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ABSTRACT

Previous studies demonstrate that online interactive relations can help improve users’ innovation 
outcomes, yet few studies have investigated how they influence user innovation. This paper builds a 
social network based on users’ online interactive relations in one virtual innovation platform (LEGO 
Ideas). It characterizes the online social network relations from both quantity and quality dimensions 
and examines their influencing paths on users’ innovation outcomes (i.e., emotional support and 
information flow). The empirical results show that both the quantity and quality of online relations 
impose positive effects on innovation, yet in different ways. The quantity of online relations could 
bring users more positive emotions, whereas the quality of online relations could bring them with 
more useful information and knowledge. By examining the influencing paths, this paper contributes 
to the literature on how online relations influence innovation outcomes as well as provides practical 
suggestions for innovation platforms.
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INTRODUCTION

With the rapid development of Web 2.0 in recent years, increasing numbers of enterprises have 
established their Internet-based platforms to attract customers’ contributions to enterprise innovation. 
A virtual innovation platform is a place where users can propose new product design or innovative 
ideas directly to a specific company (Hwang et al., 2019). For example, Dell Group established the 
IdeaStorm to collect users’ ideas and suggestions for improving product and production. Even the 
enterprises in developing countries, such as Haier Group in China, have also built the innovation 
platforms that which encourage domestic users to participate in their product innovation. For these 
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enterprise-initiated innovation platforms, stimulating users to produce more and better innovation 
ideas is the key to success and sustainability (Liang et al., 2016).

Many scholars have investigated on how to improve the users’ innovation outcomes from different 
perspectives, such as IT/IS design (Gharib et al., 2017; Islam & Rahman, 2017), the platform boundary 
and openness design (Balka et al., 2014; Liang et al., 2016), the incentives for user participation and 
contribution (Frey et al., 2011; Baldus et al., 2015; Hossain, 2017), and the leader users identification 
(Jeppesen & Laursen, 2009; Bulgurcu et al., 2018). Moreover, the popularity and usage of the social 
media in innovation platforms boosts a new perspective — the user interactions and relations (Kosonen 
et al., 2013; Hassan et al., 2019).

Many studies have shown that online interactive relations (e.g., friending or following others, 
voting or commenting on others’ ideas) among individuals can help to improve user innovation, such 
as extending the duration of users’ participation, contributing more knowledge (e.g., the reviews or 
comments) or ideas, and improving the quality of ideas (Blohm et al., 2011; Chen et al., 2012; Kosonen 
et al., 2013; Chan et al., 2015). Previous studies mostly investigate the online relations from quantity 
dimension (e.g., the number of followers/friends/commentators) (Wasko & Faraj, 2005; Trier, 2008; 
Chen et al., 2012). Yet some recent studies use social network analysis to characterize the online 
relations from multiple dimensions (e.g., direction, quantity, strength, etc.) and explore their impacts 
on user innovation (Chan et al., 2015; Hwang et al., 2019; Rishika & Ramaprasad, 2019). However, 
the literature has not demonstrated how these relations improve users’ innovation outcomes and the 
different roles for the relations’ multiple dimensions. It is necessary to explore the influencing path 
of social network relations on innovation outcomes under the context of virtual platforms. Only 
the influencing mechanism is figured out, the reasonable suggestions for platforms improving user 
innovation outcomes can be given.

According to social capital theory, one’s social relations enable individuals in a social network 
to access and exchange useful resources from others, which would have an effect on their innovation 
outcomes (Fowler & Christakis, 2010). Tsai and Ghoshal (1998) has confirmed that the resource 
exchange between departments in the intrafirm networks mediated the influence of social relations on 
departments’ innovation performance. Thus, tracking the users’ interactive behaviors and analyzing 
the contents of interactions shed the light on exploring the working mechanism of how users’ online 
relations influence innovation outcomes. Recently, researchers have started to use big data to analyze 
the unstructured content (e.g., texts, images) generated by online users (Sapountzi & Psannis, 2018). 
The common practices for the textual content analysis include keywords extraction (Stephen et al., 
2016), topic and event detection (Vavliakis et al., 2012; Panagiotou et al., 2016), and sentiment 
analysis (Poria et al., 2016; Yu et al., 2016). The textual content analysis is able to track and analyze 
the textual contents of user interaction in order to explore the influencing paths of users’ online 
relations on innovation outcomes.

In order to explore how users’ online relations influence innovation outcomes, this study analyzes 
online relations multi-dimensionally (i.e., quantity & quality) and investigates the influencing paths 
(i.e., emotional support & information flow) for each dimension. Apart from the quantity of online 
relations which is focused by previous studies, we argue that the role of the relations’ quality should 
also be further explored. The quality of online relations could dramatically influence the quality of 
resource exchange among users and their innovation outcomes, yet few previous studies have pointed 
this out. Taking the LEGO Ideas platform as a context, this study builds a social network based on 
2,043 users’ two-way follow-up connections, which generates the accurate measures of both the 
quantity and quality of online relations. Firstly, we separately test the effects of the quality of users’ 
relations in improving their innovation, controlling for the relations’ quantity. Secondly, through 
mining the text content of users’ interactions, we examine the mediation effects of emotional support 
& information flow for both the quantity and quality of online relations.

Through multiple regressions and the mediation test, we find both the quantity and quality of 
online relations have positive effects on innovation, yet in different ways. The increased number of 
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online relations could help users generate more positive emotions, while the quality of these relations 
could provide users with more useful information and knowledge. This study makes contributions 
in several ways. It offers complementary insights to previous studies by analyzing the relations on 
multiple dimensions (i.e., quantity & quality) and verifying the effect of relations’ quality on user 
innovation. Moreover, this study contributes to the user innovation literature by examining the 
influencing paths of how online relations affect users’ innovation, as well as the emotional support 
& information flow. This study also checks the difference in influencing paths between multiple 
dimensions (i.e., quantity & quality) of social relations. Besides, it also gives some suggestions for 
virtual innovation platforms to improve innovation performance.

The rest of the paper is structured as follows. The next sections describe the relevant literature 
and hypotheses development respectively. Section Methodology presents the data for empirical 
analysis, the social network for LEGO innovation platform, as well as the empirical strategy. Section 
Empirical Results details the results of the empirical analysis and robustness checks. Finally, this 
paper summaries the main conclusions, and presents the contributions and implications.

LITERATURE REVIEW

Social Capital Theory and Social Network Analysis
The social capital theory is the foundation for understanding the relationship between social networks 
and innovation outcomes (Tsai & Ghoshal, 1998). Lin (2002)—one of the representatives of social 
capital theory defines social capital as the valuable resource embedded in social networks, including 
both material resources (e.g., wealth) and symbolic resources (e.g., reputation, rights). These resources 
are possessed by others and can be borrowed or accessed by the focal individual through social 
relations. Individuals’ social capital can help them to achieve specific goals (e.g., innovation), by 
enabling them to access useful resources from connected others. The social capital theory proposes 
that the social relation network one embedded in reflect one’s social capital. Whether social capital 
can be created and mobilized depends on the reciprocal obligation in the society, that is, a social rule 
that the beneficiary who received resources would give back (Lin, 2002).

Meanwhile, the rise of social network analysis in recent decades provides the proper method 
to measure social capital and explore the effect of social network on individual performance. The 
social network analysis allows the social relationship and network to be measured and quantified 
(Wasserman & Faust, 1994). Generally, the social network analysis is used to measure the structural 
and the relational dimensions of one’s social capital. The structural dimension refers to individuals’ 
social network location (e.g., connectivity, centrality, structural hole), which determines whom the 
individual can interact with and provides the advantages for the individuals to control innovative 
resources, information, and knowledge (Nahapiet & Ghoshal, 1998). The closer to central or bridge 
position, the better innovation performance (Cross & Cummings, 2004; Tan et al., 2015). The 
relational dimension refers to assets that are rooted in the social relations, such as interpersonal trust 
and trustworthiness, feelings of closeness or interpersonal solidarity, which influences what kind 
of resources that are within people’s reach, and to what extent they could access them (Granovetter, 
1973). Social network scholars usually use tie strength to measure the relational dimension and study 
its effects on innovation performance (McFadyen & Cannella Jr., 2004; Chan et al., 2015).

Online Relations in Virtual Innovation Platforms
The virtual innovation platform provides an environment where innovators can interact freely. When 
the innovators with common interests and innovation intentions gather on one vitual platform, they 
are willing to make friends and interact with each other. Users can propose their innovative ideas on 
the platform, and others can browse them freely. One user can follow others when he/she is interested 
in or appreciates others’ proposals (e.g., innovative ideas or suggestions, designing plans), without 
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others’ permission, and also can be followed by others. Once the follow-up ties are created, users 
can easily track the activities and proposals of their connections when they login to the innovation 
platform. Besides, users also can communicate with others about the proposals, through following, 
voting, or commenting on others’ (Hwang et al., 2019). Thus, the interactive relations between users 
form the user social network.

The symmetry of follow-up relations results in three kinds of distinct ties — reciprocated, follower, 
and followee ties. Goes et al. (2014) focus on the ties of subscription, i.e., follower ties. They find 
that the one-way ties of following can affect users’ review writing behavior by simply providing 
attentive ears. Furthermore, Rishika and Ramaprasad (2019) explore the heterogeneous effects of all 
these three kinds of ties in one social media community. They show that reciprocated ties exert the 
greatest influence on users’ contribution behavior, followed by followee ties and then follower ties. 
Because the social influence varies across different types of ties. Several influencing mechanisms 
(e.g., information sharing, social learning, identity seeking, and reciprocity considerations) work 
simultaneously to facilitate a stronger influence over reciprocated ties.

In this study, we focus on reciprocated ties, i.e., the two-way follow-up connections between users. 
There are three reasons for this. First, if two users follow each other, it provides great convenience 
for them to track and interact with each other, share and exchange information freely through the 
Internet. Second, the two-way follow-up connections represent the existence of reciprocity. According 
to social capital theory, the reciprocal obligation is the cornerstone for accessing resource benefits 
in the social network. The two-way follow-up relations ensure the users’ reciprocal intentions of 
exchanging resource. Third, the study of Rishika and Ramaprasad (2019) has verified the importance 
of reciprocated ties on users’ behavior, which has greater influence than the one-way ties.

User Social Network Relations and Innovation Outcomes
Many researches have examined the positive effect of user social network relations on innovation 
outcomes, but mostly using a rough measure of these relations between innovators, such as the number 
of their online relations or interactions (e.g., “followers”, “friends”, “commentators”) (Wasko & 
Faraj, 2005; Trier, 2008; Chen et al., 2012). For example, Wasko and Faraj (2005) studied an online 
discussion forum and found that the individuals who have more direct social relations contribute more 
helpful knowledge. Similarly, Yang and Li (2016) examined the effect of social relations on knowledge 
outcomes (customer-generated content) and found that the number of social relations influences the 
knowledge outcomes, mediated by the norm of reciprocity and shared language.

A few recent studies start to explore the multi-dimensional online relations, mostly combined 
with social network analysis. For example, Chan et al. (2015) consider the users’ relations from three 
aspects — direction, size, and strength, and explore their impacts on users’ idea generation for each 
aspect. Rishika and Ramaprasad (2019) examine both the structural and relational properties of a 
user’s social network. They find the influence of online network ties on users’ contribution behaviors 
varies across reciprocated, follower, and followee ties, while tie strength among network ties amplify 
this influence. Hwang et al. (2019) study one specific dimension of user interaction – whether users 
interact with others on broad topic domains or not and find that generalists are more likely to create 
novel ideas than non-generalists. Though some studies have examined the online relations from some 
detail characteristics — the direction, size, strength, interaction broadness, etc., few investigated 
the quality aspect, which could also dramatically influence the quality of resource exchange among 
innovators and their innovation outcomes. Moreover, few studies demonstrate how online relations 
improve users’ innovation outcomes as well as the influencing paths. More detailed characteristics 
of online user social network relations and the mechanism of how they affect user innovation also 
need further exploration (Kane et al., 2014).
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HYPOTHESES DEVELOPMENT

Quantity and Quality of User Social Network Relations and Innovation Outcomes
Thanks to the availability of users’ interaction data on the innovation platform, the in-depth 
characterization of the online relations and user social network become possible. Therefore, this 
paper will investigate the user social network relations from both quantity and quality dimensions to 
construct explanatory factors for users’ innovative outcomes.

At first, as what the scholars did in the previous studies, we measure users’ social network 
relations from the quantity dimension. The online relations can bring users with identification and a 
bond to the virtual communities and platforms (Guo et al., 2017). When users identify with a group 
in terms of common goals and values and consider themselves an integral part of the group, they are 
likely to be active participants in the community (Tsai & Bagozzi, 2014). Many studies claim that 
the social relationship is one of the main factors in influencing an individual’s continuance usage 
and participation towards the ISs (e.g., innovation platform) (Huang et al., 2009; Lin & Lu, 2011; 
Sun et al., 2014). Thus, online relations can enhance the user’s participation and interactions with 
others. This would help users to share experience and information with each other and thus generate 
new creative ideas (Chiu et al., 2006). Chan et al. (2015) studied the users’ ideation behaviors in the 
crowdsourcing community and demonstrated the significant impacts of users’ online interactions on 
their subsequent ideas.

In the previous studies, there are two viewpoints on the relationships between quantity of social 
relations and innovation performance. Some scholars focus on the resource benefits (e.g., innovation 
knowledge, information, support) of the social relations and claim that the more relations would lead 
to better innovation performance (Tsai & Ghoshal, 1998; Cross & Cummings, 2004). However, some 
scholars demonstrate that the quantity of social relations and their performances show a curvilinear 
relationship (McFadyen & Cannella Jr., 2004; Zhou et al., 2009; Lechner et al., 2010). They argue that 
relationships require time, energy, and attention to establish and maintain, therefore there is a limit 
to the number of productive relationships that any given person can maintain (Zucker et al., 1995). 
The greater the number of social relations that an individual must maintain, the less the effort the 
individual can put into innovation. Moreover, when the number of relations becomes large enough and 
exceed the optimize level, individuals are likely to experience information overload and redundancy. 
Thus, an increasing number of relations eventually lead to less new knowledge creation.

However, the online relations are quite different from the offline social relations (e.g., the friends or 
working relationships) which the previous studies generally focused on. Firstly, online social relations 
are costless and relatively easy to build and maintain, which just requires individuals move the mouse 
a bit or type some words with the keyboard. In the social media era, individuals are often involved in 
a great number of many kinds of online relations. They can use social media tools either to maintain 
old relationships or to make new friends and relations (Williams, 2006). Due to the costlessness of 
online relations, the numbers of one’s social relations has been greatly expended. Secondly, the users 
have greater selectivity in establishing or cancelling online relations. Considering that the platforms 
can attracts users from all over the world, users can choose the individual who owns more diverse 
knowledge to interact with (Kane et al., 2014). A great number of online relations could not completely 
represent the information overload and redundancy. These features of online relations dramatically 
reduce the possibility of showing curvilinear relationship with user innovation performance. This 
paper proxy the quantity of a user’s social network relations by the number of reciprocated ties, i.e., 
the two-way follow-up connections between users. Thus, we propose the following hypothesis:

H1: On the virtual innovation platform, the quantity of users’ social network relations positively 
influences their innovation performance.
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Moreover, besides the quantity dimension, it is necessary to consider the relations from the quality 
dimension, which is often neglected by most stuides. Akcigit et al. (2018) have reported that the high-
quality interaction (cooperation with high-level innovators) in patent cooperation could improve the 
patent performance but the low-quality interaction (cooperation with low-level innovators) did the 
opposite. The quality of interactions can dramatically influence the quality of information sharing 
among innovators and their innovation outcomes.

For virtual innovation platforms, the quality dimension of online relations can also be identified 
by whether to interact with high-level innovators. We define a social tie connecting with a high-level 
innovator as a quality social tie, and otherwise as a common social tie. One way to know users’ 
innovation level is to evaluate their past innovation outcomes (Ernst & Brem, 2017; Pajo et al., 2017). 
For example, Dell’s innovation platform — IdeaStorm allows users to give positive or negative tags 
to any idea, then those users whose ideas get more positive tags are deemed the high-level ones 
(Chen et al., 2012). Additionally, some platforms provide the rankings of innovators to specify the 
high-level ones.

Generally, high-level innovators possess more valuable innovation resources like abundant 
explicit and tacit knowledge, so the quality social tie can convey them to the focal user and inspire 
the latter to generate better ideas. Besides, the individuals in the social network are more likely to 
be influenced by the connected ones to change their attitudes or behaviors (Kilduff & Tsai, 2003). 
The important members in the platform, who have high platform recognition (e.g., the proposals are 
appreciated or adopted by the platform) and high user recognition (e.g., a great number of followers), 
tend to have more power in social influence (Latané, 1981). Hence the ties connected with high-
level innovators can transfer a great sign and competition to produce better ideas to the focal user, 
which would strengthen the focal user’s intention and behavior to improve innovation performance. 
Moreover, the greater the number of quality social ties is, the greater the social influence would be. 
Then this paper characterizes the quality of a user’s social network relations by the share of quality 
social ties over the user’s total ties. Thus, we propose the following hypothesis:

H2: On the virtual innovation platform, the quality of users’ social network relations positively 
influences their innovation performance.

The Mediation Effects of Emotional Support and Information Flow
As one of the most important aspects of social capital, social relations enable individuals in the 
social networks to access and exchange useful resources from others. Tsai and Ghoshal (1998) study 
the social relations between the departments in the intrafirm network, and confirm that the resource 
exchange between departments mediates the influence of social relations on innovation outcomes of 
the focal department. The useful resources include information, product, personnel, and support from 
other departments. To find the influencing paths of how online relations enhance users’ innovation 
outcomes, it is necessary to examine whether and how online users exchange resources and what kind 
of resources. Through tracking and analyzing the content of users’ interactions, this paper proposes 
two main paths.

The first path is presumably emotional support. Through online interactions, users can give each 
other emotional support, e.g., encouragement and praise. This would intensify users’ identification 
to the virtual innovation platform. Obtaining recognition intrinsically motivates users to participate 
the community activities (e.g., proposing innovative ideas) (Baldus et al., 2015; Hossain, 2017). 
Meanwhile, the user’s recognition helps to create a virtual environment with cooperation and trust 
(Pai & Tsai, 2016). The previous research showed that recognition and trust from others may drive 
users to share more tacit knowledge and contribute more novel ideas (Becerra et al., 2008; Janowicz-
Panjaitan & Noorderhaven, 2009).
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Besides, encouragements from others would produce the user with positive emotions. According 
to the broaden-and-build theory of positive emotions, positive emotions can motivate individual to 
form a broaden mindset, which would promote individual to generate novel thinking patterns and 
creative actions (Fredrickson, 2004). Some studies have examined the emotion-creativity relationship 
and found that positive emotion can benefit creativity (Amabile et al., 2005; Choi et al., 2011), and 
consequently help to enhance individuals’ innovation outcomes (Yuan & Woodman, 2010). Thus, 
we propose the following mediation hypotheses:

H3: Emotional support mediates the effect of users’ social relations on their innovation performance.
H3a: The quantity of users’ social relations affects their innovation performance through the mediation 

of emotional support.
H3b: The quality of users’ social relations affects their innovation performance through the mediation 

of emotional support.

The second path is the information flow between users. The online innovators can share 
information and knowledge through interactions, such as comments and replies. Possession and 
dissemination of new information are key factors in determining a user’s desire to contribute, as 
users join online communities to obtain novel and interesting information (Zhu & Zhang, 2010). 
Through online interactions, the tacit knowledge embedded in innovators is externalized to the explicit 
knowledge. The sharing and exchange of knowledge and information between users would promote 
knowledge creation (Van den Hooff & de Leeuw van Weenen, 2004). Previous studies of innovation 
have shown that innovative ideas are often formed by rearranging or combining information and 
knowledge in new ways (Amar & Juneja, 2008; Kohn et al., 2011). Thus, the more information the 
users accesses, the more likely the user contributes to innovation outcomes. Additionally, users also 
can learn about the process and role of proposing innovation ideas in the innovation platform through 
interactions, which helps mitigate a focal user’s uncertainty associated with platform characteristics 
and increase the users’ willingness to contribute ideas (Rishika & Ramaprasad, 2019).

Moreover, some scholars pay attention to the novelty/redundancy of the information from 
social relations and their effects on innovation performance (Stephen et al., 2016). The more novelty 
information the users can access, the better their innovation performance. Generally, high-quality 
social ties tend to bring focal users more useful and novel knowledge and information, since the high-
level innovators have more valuable experience for producing better ideas. Overall, online relations 
can help users to acquire and learn more information, which would consequently improve innovative 
outcomes (Imran Muhammad, 2019). Thus, we propose the following mediation hypotheses:

H4: Information flow mediates the effect of users’ social relations on their innovation performance.
H4a: The quantity of users’ social relations affects their innovation performance through the mediation 

of information flow among users.
H4b: The quality of users’ social relations affects their innovation performance through the mediation 

of information flow among users.

METHODOLOGY

LEGO Ideas Platform and Data
We use the LEGO Ideas platform (URL: ideas.lego.com) as the research context to investigate the 
user social network. Formally established in April 2014, it is one of the most successful online 
innovation platforms, aiming to collect innovative ideas from global Lego fans. Registered users 
can submit their ideas of original blocks models, and then collect supports to be voted as the best 
ones for commercialization. Until the end of 2019, the platform has attracted more than one million 
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registered users, who contribute over thirty thousand original blocks models. And many blocks are 
commercialized and very popular with customers, such as WALL•E and LEGO Minecraft.

This paper chooses the users who submitted original ideas in 2017 as the research sample. All the 
data are crawled using Python program, including users’ interactive activities, users’ characteristics 
(i.e., users’ platform age, the number of the ideas submitted, users’ platform points and badges), and 
users’ ideas (i.e., idea description, images of the blocks model, the number of the supports, comments, 
and views). After deleting data with missing values, a data set of 2,043 users with 3,961 ideas is created.

User Social Network on LEGO Ideas Platform
We define a two-way follow-up connection between users as a tie to build users’ online social network. 
So, if two users follow each other, it provides great convenience for them to track and interact with 
each other through the LEGO platform or many other social media, since most of the users post their 
social media accounts (e.g., Linked-In, Facebook, Instagram) on their user pages. We then extract 
the “follow-up” items from users’ interactive activities in the crawled data and use the social network 
analysis tool — Python NetworkX package to build the network1.

The procedures of building the network are as follows. Firstly, building a network with 2,043 
sample users as the nodes and the follow-up connections between users as the edges. If user A follows 
user B, there will be a directed edge from node A to node B. Therefore, this original network is a 
directed multi-graph. Secondly, transforming the directed multi-graph into an undirected simple-
graph. We drop the self-loops and non-reciprocal edges and convert multi reciprocal edges between 
two users to one undirected edge. Third, visualizing the undirected simple-graph and showcasing 
the user social network (see Figure 1). In the figure, 634 nodes have one or more edges, while 1409 
nodes are isolated and mostly scattered in the outer circle. Moreover, the color of the node refers to 
the node degree — the total number of online relations built by the focal user.

The Empirical Models and Variables
This study focuses on the influence of social network relations on users’ innovation performance. 
Firstly, this paper tests the effects of the relations’ quantity and quality on innovation performance. 
The empirical models are specified as equation (1) and (2). Secondly, this paper respectively tests 
the mediation effects of emotional support and information flow when social network relations effect 
innovation performance:

Figure 1. The Visualization of User Social Network
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Y Ntie Cuser Cidea Time
ij i i ij ij ij
= + + + + +β β β β β ε

0 1 2 3 4
	 (1)

Y Ntie SQtie Cuser Cidea Time
ij i i i ij ij ij
= + + + + + +β β β β β β ε

0 1 2 3 4 5
	 (2)

In equation (1) and (2), Yij is the performance of the idea j submitted by the innovator i. Ntiei and 
SQtiei refer to the quantity and quality of users’ social network relations, respectively. The control 
variables include both the user characteristics (Cuseri) and idea characteristics (Cideaij). Additionally, 
we also include the time trend (Timeij) to control for unobservable time-varying factors.

Dependent Variable
Some studies use peer evaluation on the user innovation platform to measure users’ innovation 
performance. For example, Huang et al. (2014) use the number of votes for an idea as its performance 
measure. In the LEGO Ideas platform, better ideas tend to have more user supports. Thus, we measure 
the dependent variable of innovation performance (innovation) by the number of “support” votes for 
an idea, which should be a non-negative integer.

Main Independent Variables
We measure the quantity of user social network relations (Ntie) by the number of online social ties, 
which is also the user’s node degree in the user social network. We measure the quality of user social 
network relations (SQtie) by the share of quality ties over a user’s total social ties. To obtain quality 
ties, we first need to identify the high-level innovators. In the LEGO Ideas platform, the platform 
would award the “1K Badge” to the users with any idea receiving over 1,000 supports, who will 
be deemed as excellent innovators by the platform and users. Hence, we categorize users with “1K 
Badge” as high-level ones and otherwise as common ones. In practice, we use the Python NetworkX 
package to automatically count the number of quality ties and calculate its share.2

Mediation Variables
On the LEGO Ideas platform, users can post their comments about one idea on the innovators’ pages, 
which is the common interaction among users. We collect the comments texts for each idea, and employ 
the text mining technology (i.e., sentiment analysis and unique words extraction) to retrieve measures 
of two mediators — emotional support & information flow. For each idea, this paper analyzes all its 
comments texts. On the one hand, users will get active emotions from positive comments, hence we 
count “the number of positive comments” to measure the emotional support (emotion). On the other 
hand, users will obtain rich information from the comments’ texts. According to Stephen et al. (2016), 
we adopt “the number of unique useful words in all texts” to measure the information flow (infor). 
Table 1 describes the main measures for the two variables, as well as their alternative measures.

Control Variables
Following the work of Hossain and Islam (2015), we choose control variables from two aspects: user 
characteristics and idea characteristics. For user characteristics, we measure the user’s Innovative 
Experience by the number of ideas contributed by a user (Hwang et al., 2019). We proxy for the user’s 
Innovation Level with a binary indicator of whether the user is a high-level innovator. Moreover, we 
construct the Social Tendency to assess whether a user tends to actively help or share their knowledge 
with others, as withholding knowledge would negatively affects one’s creativity (Černe et al., 2014). In 
the LEGO Ideas platform, we retrieve the number of Socializer Badges owned by a user to gauge their 
Social Tendency. We also control for the user’s Platform Age (Li et al., 2016). For idea characteristics, 
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we control for Number of Images, Number of Idea’s Pageviews, and Idea Age, which are the common 
variables that may affect the supports of one idea (Li et al., 2016; Ma et al., 2019).

Given that the sample spans, which is a long period of 12 months from January 2017 to December 
2017, users’ innovation performance may be exposed to common unobservable time-varying shocks. 
Hence, we use the time to submit ideas (month) and the number of participants submitting ideas in 
the same month (num) to control for these time-varying factors (Hwang et al., 2019). Table 2 provides 
the descriptions of all variables, and Table 3 the summary statistics.

EMPIRICAL RESULTS

The Effects of Social Ties on Innovation Performance
Considering the dependent variable (innovation) is a count variable, Poisson regression is used. 
Since one user can submit multiple ideas, which might cause potential correlation of the disturbance 
terms across ideas for the same user, the robust standard error is clustered at users’ level (Cameron 
& Miller, 2015). The software Stata 14.0 is used for econometric analysis. To reduce possible noise, 
this study drops the observations with ideas submitted within the first five days after registration, 
because these ideas might be the result of other factors such as curiosity rather than being inspired 
by interactions with peers, which departs too much from the conjecture in this study. Table 4 displays 
the main results. This paper also reports the results for the full sample in Table A1 (see Appendix 
A), which shows similar results as those in Table 4.

In Table 4, model 1 shows a positive relationship with statistical significance between the number 
of social ties (Ntie) and innovation performance for one idea (β=0.008, p=0.015). Given the marginal 
effect, if a user has one more social tie, the supports for his/her ideas may increase by 1.634 on 
average. This is in line with other researchers, who also reported the positive effect of online social 
ties (Burke et al., 2011; Ellison et al., 2014). Thus, H1 is supported.

We further explore the effect of quality ties by adding the share of quality ties (SQtie) in model 
2. The result shows the coefficient for SQtie is significantly positive (β=0.797, p=0.003). Holding 
other factors constant, this means the user innovation performance would increase by 7.97% if the 
share of quality social ties increases by 1%. Thus, H2 is supported. This suggests the quality social 
ties can dramatically improve user innovation. Neglecting the quality of social ties may underestimate 
the effect of social relations on user innovation.

Robustness Checks
Other Specification of Regression Model
Other than the pooled regression in the main models of Table 4, this study also tries random effects 
estimations with both Poisson and OLS methods. The random effects estimation is usually used for 

Table 1. The Measure of Emotional Support and Information Flow

Variable Notation Main Measure Another Measure

emotional support emotion 1. Calculate the sentiment score for 
each comment using SentiStrength - 
one popular sentiment analysis tool 

(see Appendix A). 
2. Count the number of positive 

comments.

1. Calculate the sentiment score for each 
comment using SentiStrength. 

2. Sum the sentiment scores of all 
comments.

information 
flow

infor Count the number of unique useful 
words in the whole comments texts 

using Python (see Appendix B).

Count the number of the unique noun 
words in the whole comments texts 

using Python.



Journal of Global Information Management
Volume 29 • Issue 3 • May-June 2021

198

panel data analysis, but also can be used for the cluster sample as in this study (Wooldridge, 2009). 
The results of Table 5 show that the quality of social ties (SQtie) positively influence innovation 
performance, while the effect of the ties’ number on innovation performance becomes insignificant 
when adding SQtie in the regression. Therefore, this implies that though the innovation performance 
will increase with the number of social ties, what matters more is the increased quality of them.

Falsification Test
To check to which extent the result is driven by random factors, this paper follows Chetty et al. (2009) 
and conduct a falsification test. We randomly assign the quality of social ties (SQtie) to users to get 
a random sample and then run the main regression (Model 2 of Table 4). To increase the statistical 
power of the falsification test, we repeat this procedure 500 times and plot the distribution of the 
estimates in Figure 2.

The distribution of the “placebo” estimates from the random assignment sample is centered around 
zero with the mean of -0.0304 and the standard deviation of 0.4276, while the benchmark estimate 
stands on the far-right side of the distribution. This suggests that there is a huge difference between 
the estimates from the true sample and the random samples. By simple calculation, the probability 

Table 2. Description of Variables

Variable Notation Description and Formula

Dependent variable

Innovation performance innovation Number of supports one idea got

Main Independent Variables

Quantity of social network relations Ntie Number of two-way “follow-up” ties one user has

Quality of social network relations SQtie Share of the quality ties over all social ties 
SQtie=the number of quality ties/(Ntie+1) *

Mediation Variables

emotional support emotion Main measure: number of positive comments 
Another measure: the total sentiment score

information flow infor Main measure: number of unique useful words in texts 
Another measure: number of the unique noun words in texts

Control Variables

User characteristics

Innovative experience contributions Number of ideas the user-contributed in the past

Innovation level highluser highluser=1 if one user is a high-level innovative user;
highluser=0 if one user isn’t a high-level innovative user

Social tendency socializer Number of Socializer Badges one user got

Platform age user_age The user’s platform age (month)

Idea characteristics

No. of images images Number of images about the blocks model in idea page

No. of idea’s page views views Number of idea’s page views/1000

Idea Age idea_age Number of days one idea receiving supports

Time trend month time (month) to submit ideas

num number of participants submitting ideas at that month

*Because some users do not have social ties at all (Ntie=0), this paper sets the denominator to (Ntie+1).
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that the benchmark estimate could be gotten by the random sample is about 2.68 percent. As a result, 
the null hypothesis that the benchmark estimate of Model 2 of Table 4 is driven by the random sample 
can be rejected with a very low probability to make mistake. Altogether, these mean that the positive 
and significant coefficient for the quality of social relationships cannot be solely driven by random 
factors. This greatly reduces the concern of the omitted variables problem.

The Mediation Effects
This section checks the mechanism of how user social network relations influence innovation. We 
collect the comments text for each idea, and employ the text mining technology (i.e., sentiment 
analysis and unique words extraction) to retrieve two mediators — emotional support & information 
flow. Then, we use both stepwise regression (Baron & Kenny, 1986) and bootstrap method (Wood, 
2005) to test their mediation effects respectively.

The Mediation Effect of “Emotional Support”
Stepwise regression is generally adopted to test the mediation effect. Its general steps are: (1) test the 
effects of X on Y, (2) test the effect of X on the Mediator (the coefficient named by a), (3) test the 
effect of Mediator on Y with the control of X (the coefficient named by b). If both the coefficient 
a and b are statistically significant, so does the mediation effect (a*b), i.e., the mediation effect is 
verified. Given that both the quantity and quality of social ties (X) have significant effects on innovation 
performance (Y) in the previous part, then the (2) and (3) steps are completed.

Table 6 shows the OLS regression results for the two steps to test the mediation effect of 
“emotional support”. The results are sufficient to support the mediation effect no matter whether we 
use the main measure or alternative measure for emotion inspiration. Moreover, we also generate a 
bootstrap confidence interval for the mediation effect (a*b) with 1,000 bootstrap samples. Table 7 

Table 3. Summary Statistics

Variable Mean Standard Deviation Minimum Maximum

innovation 201.481 738.835 1 10,000

Ntie 6.168 14.822 0 134

SQtie 0.057 0.128 0 0.750

emotion(main) 18.898 27.332 1 463

emotion(another) 42.514 59.695 2 998

infor(main) 79.085 97.437 5 1137

infor(another) 31.769 42.214 2 528

contributions 10.677 17.620 1 140

highluser 0.083 0.276 0 1

socializer 2.962 13.251 0 169

user_age 18.375 15.350 1 75

images 8.991 6.773 1 91

views 3.125 20.801 0.003 1,000

idea_age 125.761 122.987 1 497

month 5.807 3.320 1 12

num 246.928 55.438 64 356

No. of Ideas 3,961
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Table 4. The Effect of Social Ties on Innovation Performance

Variable Model 1 Model 2

Coefficient Margin Coefficient Margin

Ntie 0.008** 1.634** 0.007** 1.433**

(0.003) (0.695) (0.003) (0.689)

SQtie 0.797*** 171.344***

(0.272) (59.767)

contributions -0.017*** -3.563*** -0.017*** -3.589***

(0.003) (0.832) (0.004) (0.849)

highluser 1.606*** 345.166*** 1.530*** 328.848***

(0.137) (41.118) (0.134) (38.816)

socializer 0.002 0.386 0.003 0.632

(0.005) (1.013) (0.005) (1.005)

user_age 0.007** 1.572** 0.008** 1.621**

(0.004) (0.786) (0.003) (0.782)

images 0.006 1.232 0.008** 1.670**

(0.004) (0.763) (0.004) (0.771)

views 0.006*** 1.307*** 0.006*** 1.317***

(0.001) (0.177) (0.001) (0.169)

idea_age 0.006*** 1.378*** 0.006*** 1.349***

(0.001) (0.128) (0.001) (0.126)

Constant 2.387*** 2.367***

(0.659) (0.632)

Time trend Controlled Controlled

No. of observations 3,409 3,409

No. of clusters/users 1,545 1,545

Notes: Robust standard errors clustered at the user level are reported in the parentheses. *** Significant at the 1% level; ** Significant at the 5% level; * 
Significant at the 10% level.

Table 5. The Result of Random Effects Estimate

Variable OLS OLS Poisson Poisson

Ntie 1.957* 1.395 0.004** 0.002

(1.131) (1.173) (0.002) (0.002)

SQtie 321.334** 0.778***

(153.334) (0.234)

Control variables Yes Yes Yes Yes

No. of observations 3,409 3,409 3,409 3,409

No. of users 1,545 1,545 1,545 1,545

Notes: Robust standard errors are reported in the parentheses. *** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% 
level.
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shows that the 95% Confidence Interval excludes 0, which also supports the mediation effect. Overall, 
results from stepwise regression and bootstrap method illustrate that the quantity (Ntie) and quality 
(SQtie) of social ties influence innovation outcomes through the path of emotional support. Thus, 
H3a and H3b get supported.

The Mediation Effect of “Information Flow”
Table 8 and Table 9 replicate the results in Table 6 and Table 7 for the mediation effect of information 
flow, respectively. The results illustrate that the quality of social ties (SQtie) dramatically influences 
innovation outcome through the path of information flow, while the ties’ quantity (Ntie) exerts tiny 
or even no significant influence. The number of social ties fails to induce more useful innovative 
information with the presence of the share of quality social ties. Thus, the evidence is sufficient to 
support H4b but not H4a. This means that insightful information to generate a good idea comes 
mostly from quality ties, i.e., high-level innovators.

DISCUSSION

To explore how online social network relations influence users’ innovation outcomes, this paper crawls 
the public data of users’ interactions on the LEGO Ideas platform to build the user social network. 
Through Possion regression, this paper firstly checks the impact of social network relation on user 
innovation from both quantity and quality dimensions. Secondly, this paper tests the mediation effects 
of emotional support & information flow. Two main findings are verified.

Firstly, apart from the quantity of social ties, the quality of social ties can also significantly 
influence the user innovation performance. This study pays more attention to the quality perspective 
of users’ online relations, i.e., the interactions with high-lever innovators, which is often neglected 
by previous studies. The empirical results show that the quality of users’ social ties can dramatically 

Figure 2. Distribution of Estimated “Social Ties Quality” Coefficients of Falsification Test (Note: The figure shows the probability 
density distribution of the estimated coefficients, which are from 500 simulations randomly assigning the quality of social 
relationships to users. The vertical line presents the coefficients of Model 2 of Table 4.)
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induce a positive effect on user innovation when controlling the total number of social ties. And two 
robustness checks provide more evidence for this effect.

Secondly, users’ social network relations influence user innovation through both the paths of 
emotional support & information flow. On the one hand, the emotional support from others can 
stimulate them to enhance their innovation aspiration. More online social relations or with higher 
quality often bring more emotional support for users. On the other hand, the information shared from 
other users can also help them to improve their innovative outcomes. The empirical results show that 
the quality of social relations, rather than the quantity, depends the usefulness of information flow from 
others. This implies valuable information comes mostly from the ties with high-level innovators. The 
transmission of innovative knowledge from high-level users to the focal user is essential to optimize 
the total outcome on the online platform.

CONTRIBUTIONS AND IMPLICATIONS

This study provides contribution in several aspects. First, it offers complementary insights to 
previous studies on the effects of users’ social relations on innovation (e.g., Wasko & Faraj, 2005; 

Table 6. The Mediation Effect of Emotional Support

Variable Main Measure for emotion Another Measure for emotion

Step 2 
X->Med

Step3 
X+Med->Y

Step 2 
X->Med

Step3 
X+Med->Y

Ntie 0.092** -0.269 0.198** -0.234

(0.041) (0.699) (0.093) (0.709)

SQtie 11.390* 90.777 26.648* 74.883

(6.030) (81.304) (13.607) (80.118)

emotion 19.705*** 9.019***

(2.269) (0.986)

Control variables Yes Yes Yes Yes

No. of observations 3,409 3,409 3,409 3,409

No. of clusters/users 1,545 1,545 1,545 1,545

R-squared 0.534 0.836 0.535 0.834

Notes: Robust standard errors clustered at the user level are reported in the parentheses. *** Significant at the 1% level; ** Significant at the 5% level; * 
Significant at the 10% level.

Table 7. Bootstrap Confidence Interval for the Mediation of Emotional Support

Mediation Model Bootstrap 
Coefficient(a*b)

Bootstrap 
SD z p>|z| 95% Confidence 

Interval

Main 
measure 

for 
emotion

Ntie→emotion→innovation 1.818 0.679 2.68 0.007 (0.487, 3.148)

SQtie→emotion→innovation 224.433 106.525 2.11 0.035 (15.649, 
433.218)

Another 
measure 

for 
emotion

Ntie→emotion→innovation 1.783 0.694 2.57 0.010 (0.423, 3.142)

SQtie→emotion→innovation 240.327 110.320 2.18 0.029 (24.104, 
456.551)
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Trier, 2008; Chen et al., 2012). Specially, we build the social network to measure the users’ online 
relations multi-dimensionally (i.e., quantity & quality). Apart from the quantity of social network 
relations, we identify another important dimension of these relations in the virtual innovation platform 
– the quality. Moreover, the quantity and quality of social network relations play different roles in 
influencing user innovation outcomes. This gives theoretical evidence of considering the quality of 
social relations to future studies.

Second, this paper examines two paths of how social network relations influence user innovation 
performance (i.e., emotional support & information flow). Through analyzing the users’ interaction 
content (i.e., the textual comments), we find two kinds of useful resources in user interaction —
emotional support and useful information, which mediate the effects of online relations on user 
innovation. We also compare the difference of influencing paths between the quantity and quality of 
social network relations. It finds that both the quantity and quality of social network relations could 
help users gain more positive emotions, while only these relations’ quality could facilitate the inflow 
of more useful information and knowledge. Many studies claimed that users’ online relations can 
improve their innovation by bringing diverse and useful information through interaction (e.g., Chan 
et al., 2015; Imran Muhammad, 2019). This study extends this literature and finds what actually bring 
useful information is the quality ties.

Table 8. The Mediation Effect of Information Flow

Variable       Main Measure for infor      Another Measure for infor

Step 2 
X->Med

Step3 
X+Med->Y

Step 2 
X->Med

Step3 
X+Med->Y

Ntie 0.196 0.496 0.093* 0.404

(0.124) (0.804) (0.056) (0.771)

SQtie 38.970** 105.931 17.991** 93.362

(17.765) (100.696) (7.818) (99.231)

infor 5.370*** 12.331***

(0.657) (1.522)

Control variables Yes Yes Yes Yes

No. of observations 3,409 3,409 3,409 3,409

No. of clusters/users 1,545 1,545 1,545 1,545

R-squared 0.610 0.786 0.591 0.795

Notes: Robust standard errors clustered at the user level are reported in the parentheses. *** Significant at the 1% level; ** Significant at the 5% level; * 
Significant at the 10% level.

Table 9. Bootstrap Confidence Interval for the Mediation of Information Flow

Mediation Model Bootstrap 
Coefficient(a*b)

Bootstrap 
SD z p>|z| 95% Confidence 

Interval

Main 
measure for 

infor

Ntie→infor→innovation 1.052 0.559 1.88 0.070 (-0.0423, 2.147)

SQtie→infor→innovation 209.280 92.224 2.27 0.023 (28.524, 
390.036)

Another 
measure for 

infor

Ntie→infor→innovation 1.145 0.584 1.96 0.050 (0.001, 2.289)

SQtie→infor→innovation 221.849 94.758 2.34 0.019 (36.125, 
407.571)
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Additionally, this paper also proposes the practical implications for virtual innovation platforms 
to improve their innovation performance. For these platforms, a useful method to bring more better 
ideas is to enhance the interactions between users. For example, platforms can design more intriguing 
social interaction schemes (e.g., the use of Emoji, instant messenger) to enhance the emotional support 
and stimulate knowledge sharing among users (e.g., the comments and replies attached to one idea, 
innovation experiences sharing in videos). Besides, platforms should stimulate more relations and 
interactions between excellent innovators and others, which would facilitate the transfer of valuable 
innovation to more users. For example, platforms can formulate incentive policies to reward high-
level innovators who actively interact with others.

CONCLUSION

To summarize, this study investigates how online users’ social network relations improve innovation 
outcomes in the context of virtual innovation platforms. We find that both the quantity and the quality 
of the online relations have significant effects on user innovation but in different ways. The increased 
number of online relations brings the users more positive emotions, while the quality social relations 
bring them more useful information and knowledge. In short, more and better online interactive 
relations induce better user innovation performance. This paper has, of course, its own limitation. 
Our analysis involves only one user innovation platform of the LEGO Ideas, and the collected data 
is essentially cross-sectional. It is a good starting point, yet more work needs to be done in other 
contextualized user innovation platforms. Moreover, the current framework can also be extended 
to test the dynamic effects of user social network on innovation outcomes over time, if the virtual 
platforms allow the collection of panel data.
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APPENDIX A

The Method of Sentiment Score Calculation
This study uses SentiStrength to calculate the sentiment score for each comment text and determine 
whether it is a positive comment. SentiStrength is a lexicon-based classifier that uses additional (non-
lexical) linguistic information and rules to detect the sentiment strength in short informal English 
text (Thelwall et al., 2012). Academic researchers can get the free version from http://sentistrength.
wlv.ac.uk.

Even short texts can contain both positive and negative sentiments. For each text, the SentiStrength 
output is two integers: 1 to 5 for positive sentiment strength and a separate score of 1 to 5 for negative 
sentiment strength. Here, 1 signifies no sentiment and 5 signifies strong sentiment of each type. For 
instance, a text with a score of 3, 5 would contain moderate positive sentiment and strong negative 
sentiment. Then we calculate the overall sentiment score for each comment text, shown as Eq. (3):

sentiscore positivescore negativescore
i i i
= − 	 (3)

If sentiscorei>0, the ith comment expresses a positive emotion; if sentiscorei<0, the ith comment 
expresses a negative emotion; if sentiscorei=0, the ith comment expresses a natural attitude.

APPENDIX B
The Process of Extracting Unique Useful Words
This study uses Python’s NLTK package to extract unique useful words from comment texts. To 
illustrate each step we implement, the outputs of the steps are shown in the following two-column 
table on this example comment: If you could upload a new and improved version where it’s connecting 
to something on the bottom so they don’t go sliding around? Either way this is so cool to me because 
I love Subnautica.

Table 10. The Process of Extracting Unique Useful Words for Comment Texts

Steps Outputs for Example Comment
1. Run a Python script invoking the 

NLTK algorithm to perform sentence 
segmentation.

“If you could upload a new and improved version where it’s connecting to 
something on the bottom so they don’t go sliding around?” 

“Either way this is so cool to me because I love Subnautica.”

2. Remove punctuation and take 
word segmentation.

‘If’, ‘you’, ‘could’, ‘upload’, ‘a’, ‘new’, ‘and’, ‘improved’, ‘version’, ‘where’, ‘it’, 
‘s’, ‘connecting’, ‘to’, ‘something’, ‘on’, ‘the’, ‘bottom’, ‘so’, ‘they’, ‘don’, ‘t’, ‘go’, 

‘sliding’, ‘around’ 
‘Either’, ‘way’, ‘this’, ‘is’, ‘so’, ‘cool’, ‘to’, ‘me’, ‘because’, ‘I’, ‘love’, ‘Subnautica’

3. Remove stopwords (meaningless 
words) according to the Stopword 

dictionary.

‘could’, ‘upload’, ‘new’, ‘improved’, ‘version’, ‘connecting’, ‘something’, 
‘bottom’, ‘go’, ‘sliding’, ‘around’ 

‘either’, ‘way’, ‘cool’, ‘love’, ‘Subnautica’

4. Stem extractions, removing the 
affix to get the root of a word.

‘could’, ‘upload’, ‘new’, ‘improv’, ‘version’, ‘connect’, ‘someth’, ‘bottom’, ‘go’, 
‘slide’, ‘around’ 

‘either’, ‘way’, ‘cool’, ‘love’, ‘Subnautica’

5. Remove duplicates. ‘could’, ‘upload’, ‘new’, ‘improv’, ‘version’, ‘connect’, ‘someth’, ‘bottom’, ‘go’, 
‘slide’, ‘around’, ‘either’, ‘way’, ‘cool’, ‘love’, ‘Subnautica’

Note: When only extracting the unique noun words, add one step of tagging words and keeping nouns between the step 3 and 4, the final output of 
unique noun words is “‘version’, ‘someth’, ‘way’, ‘love’, ‘Subnautica’”.
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APPENDIX C

Table 11. The Effect of Social Ties on Innovation Performance for Full Sample

Variable Model 1 Model 2

Coefficient Margin Coefficient Margin

Ntie 0.008** 1.516** 0.007** 1.326**

(0.003) (0.640) (0.003) (0.635)

SQtie 0.743*** 149.651***

(0.266) (54.480)

contributions -0.017*** -3.451*** -0.017*** -3.488***

(0.003) (0.787) (0.004) (0.805)

highluser 1.665*** 335.412*** 1.596*** 321.527***

(0.144) (40.112) (0.144) (38.601)

socializer 0.002 0.306 0.003 0.532

(0.005) (0.947) (0.005) (0.941)

user_age 0.007** 1.404** 0.007** 1.417**

(0.003) (0.698) (0.003) (0.696)

images 0.007* 1.311* 0.008** 1.657**

(0.003) (0.688) (0.003) (0.692)

views 0.006*** 1.198*** 0.006*** 1.206***

(0.001) (0.169) (0.001) (0.162)

idea_age 0.006*** 1.230*** 0.006*** 1.203***

(0.001) (0.121) (0.001) (0.119)

Constant 2.463*** 2.466***

(0.603) (0.575)

Time trend Controlled Controlled

No. of observations 3,961 3,961

Notes: Robust standard errors clustered at the user level are reported in the parentheses. *** Significant at the 1% level; ** Significant at the 5% level; * 
Significant at the 10% level.
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