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ABSTRACT

This paper presents a strategy to tackle the multiple sequence alignment (MSA) problem, which is 
one of the most important tasks in the biological sequence analysis. Its role is to align the sequences 
in their entirety to derive relationships and common characteristics between a set of protein or 
nucleotide sequences. The MSA problem was proved to be an NP-Hard problem. The proposed strategy 
incorporates a new idea based on the well-known divide-and-conquer paradigm. This paper presents 
a novel method of clustering sequences as a preliminary step to improve the final alignment; this 
decomposition can be used as an optimization procedure with any MSA aligner to explore promising 
alignments of the search space. In their solution, the authors proposed to align the clusters in a parallel 
and distributed way in order to benefit from parallel architectures. The strategy was tested using 
classical benchmarks like BAliBASE, Sabre, Prefab4, and Oxm, and the experimental results show 
that it gives good results by comparing to the other aligners.
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INTRODUCTION

The multiple sequence alignment (MSA) consists to align more than two biological sequences 
like DNA or protein to bring out similar or homologous regions. MSA plays an important task in 
Bioinformatics and it is widely used like in protein analysis, identification of functional sites in 
genomic sequences, structural prediction, etc. Unfortunately, finding an optimal MSA has been 
demonstrated NP-hard (Wang & Jiang, 1994). Indeed, MSA is an optimization problem, which 
exhibits a high time and space complexity. Accordingly, to solve this problem, several methods were 
proposed. They can be categorized into three classes (Notredame, 2002): exact methods, progressive 
methods and iterative methods.

The exact methods are based on a generalization of Needleman algorithm (Needleman & Wunsch, 
1970) to align sequences simultaneously. Although the exact methods provide optimal solutions, their 
main disadvantage is their high complexity in time and space. Consequently, they quickly became 
impracticable in the case of high number and length of sequences. The second class contains methods 
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based on a progressive approach (Feng & Doolittle, 1987). The MSA is built up by combining pairwise 
alignments, starting by the pair with high similarity and succeeding to the most distantly related one. 
Progressive methods are widely used and are effective, simple, fast and give generally a good quality 
alignment. However, their main disadvantage is the local minima problem and they, therefore, may 
lead to poor solutions. The third class consists of iterative methods (Hirosawa, Totoki, Hoshida, & 
Ishikawa, 1995). The idea is to start by a preliminary alignment and then refine it iteratively through 
appropriate improvements called iterations. The process is repeated until the satisfaction of certain 
criteria. Due to the computationally intensive operation of MSA algorithms and large amount of 
available sequence data, MSA has been gaining importance again in recent years and many parallel 
MSA algorithms were developed, such as Clustal Omega (Sievers & Higgins, 2014).

In this paper, another idea to perform the multiple alignment problem is investigated. The objective 
of the proposal work is to increase the accuracy while avoiding wasting too much time. The proposed 
approach uses primarily a clustering strategy based on a local search to divide sequences into subsets, 
and then uses an alignment algorithm in each subset to build a multiple alignment for each cluster, 
and at the end, it uses the same algorithm to build an alignment for the consensus of the subsets to 
generate the MSA for all sequences.

Experiments on a wide range of biological data benchmarks have shown the effectiveness of the 
proposed technique and its ability to generate an alignment with good accuracy. Experiments show 
also the ability of the proposed technique to be used in the case of parallel or distributed architectures 
to further improve the processing time for large-scale biological data.

The paper is organized as follows. In Section 1, a formulation of the tackled problem is given. 
Section 2 presents state-of-the-art methods for resolving the MSA problem. Section 3 presents the 
techniques used to improve the speed of MSA. Section 4 is devoted to the presentation of our proposed 
algorithm. Section 5 performs experimentations for monitoring and evaluating the performance of 
the proposed work. Finally, Section 6 outlines the main conclusions.

MSA PROBLEM FORMULATION

In this section, the formulation of MSA problem is given to show its combinatorial nature. Let 
S s s s s

n
= …{ }1 2 3

, , , ,  a set of n sequences with n ≥ 2 . Each sequence s
i
 is a string well-defined 

over an alphabet. The lengths of the sequences are not necessarily the same and in most of time are 
different. The MSA problem can be well-defined by identifying a pair ( ,Ω C ) where Ω  is the set of 
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Example: Let S s s s= { }1 2 3
, ,  a set of 3 protein sequences, s

1
= AGMASGYD; s

2
= KASYD; 

and s
3

= AGASYD. A possible alignment can be presented as a set S' s' s' s'= { }1 2 3
, ,  where: s'

1
=

AGMASGYD; s'
2

= KA--S-YD and s'
3

= AG-AS-YD. The MSA can be presented as the following:

A G M A S G Y D	
K A - - S - Y D	
A G - A S - Y D	

The addressed task is clearly a combinatorial optimization problem. The method proposed 
here does not make explicit use of a score function to assess the quality of a whole alignment and 
therefore to guide the search in the space of alignments. Instead, it uses a domain decomposition 
strategy and a heuristic based on the distance between sequences that allows exploring the search 
space in a specific way.

STATE-OF-THE-ART METHODS FOR MSA

Since generating an optimal MSA is characterized by its high complexity in terms of time and space, 
many algorithms have been developed to find near optimal solutions, the MSA methods are generally 
divided in three main classes:

Exact Alignments
Exact algorithms were developed to align sequences simultaneously. They are able to generate an 
optimal alignment, but they can only support a small number of sequences. Thus, high memory 
requirement, high computational effort and limitation on the number of sequences are the main 
weakness of these methods.

Generally, the exact methods are a generalization of the Needleman-Wunsch dynamic 
programming algorithm for the multiple alignment of n sequences by using an n-dimensional score 
matrix. The value of each box in the matrix depends on its neighbors, so for N sequences of length 
L, the size of the matrix is N*L. This approach is so greedy in terms of resources that it becomes 
impracticable for N> 4.

Progressive Alignments
Progressive methods are the most popular methods. Progressive alignment methods repetitively apply 
pairwise alignment algorithms to build a MSA. These methods are simple, fast and don’t need a large 
memory. Given n sequences of length L, the runtime for progressive alignment is O(nL2) (Wang & 
Jiang, 1994). Basically, the main steps of these algorithms are the following:

1. 	 Choose two sequences and align them.
2. 	 Choose another one and align it with the consensus of sequences previously aligned.
3. 	 Repeat step 2 until the alignment of all sequences.

However, the problem in these methods is to determine the order according to which the sequences 
are aligned. One of the more promising solutions is the use of the guide tree suggested by Feng 
and Doolittle (Feng & Doolittle, 1987). The alignment will be constructed following the guide tree 
containing the order. After the alignment of the two closest sequences, more sequences are added by 
aligning them with the existing alignment. Aligning partial alignments is also possible. Alignment 
along a tree does not necessarily yield an optimal alignment, even if the tree is perfect. For example, 
errors made in early stages are propagated to later stages and cannot be fixed. A variety of MSA 
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programs are created based on the Feng and Doolittle algorithm such as CLUSTAL (Thompson, 
Higgins, & Gibson, 1994). The construction of the similarity tree is the main difference between 
these programs; for example, CLUSTAL uses the Neighbor-Joining algorithm to generate the guide 
tree. Generally, the basic steps of Feng-Doolittle algorithm are the following:

1. 	 Calculate all possible pairwise alignments scores between all sequences.
2. 	 Convert the alignments scores into distances and construct the guide tree by using the distance 

matrix and a tree construction method.
3. 	 A multiple alignment is created gradually starting by the closest sequences. The sequences are 

added one by one depending on the order given by the guide tree.

Progressive aligners can be global or local according to the pairwise alignment algorithm used. 
In the case of global progressive alignment such as CLUSTAL (Thompson et al., 1994), a global 
pairwise algorithm such as Needleman algorithm (Needleman & Wunsch, 1970) is used to align 
each unaligned sequence to the sequences previously aligned in the previous stages. On the other 
hand, the local multiple alignment uses a local alignment algorithm such as the Smith-Waterman 
algorithm (Smith, Waterman, & Fitch, 1981) to align only the most conserved motifs. In general, 
global algorithms give the best results when aligning a family of sequences with an orphan one, 
aligning equidistant sequences and divergent sequences families. However, they are less precise in 
the case of large N/C-terminal extensions and internal insertions than local algorithms (Thompson, 
Plewniak, & Poch, 1999). Many other progressive algorithms have been developed in the last years, 
like FAMSA (Deorowicz, Debudaj-Grabysz, & Gudyś, 2016) which uses a quick technique for 
pairwise similarities to create a phylogenetic tree and build alignment faster.

Iterative Alignments
Iterative alignment methods are based on producing an initial alignment and a series of iterations are 
applied to refine it until no improvement can be applied. Iterative alignment methods are based on 
the idea that the solution can be made from an already existing suboptimal one.

For example, PRRP (Gotoh, 1994) and MUSCLE (Edgar, 2004) optimize a progressive global 
alignment by dividing the sequences into two groups using a profile-to-profile alignment algorithm. 
Dialign (Morgenstern, 2004) and Dialign-TX (Subramanian, Kaufmann, & Morgenstern, 2008) use 
local information to guide overall alignment. HMMT (Eddy, 1995), a Hiden Markov Model, uses 
simulated annealing and dynamic programming to create suboptimal alignment. In the last years, 
several other algorithms have been developed. We find for example the use of genetic algorithm as in 
(Amiroch, Pradana, Irawan, & Mukhlash, 2019), multiobjective genetic algorithm like in (Chowdhury 
& Garai, 2017), multiobjective evolutionary algorithms as in (Rubio-Largo, Vanneschi, Castelli, 
& Vega-Rodríguez, 2018) and using a tabu search algorithm as in (Mehenni, 2015). Most of these 
algorithms offer the possibility of using them integrally or partially into another alignment process.

Globally, MSA techniques are time-consuming, and with the appearance of large biological 
datasets, it has become essential to think about how to reduce execution time.

IMPROVING THE SPEED OF MSA

All the techniques proposed to resolve the MSA problem are CPU-time consuming. The focus of recent 
research has been on how to improve the speed of MSA solvers without losing accuracy. To solve this 
problem, different approaches were developed that can be categorized into two classes. The first is 
based on the use of parallelism through hardware approach. Some methods use shared-memory and 
distributed memory computers, like ClustalW-MPI (K.-B. Li, 2003) and Parallel T-Coffee (Zola, Yang, 
Rospondek, & Aluru, 2007). Church et al (Church et al., 2011) presented a design of MSA algorithms 
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on supercomputers with parallel CPUs and distributed memory. Another parallelization of MAFFT 
applicable to thousands of sequences is presented in (Nakamura, Yamada, Tomii, & Katoh, 2018). 
On the other hand, graphical processing units are used to accelerate MSA programs, like GPU-Blast 
(Vouzis & Sahinidis, 2011), G-MSA (Blazewicz, Frohmberg, Kierzynka, & Wojciechowski, 2013), 
and we can cite the recent work of (Liu, Cui, & Zhao, 2019) based on GPU accelerated sequence 
alignment and the use of multiple GPUs.

The second class consists of the use of parallelism through software approach by using parallel 
programming models. In this section, four subclasses may be suggested:

The first one is a parallel approach in the calculation of score matrix. This approach was used in 
(Zafalon et al., 2013) where an improvement of 15% in execution time was shown.

The second one is a Pipeline approach; Agarwal and Rizvi (Agarwal & Rizvi, 2009) have proposed 
a technique with two stages pipeline that can improve the complexity of the problem. Then, a novel 
multi-alignment pipeline for high-throughput sequencing data is presented by Huang et al (Huang, 
Holt, Kao, McMillan, & Wang, 2014).

The third one is a parallel approach with a dynamic algorithm. In this subclass, the techniques are 
based on the parallelization of the optimal algorithms known in the field, for example, parallelization of 
the Needleman & Wunsch algorithm by Naveed (Naveed, Siddiqui, & Ahmed, 2005), the parallelization 
of the Smith & Waterman algorithm by Dohi et al (Dohi, Benkridt, Ling, Hamada, & Shibata, 2010), 
and the parallelization of the optimal technique to solve the MSA by Helal et al on GPU architecture 
(Helal, El-Gindy, Mullin, & Gaeta, 2008).

The fourth one is a data parallel approach. In recent years, research on this kind of optimization 
has become very popular. This technique, based on the divide and conquer strategy, suggests three 
main steps: Cluster, Distribute and Align. A non-hierarchical clustering step is proposed in the first 
step, then a distribution of the clusters on the different processors, and finally an alignment step to 
build the MSA. Recently, several works have been proposed based on this technique, the first work 
is presented by Fahad et al (Saeed & Khokhar, 2009) where a k-mer technique is used to do the 
clustering, but a significant loss in the quality of alignment has been observed. Several clustering 
techniques were proposed, such as UCLUST (Edgar, 2010), CD-HIT (W. Li & Godzik, 2006), 
BlastClust (Dondoshansky & Wolf, 2002) and clustering packages like proposed in (Bruneau et al., 
2018). These allowed creating different MSA approaches. Xiangyuan et al (Zhu, Li, & Salah, 2013) 
proposed a data parallel approach based on the two clustering systems UCLUST and CD-HIT in the 
clustering step and MUSCLE in the alignment step.

Despite the gain of execution time, existing methods on data parallel strategy are still lacking 
in precision. This inaccuracy is due to the errors produced during the non-hierarchical clustering. 
However, it is possible to further improve the accuracy by creating clusters with good quality. In 
this perspective, this work explores a novel clustering method with a greedy local search algorithm.

THE PROPOSED STRATEGY

The proposed strategy to build MSA is based on three main steps: (1) clustering the sequences 
depending on the number of processor cores using a greedy local search algorithm, (2) aligning each 
subset and generating a consensus sequence for each one, and (3) aligning all generated consensus 
sequences using an alignment algorithm to generate the whole alignment. The summary of the different 
steps of this approach is shown in Figure 1.

Sequence Clustering
Algorithms for clustering biological sequences try to group homologous sequences. They are useful 
for predicting homology and function of biological sequences, reducing redundancy, comparing data 
from diverse environments and quantifying ecosystem diversity.
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Several methods for clustering biological sequences are currently proposed and can be categorized 
into two main groups: hierarchical and non-hierarchical clustering techniques. Several popular non-
hierarchical algorithms have been created in this field such as: UCLUST (Edgar, 2010), CD-HIT 
(W. Li & Godzik, 2006), BLASTClust (Dondoshansky & Wolf, 2002) and the clustering package for 
nucleotide sequences using Laplacian Eigenmaps and Gaussian Mixture Model (Bruneau et al., 2018).

It should be noted that to choose a clustering algorithm, we have in general a set of desired 
features to be satisfied such as scalability and sensitivity. The use of non-hierarchical clustering 
algorithms can improve significantly the computation time; nevertheless, it causes a significant loss 
in the quality of alignment, since they are not made for multiple alignments but rather for detecting 
the redundancy in the databases.

In the proposed strategy, as shown in Figure 2 and Figure 3, a greedy technique based on a local 
search algorithm is proposed. This strategy starts by an initial state containing several clusters and 
then improves them iteratively until a good clustering is obtained. In the following, the proposed 
strategy is presented in more detail.

Sequences Alignment and Consensus Alignment
We have used MUSCLE, Clustal Omega and Mafft algorithms to align sequences in the clusters as 
well as in the consensus phase. The developed strategy can be considered as a local search to explore 
promising alignment with any other aligner. Figure 1 describes the proposed algorithm called GC-
MSA. The algorithm is composed of three main parts. The first part consists of the construction of 
clusters of good quality called Clusters_best. The second part creates from the obtained clusters a 
set of consensus sequences and aligns them using a multiple alignment algorithm. The third part 
consists in the propagation of the gaps found in the consensus-alignment to the clusters and then to 
the original sequences to generate the multiple alignment.

Algorithm 1 represents the Pseudo-code of the algorithm. The first step consists of selecting a 
sequence randomly without replacement to be the centroid; a two-dimensional array that contains all 
the distances between the centroid sequence and all the others is created. By decomposing the 
previously built table, clusters are created. Each generated cluster is aligned independently and a 
consensus is generated for each cluster. After that, the distance between the sequences of each cluster 

and their consensus is computed. At the end, the overall distance 
i

NbCores

D i
=
∑ ( )
1

 is calculated. If this 

distance is less than the best distance, the new clustering is better than the existing one, and therefore 
we keep it. The previous operations are repeated several times (depending on the user’s choice) to 
get out a good clustering used in the next step of the multiple alignment of clusters consensus, and 
thus an MSA_consensus is generated. At the end, gaps generated during the consensus alignment 
are propagated in the original clusters of each consensus and afterwards in the original sequences, 
and thus the multiple alignment of all sequences is obtained.

MapReduce GC-MSA
In order to improve the execution time, the distribution of data and calculation was proposed using 
a version of the algorithm implemented in MapReduce model as shown in Figure 4. The mapper 
represents the clusters creation phase, this one can be repeated several times until a good clustering 
is achieved as proposed in Algorithm 1, each cluster will be deployed and aligned separately on a 
node. The reducer represents the gap propagation phase to generate the whole global alignment.

EXPERIMENTAL RESULTS AND DISCUSSION

The proposed approach is implemented in MATLAB R2014b and tested on an Intel Xeon ES2620 
with 6 cores, running at 2.00 GHz, with caches (L1D-Cache 32 KB, L1I-Cache 32 KB, L2-Cache 
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256 KB, L3-Cache 15MB) and with 16 GB DDR3 memory. Several experiments were made to study 
the gain provided by the proposed strategy.

Quality of Alignment
The performance of the proposed approach has been tested on a set of protein sequence alignment 
benchmarks which are BALIBASE v3, SABRE, PREFAB v4 and OXBENCH. Results are compared 
with other well-known MSA algorithms such as MAFFT v6.603, MUSCLE and Clustal Omega.

To measure the quality of the alignment, the program qScore (Edgar, 2018) is used, the program 
outputs the following scores: The PREFAB Q score (also known as the BAliBASE Developer score) 
and The BAliBASE TC (total column) score.

The BAliBASE benchmark suite is more important than other benchmarks. It contains multiple 
sequence alignments organized into reference sets representing specific MSA problems, including 

Figure. 1. Summary of GC-MSA algorithm
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unequal phylogenetic distributions, small number of sequences, unequal phylogenetic distributions, 
inverted domains and transmembrane regions and large N/C-terminal extensions or internal insertions.

To assess the performance of the three programs: MUSCLE without clustering, MUSCLE with 
the proposed strategy GC-MSA(MUSCLE) and MUSCLE using UCLUST (Edgar, 2010) algorithm 
for clustering. Several instances taken from the BAliBASE 3.0 benchmark are used. The results of 
this experiment are presented in Table 1 and Table 2. It shows clearly the effectiveness of using the 
proposed strategy to perform MSA.

Moreover, the performance of the proposed strategy integrated in MUSCLE algorithm (GC-
MSA-MUSCLE) and Clustal Omega algorithm (GC-MSA-Clustal Omega) is analyzed by comparing 
the alignments produced with those obtained through other leading alignment techniques. Table 3 
summarizes the overall measurement results. In terms of alignment quality, it is clearly observed that 
our technique gives good quality results compared to the other programs. In fact, it can be noted that 

Figure. 2. The proposed algorithm for clustering
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Figure. 3. The flowchart of the proposed algorithm
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Algorithm 1 PSEUDO-CODE OF GC-MSA

Input:

Set of sequences {S1,S2,…,Sn}

Number of iterations permitted

Output:

Multiple sequence alignment

Variables:

Sequences: table of the initial set of sequences;

Consensus_best: table of consensus sequences;

Clusters: structure of clusters;

Clusters_best: structure of the best clusters found;

NbCores:=Number_of_cores_processor;

N: integer, to be defined by users;

begin

Nb:=0;

D_best:=INFINITY;

NbSeq:=Size(Sequences);

while Nb<N

seq:=RandomExtarctSeq(Sequences);

for i:=1..NbSeq

T[i]:=calculateDistance(seq, Sequences);

end_for

Sort(T);

Clusters:=creatClustersFromTable(T);

parallel_For i:=1..NbCores

multiAlign(Clusters(i));

consensus[i]:=generateConsensus(Clusters(i));

D[i]:=calculateDistance(consensus[i],Clusters(i));

end_parallel_for

D_globl:=SUM(Distance);

if D_global < D_best

D_best:= D_global;

Clusters_best:= Clusters;

end_if

Nb++;

end_while

parallel_For i:=1..NbCores

Consensus_best[i]:=generateConsensus(Clusters_best(i));

end_parallel_for

continued on following page
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Figure 4. The proposed MapReduce model for GC-MSA

Input:

MSA_consensus:=multiAlign(Consensus_best);

Gap_propagation(MSA_consensus, Sequences);

end.

Explanation of the functions used in the algorithm

RandomExtarctSeq: randomly extract a sequence from a set

calculateDistance: creates a table containing the distances between the chosen sequence 
and all the others using Needleman-wunsch algorithm.

Sort: sort a table according to the distances.

creatClustersFromTable: creates clusters from the table containing distances.

multiAlign: Align multiple sequences using an Aligner.

generateConsensus: generate a consensus sequence from a MSA.

Gap_propagation: propagates the gaps found inside a sequence into a set of sequences.

Algorithm 1. Continued
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Table 3. Average Q/TC Scores For Several Alignment Algorithms, On BALIBASE 3.0 Data-Set

Algorithms RV 11 RV 12 RV 20 RV 30 RV 40 RV 50 AVR

GC-MSA 
MUSCLE

   0.576 
0.500

   0.915 
0.819

   0.891 
0.367

   0.823 
0.581

   0.869 
0.447

   0.835 
0.611

   0.818 
0.554

MUSCLE    0.497 
0.322

   0.834 
0.696

   0.860 
0.336

   0.686 
0.309

   0.715 
0.373

   0.731 
0.442

   0.721 
0.413

GC-MSA Clustal 
Omega

   0.634 
0.421

   0.929 
0.828

   0.942 
0.490

   0.867 
0.579

   0.901 
0.583

   0.862 
0.537

   0.856 
0.573

Clustal Omega    0.590 
0.362

   0.906 
0.794

   0.912 
0.453

   0.863 
0.570

   0.866 
0.579

   0.840 
0.533

   0.830 
0.549

GC-MSA Mafft    0.530 
0.440

   0.826 
0.787

   0.625 
0.450

   0.709 
0.514

   0.742 
0.747

   0.866 
0.771

   0.716 
0.618

Mafft    0.649 
0.411

   0.937 
0.844

   0.927 
0.461

   0.862 
0.588

   0.910 
0.573

   0.899 
0.595

   0.864 
0.579

Table 4. Average Running Time (Seconds) Comparison

   Number of 
sequences

   Running time (s)

   GC-MSA-
MUSCLE    MUSCLE GC-MSA-

Clustal Omega    Clustal Omega GC-MSA- 
   Mafft    Mafft

100 320 161    174 82    272 87

150 460 170    146 103    311 110

200 679 259    191 111    429 136

250 964 328    226 146    501 168

300 1360 458    262 153    618 188

350 1708 789    304 157    824 200

400 2128 1046    337 187    1028 291

450 2146 1064    361 215    1140 464

Table 1. Average Q/TC Scores For GC-MSA Implementing Muscle Vs Muscle Algorithm, On BALIBASE 3.0

Algorithms RV 11 RV 12 RV 20 RV 30 RV 40 RV 50 AVR

GC-MSA 
(MUSCLE)

   0.576 
0.500

   0.915 
0.819

   0.891 
0.367

   0.823 
0.581

   0.869 
0.447

   0.835 
0.611

   0.818 
0.554

MUSCLE 
(UCLUST)

   0.438 
0.208

   0.839 
0.629

   0.820 
0.181

   0.652 
0.137

   0.698 
0.255

   0.727 
0.275

   0.696 
0.281

MUSCLE    0.497 
0.322

   0.834 
0.696

   0.860 
0.336

   0.686 
0.309

   0.715 
0.373

   0.731 
0.442

   0.721 
0.413

Table 2. Average Q/TC Scores For GC-MSA Implementing Muscle Vs Muscle Algorithm, On Different Benchmarks

   Algorithms    Sabre    Sabrem    Prefab4    Oxm

GC-MSA 
(MUSCLE)

0.550 
0.355

0.700 
0.550

0.650 
0.650

1.000 
0.899

MUSCLE 0.414 
0.215

0.676 
0.488

0.610 
0.610

0.992 
0.893
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the proposed algorithm gives good alignment results compared to the other algorithms used in the 
field especially for sequences that can be assembled into families as BAliBASE 3.0 - RV30.

Execution Time
To measure the running time, an experiment was made based on large datasets containing benchmarks 
sets of sequences generated by GenRGenS (Ponty, Termier, & Denise, 2006) on profiles of real 
sequences derived from BAliBASE in which the length of a sequence varies from 500 to 2000. Both 
the sequences number and their lengths have an important consequence on the time of execution of 
the aligner.

To measure the running time, MUSCLE algorithm is used in our technique. The solution is 
compared with those of most used aligner programs such as MUSCLE, Clustal Omega and Mafft. 
Table 4 shows the difference in the execution time between our technique and those used frequently.

Table 4 shows that the proposed strategy takes more times compared to other programs. In fact, the 
search for a good clustering needs more time but at the same time, it improves considerably the result 

Table 5. Average Running Time Using Parallelism on A Multicore Processor

   Number of sequences

   Running time (s)

   2 Cores    4 Cores    6 Cores

100 287 281 272

150 367 339 311

200 502 454 429

250 597 561 501

300 842 693 618

350 1058 910 824

400 1268 1112 1028

450 1630 1386 1140

Table 6. Average Running Time Using MAPREDUCE Version On Apache Spark

   Number of 
sequences

   Running time (s)

   GC-MSA-
MUSCLE    MUSCLE

GC-MSA-
Clustal 
Omega

   Clustal 
Omega

GC-MSA- 
   Mafft    Mafft

100 7 16    4 8    5 8

150 10 18    3 12    7 12

200 15 29    5 16    12 14

250 25 32    7 17    12 18

300 36 48    7 16    17 21

350 44 80    8 17    20 20

400 53 100    9 20    23 32

450 50 107    9 25    30 51
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as it is shown in the Table 3. One of the causes of this slowness is the use of Matlab language known 
by its slowness compared to other compiled languages such as C/C++. The speed of the algorithm 
can be increased considerably by choosing other languages like those used by other programs used 
in this comparison. Moreover, the runtime could be enhanced by using more specific local search.

Moreover, the performance is analyzed in terms of execution time and scalability in the case 
of the use of parallelism. Experiments are performed on datasets containing the eight test sets used 
previously and Mafft as an aligner.

In Table 5, we can see that the execution time can be reduced by increasing the cores number. This 
is because the alignment of clusters can be executed in an independent and a parallel way. Clusters can 
be aligned concurrently by using all processor cores. Since the performance of multi-core computer 
grows faster, results would be more encouraging and competitive.

The proposed algorithm has significantly improved the alignment quality. However, this method is 
time consuming. Since the parallel approach on a multicore CPU had no considerable improvement, the 
MapReduce approach executed on the Apache Spark platform is proposed and had a better execution 
time scoring. MapReduce was executed on a grid computing with 32 nodes, with Intel® Xeon® 
E5-2699A v4 CPU 2.60-3.00 GHz 55 MB Cache memory. Table 6 shows this gain from this release.

CONCLUSION

In this paper, a new strategy to tackle the MSA problem is developed based on the divide and conquer 
approach. The preliminary step consists to divide all the sequences into subsets and then align each 
subset with an aligner and at the end, create an MSA for all sequences. This strategy includes a new 
greedy method for clustering sequences based on local search algorithm. To measure the alignment 
quality produced by the proposed strategy, several benchmarks known in the field like as BAliBASE 
3.0, SABRE, OXM and Prefab are used. The results obtained indicate that the proposed approach is 
able to give good quality alignments with small increase in running time. To reduce the execution 
time, the distribution was proposed where the MapReduce model was used and showed a significant 
improvement. Besides, the proposed approach can provide an extensible platform for improving other 
alignment programs. Unfortunately, creating clusters without High Performance Computing can be a 
time consuming processing. To deal with this problem, it would be interesting to introduce a k-mer 
algorithm to compare sequences and a profile-profile alignment method to align clusters. On the basis 
of the promising findings presented in this paper, we work on the improvement of the execution time 
and the application of the proposed architecture for solving other bioinformatics problems.
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