into distances and construct the guide tree by using the distance

matrix and a tree construction method.
3. 	 A multiple alignment is created gradually starting by the closest sequences. The sequences are

added one by one depending on the order given by the guide tree.

Progressive aligners can be global or local according to the pairwise alignment algorithm used.
In the case of global progressive alignment such as CLUSTAL (Thompson et al., 1994), a global
pairwise algorithm such as Needleman algorithm (Needleman & Wunsch, 1970) is used to align
each unaligned sequence to the sequences previously aligned in the previous stages. On the other
hand, the local multiple alignment uses a local alignment algorithm such as the Smith-Waterman
algorithm (Smith, Waterman, & Fitch, 1981) to align only the most conserved motifs. In general,
global algorithms give the best results when aligning a family of sequences with an orphan one,
aligning equidistant sequences and divergent sequences families. However, they are less precise in
the case of large N/C-terminal extensions and internal insertions than local algorithms (Thompson,
Plewniak, & Poch, 1999). Many other progressive algorithms have been developed in the last years,
like FAMSA (Deorowicz, Debudaj-Grabysz, & Gudyś, 2016) which uses a quick technique for
pairwise similarities to create a phylogenetic tree and build alignment faster.

Iterative Alignments
Iterative alignment methods are based on producing an initial alignment and a series of iterations are
applied to refine it until no improvement can be applied. Iterative alignment methods are based on
the idea that the solution can be made from an already existing suboptimal one.

For example, PRRP (Gotoh, 1994) and MUSCLE (Edgar, 2004) optimize a progressive global
alignment by dividing the sequences into two groups using a profile-to-profile alignment algorithm.
Dialign (Morgenstern, 2004) and Dialign-TX (Subramanian, Kaufmann, & Morgenstern, 2008) use
local information to guide overall alignment. HMMT (Eddy, 1995), a Hiden Markov Model, uses
simulated annealing and dynamic programming to create suboptimal alignment. In the last years,
several other algorithms have been developed. We find for example the use of genetic algorithm as in
(Amiroch, Pradana, Irawan, & Mukhlash, 2019), multiobjective genetic algorithm like in (Chowdhury
& Garai, 2017), multiobjective evolutionary algorithms as in (Rubio-Largo, Vanneschi, Castelli,
& Vega-Rodríguez, 2018) and using a tabu search algorithm as in (Mehenni, 2015). Most of these
algorithms offer the possibility of using them integrally or partially into another alignment process.

Globally, MSA techniques are time-consuming, and with the appearance of large biological
datasets, it has become essential to think about how to reduce execution time.

IMPROVING THE SPEED OF MSA

All the techniques proposed to resolve the MSA problem are CPU-time consuming. The focus of recent
research has been on how to improve the speed of MSA solvers without losing accuracy. To solve this
problem, different approaches were developed that can be categorized into two classes. The first is
based on the use of parallelism through hardware approach. Some methods use shared-memory and
distributed memory computers, like ClustalW-MPI (K.-B. Li, 2003) and Parallel T-Coffee (Zola, Yang,
Rospondek, & Aluru, 2007). Church et al (Church et al., 2011) presented a design of MSA algorithms

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4 • October-December 2021

5

on supercomputers with parallel CPUs and distributed memory. Another parallelization of MAFFT
applicable to thousands of sequences is presented in (Nakamura, Yamada, Tomii, & Katoh, 2018).
On the other hand, graphical processing units are used to accelerate MSA programs, like GPU-Blast
(Vouzis & Sahinidis, 2011), G-MSA (Blazewicz, Frohmberg, Kierzynka, & Wojciechowski, 2013),
and we can cite the recent work of (Liu, Cui, & Zhao, 2019) based on GPU accelerated sequence
alignment and the use of multiple GPUs.

The second class consists of the use of parallelism through software approach by using parallel
programming models. In this section, four subclasses may be suggested:

The first one is a parallel approach in the calculation of score matrix. This approach was used in
(Zafalon et al., 2013) where an improvement of 15% in execution time was shown.

The second one is a Pipeline approach; Agarwal and Rizvi (Agarwal & Rizvi, 2009) have proposed
a technique with two stages pipeline that can improve the complexity of the problem. Then, a novel
multi-alignment pipeline for high-throughput sequencing data is presented by Huang et al (Huang,
Holt, Kao, McMillan, & Wang, 2014).

The third one is a parallel approach with a dynamic algorithm. In this subclass, the techniques are
based on the parallelization of the optimal algorithms known in the field, for example, parallelization of
the Needleman & Wunsch algorithm by Naveed (Naveed, Siddiqui, & Ahmed, 2005), the parallelization
of the Smith & Waterman algorithm by Dohi et al (Dohi, Benkridt, Ling, Hamada, & Shibata, 2010),
and the parallelization of the optimal technique to solve the MSA by Helal et al on GPU architecture
(Helal, El-Gindy, Mullin, & Gaeta, 2008).

The fourth one is a data parallel approach. In recent years, research on this kind of optimization
has become very popular. This technique, based on the divide and conquer strategy, suggests three
main steps: Cluster, Distribute and Align. A non-hierarchical clustering step is proposed in the first
step, then a distribution of the clusters on the different processors, and finally an alignment step to
build the MSA. Recently, several works have been proposed based on this technique, the first work
is presented by Fahad et al (Saeed & Khokhar, 2009) where a k-mer technique is used to do the
clustering, but a significant loss in the quality of alignment has been observed. Several clustering
techniques were proposed, such as UCLUST (Edgar, 2010), CD-HIT (W. Li & Godzik, 2006),
BlastClust (Dondoshansky & Wolf, 2002) and clustering packages like proposed in (Bruneau et al.,
2018). These allowed creating different MSA approaches. Xiangyuan et al (Zhu, Li, & Salah, 2013)
proposed a data parallel approach based on the two clustering systems UCLUST and CD-HIT in the
clustering step and MUSCLE in the alignment step.

Despite the gain of execution time, existing methods on data parallel strategy are still lacking
in precision. This inaccuracy is due to the errors produced during the non-hierarchical clustering.
However, it is possible to further improve the accuracy by creating clusters with good quality. In
this perspective, this work explores a novel clustering method with a greedy local search algorithm.

THE PROPOSED STRATEGY

The proposed strategy to build MSA is based on three main steps: (1) clustering the sequences
depending on the number of processor cores using a greedy local search algorithm, (2) aligning each
subset and generating a consensus sequence for each one, and (3) aligning all generated consensus
sequences using an alignment algorithm to generate the whole alignment. The summary of the different
steps of this approach is shown in Figure 1.

Sequence Clustering
Algorithms for clustering biological sequences try to group homologous sequences. They are useful
for predicting homology and function of biological sequences, reducing redundancy, comparing data
from diverse environments and quantifying ecosystem diversity.

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4 • October-December 2021

6

Several methods for clustering biological sequences are currently proposed and can be categorized
into two main groups: hierarchical and non-hierarchical clustering techniques. Several popular non-
hierarchical algorithms have been created in this field such as: UCLUST (Edgar, 2010), CD-HIT
(W. Li & Godzik, 2006), BLASTClust (Dondoshansky & Wolf, 2002) and the clustering package for
nucleotide sequences using Laplacian Eigenmaps and Gaussian Mixture Model (Bruneau et al., 2018).

It should be noted that to choose a clustering algorithm, we have in general a set of desired
features to be satisfied such as scalability and sensitivity. The use of non-hierarchical clustering
algorithms can improve significantly the computation time; nevertheless, it causes a significant loss
in the quality of alignment, since they are not made for multiple alignments but rather for detecting
the redundancy in the databases.

In the proposed strategy, as shown in Figure 2 and Figure 3, a greedy technique based on a local
search algorithm is proposed. This strategy starts by an initial state containing several clusters and
then improves them iteratively until a good clustering is obtained. In the following, the proposed
strategy is presented in more detail.

Sequences Alignment and Consensus Alignment
We have used MUSCLE, Clustal Omega and Mafft algorithms to align sequences in the clusters as
well as in the consensus phase. The developed strategy can be considered as a local search to explore
promising alignment with any other aligner. Figure 1 describes the proposed algorithm called GC-
MSA. The algorithm is composed of three main parts. The first part consists of the construction of
clusters of good quality called Clusters_best. The second part creates from the obtained clusters a
set of consensus sequences and aligns them using a multiple alignment algorithm. The third part
consists in the propagation of the gaps found in the consensus-alignment to the clusters and then to
the original sequences to generate the multiple alignment.

Algorithm 1 represents the Pseudo-code of the algorithm. The first step consists of selecting a
sequence randomly without replacement to be the centroid; a two-dimensional array that contains all
the distances between the centroid sequence and all the others is created. By decomposing the
previously built table, clusters are created. Each generated cluster is aligned independently and a
consensus is generated for each cluster. After that, the distance between the sequences of each cluster

and their consensus is computed. At the end, the overall distance
i

NbCores

D i
=
∑ ()
1

 is calculated. If this

distance is less than the best distance, the new clustering is better than the existing one, and therefore
we keep it. The previous operations are repeated several times (depending on the user’s choice) to
get out a good clustering used in the next step of the multiple alignment of clusters consensus, and
thus an MSA_consensus is generated. At the end, gaps generated during the consensus alignment
are propagated in the original clusters of each consensus and afterwards in the original sequences,
and thus the multiple alignment of all sequences is obtained.

MapReduce GC-MSA
In order to improve the execution time, the distribution of data and calculation was proposed using
a version of the algorithm implemented in MapReduce model as shown in Figure 4. The mapper
represents the clusters creation phase, this one can be repeated several times until a good clustering
is achieved as proposed in Algorithm 1, each cluster will be deployed and aligned separately on a
node. The reducer represents the gap propagation phase to generate the whole global alignment.

EXPERIMENTAL RESULTS AND DISCUSSION

The proposed approach is implemented in MATLAB R2014b and tested on an Intel Xeon ES2620
with 6 cores, running at 2.00 GHz, with caches (L1D-Cache 32 KB, L1I-Cache 32 KB, L2-Cache

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4 • October-December 2021

7

256 KB, L3-Cache 15MB) and with 16 GB DDR3 memory. Several experiments were made to study
the gain provided by the proposed strategy.

Quality of Alignment
The performance of the proposed approach has been tested on a set of protein sequence alignment
benchmarks which are BALIBASE v3, SABRE, PREFAB v4 and OXBENCH. Results are compared
with other well-known MSA algorithms such as MAFFT v6.603, MUSCLE and Clustal Omega.

To measure the quality of the alignment, the program qScore (Edgar, 2018) is used, the program
outputs the following scores: The PREFAB Q score (also known as the BAliBASE Developer score)
and The BAliBASE TC (total column) score.

The BAliBASE benchmark suite is more important than other benchmarks. It contains multiple
sequence alignments organized into reference sets representing specific MSA problems, including

Figure. 1. Summary of GC-MSA algorithm

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4 • October-December 2021

8

unequal phylogenetic distributions, small number of sequences, unequal phylogenetic distributions,
inverted domains and transmembrane regions and large N/C-terminal extensions or internal insertions.

To assess the performance of the three programs: MUSCLE without clustering, MUSCLE with
the proposed strategy GC-MSA(MUSCLE) and MUSCLE using UCLUST (Edgar, 2010) algorithm
for clustering. Several instances taken from the BAliBASE 3.0 benchmark are used. The results of
this experiment are presented in Table 1 and Table 2. It shows clearly the effectiveness of using the
proposed strategy to perform MSA.

Moreover, the performance of the proposed strategy integrated in MUSCLE algorithm (GC-
MSA-MUSCLE) and Clustal Omega algorithm (GC-MSA-Clustal Omega) is analyzed by comparing
the alignments produced with those obtained through other leading alignment techniques. Table 3
summarizes the overall measurement results. In terms of alignment quality, it is clearly observed that
our technique gives good quality results compared to the other programs. In fact, it can be noted that

Figure. 2. The proposed algorithm for clustering

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4 • October-December 2021

9

Figure. 3. The flowchart of the proposed algorithm

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4 • October-December 2021

10

Algorithm 1 PSEUDO-CODE OF GC-MSA

Input:

Set of sequences {S1,S2,…,Sn}

Number of iterations permitted

Output:

Multiple sequence alignment

Variables:

Sequences: table of the initial set of sequences;

Consensus_best: table of consensus sequences;

Clusters: structure of clusters;

Clusters_best: structure of the best clusters found;

NbCores:=Number_of_cores_processor;

N: integer, to be defined by users;

begin

Nb:=0;

D_best:=INFINITY;

NbSeq:=Size(Sequences);

while Nb<N

seq:=RandomExtarctSeq(Sequences);

for i:=1..NbSeq

T[i]:=calculateDistance(seq, Sequences);

end_for

Sort(T);

Clusters:=creatClustersFromTable(T);

parallel_For i:=1..NbCores

multiAlign(Clusters(i));

consensus[i]:=generateConsensus(Clusters(i));

D[i]:=calculateDistance(consensus[i],Clusters(i));

end_parallel_for

D_globl:=SUM(Distance);

if D_global < D_best

D_best:= D_global;

Clusters_best:= Clusters;

end_if

Nb++;

end_while

parallel_For i:=1..NbCores

Consensus_best[i]:=generateConsensus(Clusters_best(i));

end_parallel_for

continued on following page

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4 • October-December 2021

11

Figure 4. The proposed MapReduce model for GC-MSA

Input:

MSA_consensus:=multiAlign(Consensus_best);

Gap_propagation(MSA_consensus, Sequences);

end.

Explanation of the functions used in the algorithm

RandomExtarctSeq: randomly extract a sequence from a set

calculateDistance: creates a table containing the distances between the chosen sequence
and all the others using Needleman-wunsch algorithm.

Sort: sort a table according to the distances.

creatClustersFromTable: creates clusters from the table containing distances.

multiAlign: Align multiple sequences using an Aligner.

generateConsensus: generate a consensus sequence from a MSA.

Gap_propagation: propagates the gaps found inside a sequence into a set of sequences.

Algorithm 1. Continued

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4 • October-December 2021

12

Table 3. Average Q/TC Scores For Several Alignment Algorithms, On BALIBASE 3.0 Data-Set

Algorithms RV 11 RV 12 RV 20 RV 30 RV 40 RV 50 AVR

GC-MSA
MUSCLE

 0.576
0.500

 0.915
0.819

 0.891
0.367

 0.823
0.581

 0.869
0.447

 0.835
0.611

 0.818
0.554

MUSCLE 0.497
0.322

 0.834
0.696

 0.860
0.336

 0.686
0.309

 0.715
0.373

 0.731
0.442

 0.721
0.413

GC-MSA Clustal
Omega

 0.634
0.421

 0.929
0.828

 0.942
0.490

 0.867
0.579

 0.901
0.583

 0.862
0.537

 0.856
0.573

Clustal Omega 0.590
0.362

 0.906
0.794

 0.912
0.453

 0.863
0.570

 0.866
0.579

 0.840
0.533

 0.830
0.549

GC-MSA Mafft 0.530
0.440

 0.826
0.787

 0.625
0.450

 0.709
0.514

 0.742
0.747

 0.866
0.771

 0.716
0.618

Mafft 0.649
0.411

 0.937
0.844

 0.927
0.461

 0.862
0.588

 0.910
0.573

 0.899
0.595

 0.864
0.579

Table 4. Average Running Time (Seconds) Comparison

 Number of
sequences

 Running time (s)

 GC-MSA-
MUSCLE MUSCLE GC-MSA-

Clustal Omega Clustal Omega GC-MSA-
 Mafft Mafft

100 320 161 174 82 272 87

150 460 170 146 103 311 110

200 679 259 191 111 429 136

250 964 328 226 146 501 168

300 1360 458 262 153 618 188

350 1708 789 304 157 824 200

400 2128 1046 337 187 1028 291

450 2146 1064 361 215 1140 464

Table 1. Average Q/TC Scores For GC-MSA Implementing Muscle Vs Muscle Algorithm, On BALIBASE 3.0

Algorithms RV 11 RV 12 RV 20 RV 30 RV 40 RV 50 AVR

GC-MSA
(MUSCLE)

 0.576
0.500

 0.915
0.819

 0.891
0.367

 0.823
0.581

 0.869
0.447

 0.835
0.611

 0.818
0.554

MUSCLE
(UCLUST)

 0.438
0.208

 0.839
0.629

 0.820
0.181

 0.652
0.137

 0.698
0.255

 0.727
0.275

 0.696
0.281

MUSCLE 0.497
0.322

 0.834
0.696

 0.860
0.336

 0.686
0.309

 0.715
0.373

 0.731
0.442

 0.721
0.413

Table 2. Average Q/TC Scores For GC-MSA Implementing Muscle Vs Muscle Algorithm, On Different Benchmarks

 Algorithms Sabre Sabrem Prefab4 Oxm

GC-MSA
(MUSCLE)

0.550
0.355

0.700
0.550

0.650
0.650

1.000
0.899

MUSCLE 0.414
0.215

0.676
0.488

0.610
0.610

0.992
0.893

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4 • October-December 2021

13

the proposed algorithm gives good alignment results compared to the other algorithms used in the
field especially for sequences that can be assembled into families as BAliBASE 3.0 - RV30.

Execution Time
To measure the running time, an experiment was made based on large datasets containing benchmarks
sets of sequences generated by GenRGenS (Ponty, Termier, & Denise, 2006) on profiles of real
sequences derived from BAliBASE in which the length of a sequence varies from 500 to 2000. Both
the sequences number and their lengths have an important consequence on the time of execution of
the aligner.

To measure the running time, MUSCLE algorithm is used in our technique. The solution is
compared with those of most used aligner programs such as MUSCLE, Clustal Omega and Mafft.
Table 4 shows the difference in the execution time between our technique and those used frequently.

Table 4 shows that the proposed strategy takes more times compared to other programs. In fact, the
search for a good clustering needs more time but at the same time, it improves considerably the result

Table 5. Average Running Time Using Parallelism on A Multicore Processor

 Number of sequences

 Running time (s)

 2 Cores 4 Cores 6 Cores

100 287 281 272

150 367 339 311

200 502 454 429

250 597 561 501

300 842 693 618

350 1058 910 824

400 1268 1112 1028

450 1630 1386 1140

Table 6. Average Running Time Using MAPREDUCE Version On Apache Spark

 Number of
sequences

 Running time (s)

 GC-MSA-
MUSCLE MUSCLE

GC-MSA-
Clustal
Omega

 Clustal
Omega

GC-MSA-
 Mafft Mafft

100 7 16 4 8 5 8

150 10 18 3 12 7 12

200 15 29 5 16 12 14

250 25 32 7 17 12 18

300 36 48 7 16 17 21

350 44 80 8 17 20 20

400 53 100 9 20 23 32

450 50 107 9 25 30 51

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4 • October-December 2021

14

as it is shown in the Table 3. One of the causes of this slowness is the use of Matlab language known
by its slowness compared to other compiled languages such as C/C++. The speed of the algorithm
can be increased considerably by choosing other languages like those used by other programs used
in this comparison. Moreover, the runtime could be enhanced by using more specific local search.

Moreover, the performance is analyzed in terms of execution time and scalability in the case
of the use of parallelism. Experiments are performed on datasets containing the eight test sets used
previously and Mafft as an aligner.

In Table 5, we can see that the execution time can be reduced by increasing the cores number. This
is because the alignment of clusters can be executed in an independent and a parallel way. Clusters can
be aligned concurrently by using all processor cores. Since the performance of multi-core computer
grows faster, results would be more encouraging and competitive.

The proposed algorithm has significantly improved the alignment quality. However, this method is
time consuming. Since the parallel approach on a multicore CPU had no considerable improvement, the
MapReduce approach executed on the Apache Spark platform is proposed and had a better execution
time scoring. MapReduce was executed on a grid computing with 32 nodes, with Intel® Xeon®
E5-2699A v4 CPU 2.60-3.00 GHz 55 MB Cache memory. Table 6 shows this gain from this release.

CONCLUSION

In this paper, a new strategy to tackle the MSA problem is developed based on the divide and conquer
approach. The preliminary step consists to divide all the sequences into subsets and then align each
subset with an aligner and at the end, create an MSA for all sequences. This strategy includes a new
greedy method for clustering sequences based on local search algorithm. To measure the alignment
quality produced by the proposed strategy, several benchmarks known in the field like as BAliBASE
3.0, SABRE, OXM and Prefab are used. The results obtained indicate that the proposed approach is
able to give good quality alignments with small increase in running time. To reduce the execution
time, the distribution was proposed where the MapReduce model was used and showed a significant
improvement. Besides, the proposed approach can provide an extensible platform for improving other
alignment programs. Unfortunately, creating clusters without High Performance Computing can be a
time consuming processing. To deal with this problem, it would be interesting to introduce a k-mer
algorithm to compare sequences and a profile-profile alignment method to align clusters. On the basis
of the promising findings presented in this paper, we work on the improvement of the execution time
and the application of the proposed architecture for solving other bioinformatics problems.

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4 • October-December 2021

15

REFERENCES

Agarwal, P., & Rizvi, S. (2009). Solving sequence alignment problem using pipeline approach. Bharati
Vidyapeeth’s Institute of Computer Applications and Management, 107.

Amiroch, S., Pradana, M. S., Irawan, M., & Mukhlash, I. (2019). A Simple Genetic Algorithm for Optimizing
Multiple Sequence Alignment on the Spread of the SARS Epidemic. The Open Bioinformatics Journal, 12(1),
30–39. doi:10.2174/1875036201912010030

Blazewicz, J., Frohmberg, W., Kierzynka, M., & Wojciechowski, P. (2013). G-MSA—A GPU-based, fast and
accurate algorithm for multiple sequence alignment. Journal of Parallel and Distributed Computing, 73(1),
32–41. doi:10.1016/j.jpdc.2012.04.004

Bruneau, M., Mottet, T., Moulin, S., Kerbiriou, M., Chouly, F., Chretien, S., & Guyeux, C. (2018). A clustering
package for nucleotide sequences using Laplacian Eigenmaps and Gaussian Mixture Model. Computers in
Biology and Medicine, 93, 66–74. doi:10.1016/j.compbiomed.2017.12.003 PMID:29288886

Chowdhury, B., & Garai, G. (2017). A review on multiple sequence alignment from the perspective of genetic
algorithm. Genomics, 109(5-6), 419–431. doi:10.1016/j.ygeno.2017.06.007 PMID:28669847

Church, P. C., Goscinski, A., Holt, K., Inouye, M., Ghoting, A., Makarychev, K., & Reumann, M. (2011). Design
of multiple sequence alignment algorithms on parallel, distributed memory supercomputers. Paper presented at
the Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE.
doi:10.1109/IEMBS.2011.6090208

Deorowicz, S., Debudaj-Grabysz, A., & Gudyś, A. (2016). FAMSA: Fast and accurate multiple sequence
alignment of huge protein families. Scientific Reports, 6(1), 33964. doi:10.1038/srep33964 PMID:27670777

Dohi, K., Benkridt, K., Ling, C., Hamada, T., & Shibata, Y. (2010). Highly efficient mapping of the Smith-Waterman
algorithm on CUDA-compatible GPUs. Paper presented at the Application-specific Systems Architectures and
Processors (ASAP), 2010 21st IEEE International Conference on. doi:10.1109/ASAP.2010.5540796

Dondoshansky, I., & Wolf, Y. (2002). Blastclust (ncbi software development toolkit). NCBI.

Eddy, S. R. (1995). Multiple alignment using hidden Markov models. Paper presented at the Ismb.

Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic
Acids Research, 32(5), 1792–1797. doi:10.1093/nar/gkh340 PMID:15034147

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford,
England), 26(19), 2460–2461. doi:10.1093/bioinformatics/btq461 PMID:20709691

Edgar, R. C. (2018). A quality scoring program. http://www.drive5.com/qscore/

Feng, D.-F., & Doolittle, R. F. (1987). Progressive sequence alignment as a prerequisitetto correct phylogenetic
trees. Journal of Molecular Evolution, 25(4), 351–360. doi:10.1007/BF02603120 PMID:3118049

Gotoh, O. (1994). Further improvement in methods of group-to-group sequence alignment with generalized
profile operations. Bioinformatics (Oxford, England), 10(4), 379–387. doi:10.1093/bioinformatics/10.4.379
PMID:7804871

Helal, M., El-Gindy, H., Mullin, L., & Gaeta, B. (2008). Parallelizing optimal multiple sequence alignment
by dynamic programming. Paper presented at the Parallel and Distributed Processing with Applications, 2008.
ISPA’08. International Symposium on. doi:10.1109/ISPA.2008.93

Hirosawa, M., Totoki, Y., Hoshida, M., & Ishikawa, M. (1995). Comprehensive study on iterative algorithms of
multiple sequence alignment. Bioinformatics (Oxford, England), 11(1), 13–18. doi:10.1093/bioinformatics/11.1.13
PMID:7796270

Huang, S., Holt, J., Kao, C.-Y., McMillan, L., & Wang, W. (2014). A novel multi-alignment pipeline for high-
throughput sequencing data. Database (Oxford), 2014(0), bau057. doi:10.1093/database/bau057 PMID:24948510

Li, K.-B. (2003). ClustalW-MPI: ClustalW analysis using distributed and parallel computing. Bioinformatics
(Oxford, England), 19(12), 1585–1586. doi:10.1093/bioinformatics/btg192 PMID:12912844

http://dx.doi.org/10.2174/1875036201912010030
http://dx.doi.org/10.1016/j.jpdc.2012.04.004
http://dx.doi.org/10.1016/j.compbiomed.2017.12.003
http://www.ncbi.nlm.nih.gov/pubmed/29288886
http://dx.doi.org/10.1016/j.ygeno.2017.06.007
http://www.ncbi.nlm.nih.gov/pubmed/28669847
http://dx.doi.org/10.1109/IEMBS.2011.6090208
http://dx.doi.org/10.1038/srep33964
http://www.ncbi.nlm.nih.gov/pubmed/27670777
http://dx.doi.org/10.1109/ASAP.2010.5540796
http://dx.doi.org/10.1093/nar/gkh340
http://www.ncbi.nlm.nih.gov/pubmed/15034147
http://dx.doi.org/10.1093/bioinformatics/btq461
http://www.ncbi.nlm.nih.gov/pubmed/20709691
http://www.drive5.com/qscore/
http://dx.doi.org/10.1007/BF02603120
http://www.ncbi.nlm.nih.gov/pubmed/3118049
http://dx.doi.org/10.1093/bioinformatics/10.4.379
http://www.ncbi.nlm.nih.gov/pubmed/7804871
http://dx.doi.org/10.1109/ISPA.2008.93
http://dx.doi.org/10.1093/bioinformatics/11.1.13
http://www.ncbi.nlm.nih.gov/pubmed/7796270
http://dx.doi.org/10.1093/database/bau057
http://www.ncbi.nlm.nih.gov/pubmed/24948510
http://dx.doi.org/10.1093/bioinformatics/btg192
http://www.ncbi.nlm.nih.gov/pubmed/12912844

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4 • October-December 2021

16

Li, W., & Godzik, A. (2006). Cd-hit: A fast program for clustering and comparing large sets of protein or
nucleotide sequences. Bioinformatics (Oxford, England), 22(13), 1658–1659. doi:10.1093/bioinformatics/
btl158 PMID:16731699

Liu, Y., Cui, H., & Zhao, R. (2019). Fast Acquisition of Spread Spectrum Signals using Multiple GPUs. IEEE
Transactions on Aerospace and Electronic Systems, 55(6), 3117–3125. doi:10.1109/TAES.2019.2902695

Mehenni, T. (2015). Multiple guide trees in a tabu search algorithm for the multiple sequence alignment
problem. Paper presented at the IFIP International Conference on Computer Science and its Applications.
doi:10.1007/978-3-319-19578-0_12

Morgenstern, B. (2004). DIALIGN: Multiple DNA and protein sequence alignment at BiBiServ. Nucleic Acids
Research, 32(suppl_2), W33–W36. doi:10.1093/nar/gkh373 PMID:15215344

Nakamura, T., Yamada, K. D., Tomii, K., & Katoh, K. (2018). Parallelization of MAFFT for large-scale multiple
sequence alignments. Bioinformatics (Oxford, England), 34(14), 2490–2492. doi:10.1093/bioinformatics/bty121
PMID:29506019

Naveed, T., Siddiqui, I. S., & Ahmed, S. (2005). Parallel needleman-wunsch algorithm for grid. Paper presented
at the DIALIGN-TX ngs of the PAK-US International Symposium on High Capacity Optical Networks and
Enabling Technologies (HONET 2005), Islamabad, Pakistan.

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443–453. doi:10.1016/0022-
2836(70)90057-4 PMID:5420325

Notredame, C. (2002). Recent progress in multiple sequence alignment: A survey. Pharmacogenomics, 3(1),
131–144. doi:10.1517/14622416.3.1.131 PMID:11966409

Ponty, Y., Termier, M., & Denise, A. (2006). GenRGenS: Software for generating random genomic sequences
and structures. Bioinformatics (Oxford, England), 22(12), 1534–1535. doi:10.1093/bioinformatics/btl113
PMID:16574695

Rubio-Largo, Á., Vanneschi, L., Castelli, M., & Vega-Rodríguez, M. A. (2018). Multiobjective characteristic-
based framework for very-large multiple sequence alignment. Applied Soft Computing, 69, 719–736. doi:10.1016/j.
asoc.2017.06.022

Saeed, F., & Khokhar, A. (2009). A domain decomposition strategy for alignment of multiple biological sequences
on multiprocessor platforms. Journal of Parallel and Distributed Computing, 69(7), 666–677. doi:10.1016/j.
jpdc.2009.03.006

Sievers, F., & Higgins, D. G. (2014). Clustal Omega, accurate alignment of very large numbers of sequences.
Multiple Sequence Alignment Methods, 105-116.

Smith, T. F., Waterman, M. S., & Fitch, W. M. (1981). Comparative biosequence metrics. Journal of Molecular
Evolution, 18(1), 38–46. doi:10.1007/BF01733210 PMID:7334527

Subramanian, A. R., Kaufmann, M., & Morgenstern, B. (2008). DIALIGN-TX: Greedy and progressive
approaches for segment-based multiple sequence alignment. Algorithms for Molecular Biology; AMB, 3(1), 6.
doi:10.1186/1748-7188-3-6 PMID:18505568

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive
multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix
choice. Nucleic Acids Research, 22(22), 4673–4680. doi:10.1093/nar/22.22.4673 PMID:7984417

Thompson, J. D., Plewniak, F., & Poch, O. (1999). A comprehensive comparison of multiple sequence alignment
programs. Nucleic Acids Research, 27(13), 2682–2690. doi:10.1093/nar/27.13.2682 PMID:10373585

Vouzis, P. D., & Sahinidis, N. V. (2011). GPU-BLAST: Using graphics processors to accelerate protein
sequence alignment. Bioinformatics (Oxford, England), 27(2), 182–188. doi:10.1093/bioinformatics/btq644
PMID:21088027

Wang, L., & Jiang, T. (1994). On the complexity of multiple sequence alignment. Journal of Computational
Biology, 1(4), 337–348. doi:10.1089/cmb.1994.1.337 PMID:8790475

http://dx.doi.org/10.1093/bioinformatics/btl158
http://dx.doi.org/10.1093/bioinformatics/btl158
http://www.ncbi.nlm.nih.gov/pubmed/16731699
http://dx.doi.org/10.1109/TAES.2019.2902695
http://dx.doi.org/10.1007/978-3-319-19578-0_12
http://dx.doi.org/10.1093/nar/gkh373
http://www.ncbi.nlm.nih.gov/pubmed/15215344
http://dx.doi.org/10.1093/bioinformatics/bty121
http://www.ncbi.nlm.nih.gov/pubmed/29506019
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://www.ncbi.nlm.nih.gov/pubmed/5420325
http://dx.doi.org/10.1517/14622416.3.1.131
http://www.ncbi.nlm.nih.gov/pubmed/11966409
http://dx.doi.org/10.1093/bioinformatics/btl113
http://www.ncbi.nlm.nih.gov/pubmed/16574695
http://dx.doi.org/10.1016/j.asoc.2017.06.022
http://dx.doi.org/10.1016/j.asoc.2017.06.022
http://dx.doi.org/10.1016/j.jpdc.2009.03.006
http://dx.doi.org/10.1016/j.jpdc.2009.03.006
http://dx.doi.org/10.1007/BF01733210
http://www.ncbi.nlm.nih.gov/pubmed/7334527
http://dx.doi.org/10.1186/1748-7188-3-6
http://www.ncbi.nlm.nih.gov/pubmed/18505568
http://dx.doi.org/10.1093/nar/22.22.4673
http://www.ncbi.nlm.nih.gov/pubmed/7984417
http://dx.doi.org/10.1093/nar/27.13.2682
http://www.ncbi.nlm.nih.gov/pubmed/10373585
http://dx.doi.org/10.1093/bioinformatics/btq644
http://www.ncbi.nlm.nih.gov/pubmed/21088027
http://dx.doi.org/10.1089/cmb.1994.1.337
http://www.ncbi.nlm.nih.gov/pubmed/8790475

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4 • October-December 2021

17

Rabah Lebsir is a PhD Student at Constantine2 University in Algeria. He is a member of MISC Laboratory. He
received his engineering degree in Computer Science from University of Constantine, Algeria. Lebsir works on
optimization methods to solve Bioinformatics problems.

Abdesslem Layeb is a Professor in the Department of Computer Science at the University of Constantine, Algeria.
He is a member of MISC Laboratory. He received his PhD in Computer Science from the University of Constantine,
Algeria. Pr. Layeb is interested in the combinatorial optimization methods and their applications to solve several
problems from different domains like transportation problems, Bioinformatics, academic problems, etc.

Fariza Tahi is an Associate Professor at university of Evry. She is a member of AROBAS Team, IBISC Laboratory,
her main research interest is bioinformatics and computational biology, notably in silico genome analysis, non-
coding RNA secondary structure prediction, prediction at large scale of non-coding RNAs (micro-RNAs, piRNAs,
...), data integration, modeling and simulation of biological processes, and regulatory networks analysis.

Zafalon, G. F., Marucci, E. A., Momente, J. C., Amazonas, J. R., Sato, L. M., & Machado, J. M. (2013).
Improvements in the score matrix calculation method using parallel score estimating algorithm. Academic Press.

Zhu, X., Li, K., & Salah, A. (2013). A data parallel strategy for aligning multiple biological sequences on multi-
core computers. Computers in Biology and Medicine, 43(4), 350–361. doi:10.1016/j.compbiomed.2012.12.009
PMID:23414778

Zola, J., Yang, X., Rospondek, A., & Aluru, S. (2007). PARALLEL-TCOFFEE: A parallel multiple sequence
aligner. ISCA PDCS, 7, 248–253.

http://dx.doi.org/10.1016/j.compbiomed.2012.12.009
http://www.ncbi.nlm.nih.gov/pubmed/23414778

