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ABSTRACT

A voluminous amount of data is generated because of the inexorably widespread proliferation of 
electronic data maintained using the electronic health records (EHRs). Medical health facilities have 
great potential to discern patterns from this data and utilize them in diagnosing specific diseases or 
predicting the outbreak of an epidemic. This discerning of patterns might reveal sensitive information 
about individuals, and this information is vulnerable to misuse. This is, however, a challenging task 
to share such sensitive data as it compromises the privacy of patients. In this paper, a random forest-
based distributed data mining approach is proposed. Performance of the proposed model is evaluated 
using accuracy, f-measure, and κappa statistics analyses. Experimental results reveal that the proposed 
model is efficient and scalable enough in both performance and accuracy within the imbalanced data 
and also in maintaining the privacy by sharing only useful healthcare knowledge in the form of local 
models without revealing and sharing sensitive data.
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Decentralized Data Mining, F-Measure, Healthcare, Horizontally Partitioned Data, Privacy Preserving, Random 
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1. INTRoDUCTIoN

The age of big data has empowered several relations to gather extensive volumes of information. In 
many real world applications data required for crucial data mining tasks is distributed among several 
parties. To find useful patterns from the data and discover knowledge that can’t be mined from the data 
of single party, these parties must share data. It is unfeasible to centralize the data from participating 
parties due to huge communication costs, computation costs, central storage requirements, security 
and most importantly privacy concerns. To overcome the drawbacks of centralized system, efficient 
global models can be constructed from collaborative participants. But this collaborative participation 
is challenging due to the privacy concerns of participants, as sharing of data among the participants 
is required. Thus, various distributed data mining algorithms have been proposed in literature to 
mine different patterns extracted from data shared among different participants without revealing 
the original data.

Data shared among different participants may have the same attributes at each participant 
location; such data is said to be horizontally partitioned. For example, medical data of patients who 
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suffer from a common disease will have the same attributes maintained with each medical facility. 
On the other hand, data belonging to a specific entity may be shared among different participants 
such that different participants store different attributes of the same entity. Such data is said to be 
vertically partitioned data. For example, medical data of a patient may be stored by a medical facility 
whereas data regarding medical bill data, health cover information, etc. of the same patient may 
be stored by an insurance company. Various distributed privacy preserving approaches based on 
different machine learning algorithms to mine horizontally and vertically partitioned data have been 
proposed in the literature. One such approach is to perform local data mining at different participant 
locations in parallel to produce local data models and keep the disjoint datasets to their respective 
locations. These local models are then transmitted to a central site that combines them into a global 
model (Myneni and Patel (1999), Chawlaet al. (2004), Tsoumakas (2003)). The second approach is 
that, from each local site original data is sub-sampled and then accumulated at a central site to form 
a global subset (Chawlaet al. (2004)). Another approach is to introduce perturbation in local data of 
participants with the help of a third-party coordinator in order to preserve the privacy of data. The 
perturbed data from each participant can then be published in the form of a centralized database to 
perform different data mining tasks as done by Sheela and Vijayalakshmi (2017). Distributed data 
mining algorithms that work in a fully decentralized manner have also been proposed in literature. 
The participants involved, mine shared data by using message passing mechanism. Such algorithms 
are characterized by the distribution of data on each participant site and asynchronous communication 
so as to enable learning from participants that aren’t available at a given time. Such algorithms should 
also be scalable so as to work with more participants and therefore more data which may be added 
to the system at a later time. An important consideration while using decentralized distributed data 
mining algorithms is to preserve the privacy of data local to each participant. There are potential 
weaknesses in above mentioned techniques that may put the privacy of the data at risk. Moreover, 
different privacy preserving methods used in these techniques have certain limitations discussed in 
Hassan et al. (2017).

Privacy in distributed data mining systems becomes a critical issue when sensitive data like health 
data of patients is involved. Maintaining the confidentiality and privacy of information regarding a 
patient’s healthcare data is a very difficult task(Bisui and Misra(2019)).Privacy concerns hamper the 
transferring as well as sharing of sensitive data. Many healthcare facilities have adopted electronic 
health records (EHR) to store and maintain patient data in order to enhance the quality of healthcare 
service delivery. There is a huge potential to enhance healthcare services further and make predictions 
about diseases, diagnostics and medications more accurate if systems are designed that are capable of 
integrating different healthcare facilities so that the data maintained by these facilities is accessible for 
data mining. However, one of the main obstacles in using distributed health data for disease detection 
is patients’ privacy as the EHR may contain patient information about demographics, diagnostics, 
medications and other health related information. If such data is not properly utilized, it could put 
the privacy of patients at risk. To protect individual privacy, government agencies, e.g.; HIIPA of 
United States and ECHR of European Union, have endorsed many laws to protect an individuals’ 
privacy. The basic requirements for security and privacy in Indian healthcare system are provided in 
the standard “ISO/TS 14441:2013 Health Informatics Security and Privacy Requirements of EHR 
Systems for Use in Conformity Assessment”. A law has been proposed by India’s Ministry of Health 
to govern data security in healthcare sector that would give individuals complete ownership of their 
health data. On March 11, 2018, the draft of digital information security in healthcare Act was 
proposed by the Ministry of India. To preserve the privacy of patients, EHR must abide these rules 
and must be certified by certain institutes like Certification Commission for Healthcare Information 
Technology (CCHIT), Office of the National Coordination for Health Information Technology (ONC) 
and Ministry of Health and Family Welfare, Government of India.

The problem definition of the work that is being developed in this paper is as follows: The 
healthcare facilities are rapidly adapting the electronic health records because of the potential 
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benefits they seem to offer but there are many obstacles that hamper their effective use. Firstly, the 
electronic health records contain the private and sensitive data of the patient, and as such sharing of 
such data will result in revealing of patient privacy. Secondly the lack of sufficient patient records 
in a newly established healthcare facility will affect the development of a robust decision making 
system. In order to receive maximum benefit of electronic health records, a distributed data mining 
approach is required but there are many challenges that need to be dealt with. In the distributed data 
mining environment all the healthcare facilities develop a local model. Most of the distributed data 
mining models need a third party to revise and aggregate the local models to construct the integrated 
final model. This leads to an extra cost in model implementation and each participator must have 
frequent contact with the central third party, As such a significant portion of the time is spent on the 
communication between the participators rather than the actual computation itself.

To deal with these challenges, we propose a privacy preserving random forest classification 
on horizontally portioned data such that each party need not disclose its data to other parties while 
acquiring the same accuracy as when the data is centralized. In this work, an ensemble model is 
formed by a set of more basic models (decision trees) and the prediction of new instance is computed 
by merging together the basic predictions at the local participator site. The local participators share 
their local models to obtain the final integrated model for better prediction performance without 
revealing any sensitive information.

The contributions of this research can be summarized as follows:

• In the beginning, we examine how the medical research can be enhanced by the distributed data 
mining on horizontally partitioned healthcare data and simultaneously how privacy of patients 
can be preserved.

• Propose a random forest-based approach for decentralized health data mining to diagnose different 
diseases under privacy constraints.

• We scrutinize the proposed scheme with cardiotocography dataset (CTG) and Thyroid disease 
dataset (TDD) available at UCI machine learning repository. The analysis of results shows that 
accuracy of the integrated model is better than the accuracy of the individual local models.

The rest of the paper is organized as follows: In section 2, we provide important relevant works 
on privacy preserving data mining. In section 3 we propose our decentralized random forest based 
approach to diagnose different diseases. Section 4 illustrates dataset details and results. Finally section 
5 concludes our discussion with some future research directions.

2. LITERATURE REVIEw

Various data mining techniques have been proposed in literature to identify and extract the useful 
knowledge and patterns from massive amounts of data. For example, different healthcare facilities 
would like to analyze the health records via data mining techniques to identify patterns of some 
diseases. But the data from which the useful knowledge is mined may also contain sensitive information 
and the mining of this data may become threat to privacy of the patients.Various prediction models 
have been proposed to predict different diseases that can be deployed in different healthcare facilities 
(Saliet al. (2016), Menget

al. (2018), Ahnet al. (2018)). Although, these models lack scalability because of privacy constraints 
and must be implemented at a local level, with suitable modifications they may be extended to take 
advantages of distributed data mining. In order to achieve distributed data mining of such sensitive 
data, different privacy preserving data mining techniques that deals with protecting the privacy of 
sensitive data without sacrificing the utility of data have been proposed. Different privacy preserving 
data mining techniques have been proposed in literature that include randomization, k-anonymization 
and distributed privacy preserving data mining (Agarwal and Yu (2008)) to ensure the privacy of 
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sensitive data. The randomization method is a privacy preserving data mining technique in which 
the original records are perturbed for concealing certain sensitive information. The techniques used 
for perturbation in randomization technique include additive perturbation (Agarwal and Agarwal 
(2001)), multiplicative perturbation (Samarati (2001)), data swapping (Fienberg and McIntyre 
(2004)), principal component based analysis (Huang et al. (2005)) etc. The problem of linking 
may arise due to some publicly available data which may reveal the hidden sensitive information in 
processed records and hence the privacy will be compromised. For example, in healthcare applications, 
sensitive information about any individual can be revealed by any publicly available voter data, so 
randomization is inadequate to protect the health data. It is estimated that 87% of the population in 
the United States can be uniquely identified using the seemingly innocuous attributes of gender, date 
of birth, and 5-digit zip code. This possibility of indirect de-identification of records from public 
databases has lead to the development of k-anonymity model (Samarati (2001)). With the help of 
two commonly used anonymization operations i.e. generalization and suppression (Samarati and 
Sweeney (1998)), individually identifiable information is reduced sufficiently that any given record 
can be indistinguishably backtracked to at least k other records. The k-anonymity procedure protects 
identity disclosure, but it does not protect attribute disclosure sufficiently (Machanavajjhalaet al. 
(2006)). Homogeneity attack and background knowledge attack will allow an attacker to identify 
the individual records. To protect against these attacks, Machanavajjhalaet al. (2006) introduced 
l-diversity as a stronger notion of privacy. The l-diversity principle ensures l well represented values 
for sensitive attributes in every equivalence class. If every equivalence class is l diverse, then a table 
is said to be l-diverse. Although, the l-diversity principle protects against attribute disclosure, but it 
may be difficult to achieve. The attacks like skewness attack and similarity attack makes l-diversity 
principle insufficient to prevent attribute disclosure. To overcome the limitations of l-diversity, Li et 
al. (2007) proposed a novel privacy notion called t-closeness, which requires that the distribution of a 
sensitive attribute in any equivalence class is close to the distribution of attribute in the overall table.
The third category is distributed privacy preservation that allows computation of useful cumulative 
statistics over the whole data without compromising the privacy of individual dataset within multiple 
parties. Thus, for obtaining the cumulative statistics, the data sets can be horizontally or vertically 
partitioned. In this work, data set is horizontally partitioned and this patient data is available at multiple 
healthcare facilities with each record having same set of attributes.

Lindell and Pinkas (2000) presented an important research in which the decision tree using 
ID3 algorithm is extended to two parties without having to reveal any sensitive data in the process. 
Subsequently, a variety of approaches have been proposed to solve the problem of horizontally 
partitioned privacy preserving data mining, for example, Naïve Bayes Classifier (Kantarcıogluet al. 
(2003)), SVM classifier(Yu et al. (2006)) and ensemble based classifiers, association rule mining on 
horizontally partitioned data (Evfimievskiet al. (2004)) and ensemble based classifiers. Ensemble 
methods are considered the most influential development in machine learning and data mining 
among all the above mentioned methods. Ensemble methods merge multiple models into one model 
that is more accurate than the rest of its components. Ensemble methods also provide a boost to 
real world application challenges from investment timing to drug discovery, and fraud detection 
to recommendation systems – where predictive accuracy is more vital than model interpretability. 
Ensemble methods have also been observed to show good performance in preserving privacy. Gambset 
al. (2007) proposed BiBoost and MultiBoost privacy preserving algorithm that allows two or more 
participants to construct a boosting classifier without explicitly sharing their data set. Each entity 
obtains a weak classifier from its own data and thus ensures local data privacy. Different models 
including decision trees, logistic regression and neural network models have also been proposed for 
health data mining (Hassan et al. (2017)). Evfimievski et al. (2004) use neural network ensembles to 
obtain strong classifier from weak classifiers. Privacy preserving distributed algorithm for training 
neural network ensembles is designed using AdaBoost.Kou et al. (2004) use data separation techniques 
to preserve privacy in classification of medical data. To protect the privacy of data, both horizontal 



International Journal of E-Health and Medical Communications
Volume 12 • Issue 6 • November-December 2021

5

and vertical, portioning approaches are used to mine the data at multiple sites. Distributed results are 
assembled at central trusted party using a majority vote ensemble method.Bialyet al. (2016) developed 
an intelligent decision support system for heart disease diagnosis using an ensemble model (Bagging, 
Boosting and stacking) based on six classifiers; Naive Bayes, Bayesian Net, Multilayer perceptron 
(MLP), Sequential Minimal Optimization for Support Vector Machine, C4.5 Decision Tree and Fast 
Decision Tree, in order to select the best combination for the heart disease prediction. Outliers and 
extreme values were removed using the Inter-quartile range to enhance the performance of the model.
Bashiret al. (2014) proposed an ensemble classifier for the classification and prediction of heart 
disease data. Five classifiers; Naive Bayes, decision tree based on Gini Index, decision tree based 
on information gain, memory-based learner and support vector machine are used for construction of 
an ensemble classifier. Five data sets from different repositories have been used for testing.Cheonet 
al. (2018) proposed a new method called ensemble GD for logistic regression, which reduces the 
number of iterations of GD and results in substantial improvement on the performance of logistic 
regression based on HE in terms of speed and memory.Sheela and Vijayalakshmi (2017) proposed a 
way to perturb the individual data over vertically partitioned data set with a third party coordinator. 
Each participant perturb their data by finding the mean until the threshold value is reached and then 
the perturbed data is published by each participant to perform requisite data mining.

Techniques discussed above achieve the distributed data mining requirements; however there 
are many problems that need to be addressed. All the participants rely on a central agent, usually 
owned by a third party. Participants share their local models or representational data sets to revise and 
integrate them into final collaborative models. Such a model implementation usually incurs additional 
costs. Participants need to communicate frequently with the central agent and this communication 
is a pure overhead and no productive computation is done during this time. A more severe problem 
with these techniques involve their inability to adapt; whenever a new participant is added or when 
the model requirements change, whole model needs to be learned again. Many techniques rely on 
privacy preserving techniques to anonymize data before sharing, but anonymization is not enough 
to protect the data completely. Anonymized data may come under different attacks and put privacy 
of subjects at risk.Random forests are ensemble learners and make use of decision trees as weak 
learners. Random forests are particularly advantageous in terms of interpretability compared to neural 
networks. Because of their comprehensible learning mechanism, random forests are preferable for 
applications like investigating patient data and suggesting medical treatment. This paper presents a 
random forest based distributed data mining technique for mining horizontally partitioned data under 
privacy constraints that addresses the above mentioned challenges by making all participants to train 
local models from the respective local data in a standalone manner.

3. PRoPoSED METHoD

In the proposed system, n parties collaborate to facilitate data mining in a distributed manner by 
sharing random forest based-local models trained on their local data in a decentralized manner. A 
party Pi learns its own model and receives models from n – 1 parties to integrate them into the final 
integrated model. The symbols and their meaning used in the proposed method are given in Table 1. 
Framework of the proposed system is described below.

3.1 Local Parties and Local Datasets
Let P = {P1, P2, …,Pn} denote the set of n parties; each party Pi is in possession of alocal data set 
Di gathered from real applications over time. Local data set of each partycontains certain amount of 
sensitive data and direct sharing of this data isn’t feasible forprivacy reasons.Each local data set Di 
of party Pi can be represented as shown in eq. (1).
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In case of binary classification, v Cj
i � � � �{ , }1 1  is the label for each instance and used to 

train the ensemble learner. In case of multiclass classification, v Cj
i � �{ , , ,...}1 2 3  is the label for 

each instance.

Table 1. List of Notations used in this paper.

Symbol Meaning

  n Number of participating parties

  Pi ith party, where 1 ≤ i ≤ n

  P P is the set of all participating parties

  Di Dataset owned by party Pi

U j
i

jth data instance in dataset Di

  m Number of attributes in each instance

v j
i

Class label of U j
i

  C Set of class labels

  t Number of trees in the Random Forest

  RFi Random forest based local model belonging to party Pi

  αi Classification accuracy achieved using local model RFi

  ni Training sample size used to train RFi

  ηi Normalized training sample size

DTl
i

lth weak learner (decision tree) belonging to RFi

  VC Vector used to store number of votes obtained by each class label using local model

  VGC Vector used to store number of votes obtained by each class label using integrated model

  ζj Integrated model belonging to pj

  X Test instance

  κ Cohen’s kappa coefficient
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3.2 Local Model
Each party creates a local bootstrapped data set with replacement. The data set Di with m attributes 
owned by party Pi, a subset of attributes, typically equal to sqrt(m), is chosen randomly at each step 
of the decision tree construction. Attribute that is better at separating the sample is selected at this 
step and excluded from being chosen at next steps. Whole decision tree is constructed by repeating 
the same procedure at each node. Decision trees act as weak learners in a random forest model 
and as such t (typically in hundreds) number of decision trees is built to construct a random forest 
ensemble model. A wide variety of decision trees are obtained due to random selection of attributes. 
A test instance is fed to each weak learner and results obtained are bagged into classes. Class with 
maximum number of votes is the label of input test instance predicted by the local ensemble model. 
The model can be represented as follows.

Let, RF DT DT DTi
i i

t
i={ , ,... }1 2 is random forest based local model of party Pi with t number 

of decision trees. Vector Vc with size equal to |C| is initialized with 0 for each class label. Test input 
instance U j

i  from the data set Di of party Pi is input to each of the t number of decision trees in RFi. 

Predicted class for U j
i by each decision tree is used to increment the respective label in the vector 

VC. Predictions made by a decision tree DT i1 to classify test instance U j
i is denoted by Predict(

DT i1 ,U j
i ). The local ensemble model RFi use the following methods to evaluate the predicted output 

for an input test instanceU j
i .If v C i e Ci

j � � � � �{ , }, . . | | ,1 1 2 then, the output of RFi denoted by 

τ ( , )RF Ui j
i  is given by eq. (2).

� ( , ) ( , )

,

RF U DT U
where l t

i j
i

l
i

j
i�

� �
�Predict

1
 (2)

It is obvious from eq. (2) that τ ( , )RF Ui j
i < 0, if label -1 scores more votes than label +1; 

otherwise, τ ( , )RF Ui j
i > 0. Voting tie is usually handled at implementation level. If v Cj

i ∈ ;  where, 
C is the set of class labels and |C| ≥3; then output of the local ensemble model can be computed using 
eq. (3). Let Vcwith size equal to |C| store votes obtained for each label.

� ( , ) ( )RF U MaxLabel Vi j
i

c�  (3)

where, MaxLabel(Vc) returns the label with maximum votes.
The f-measure, discussed under section Performance Metrics, is a preferable metric to evaluate 

the performance of local ensemble models using balanced as well as imbalanced data. Training sample 
size taken from the dataset Di by party Pi to train the local model RFi is denoted as ni. Local model 
RFi along with f–measurei and ni are shared with other parties to build the integrated model (ζ i ).

3.3 INTEGRATED MoDEL

Each party build its local model on horizontally partitioned data and in order to build the integrated 
model ζj, party Pj request and use local models from remaining n–1 parties. Each party Pishare its local 
model with corresponding f–measurei and sample size as a 3-tuple (RFi, f–measurei, ni) where, RFi is 
the local model, and ni is the number of training instances chosen from Di.Party Pj use local models 
of n–1 parties along with its local ensemble model RFj to build the integrated model ζj. Therefore, 
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the integrated model ζj can be represented as ζj = {RF1, ...,RFj, ..., RFn} in its simplest form.Let Xbe a 
test instance with m attributes and C = {–1, +1}, ζj can be used to predict the class of X using eq.(4).

G X RF Xj i( , ) ( , )� �� �  (4)

where, j represents the jth party on which the integrated model is constructed, and 1≤ ≤i n .G(ζj,X) 
is the predicted class label of X obtained using ζj and τ(RFi,X) is the predicted class labels of X using 
local ensemble models RFi.

In case there are more than two classes in which the training data can be classified, the integrated 
model ζjuse eq.(5) to predict the class.Let VGC with size equal to |C| store votes obtained for each 
label using integrated model ζj.

G X MaxLabel VGj C( , ) ( )� �  (5)

where, MaxLabel(VGC) returns the label with maximum votes.Inclusion of local models exhaustively 
to obtain the integrated model may have an adverse effect on the performance obtained using the 
integrated model. In this paper, we discuss two potential ways to fine tune and optimize the performance 
integrated model as presented in the following subsection.

3.3.1 Integrated Model Optimization
The integrated model is built using a subset of local models using an optimization criterion to prevent 
negative impact of local model integration that arise as a result of poor performance shown by some 
of the local models. In the first case, f-measure is used as the optimization criterion to choose and 
select local models for integration into the integrated model. Party Pj calculate the f-measurej of its 
own model RFj and use it as threshold to choose models RFi to obtain the final integrated model 
ζj as follows. Choose RFi and add to ζj, for all i if f-measurei≥f-measurej. Integrated model thus 
obtained can be represented as ζj = {RFj, RFp, RFq, ...}. The integrated model ζj so obtained can 
be used to make predictions over the test data. Let X be a test instance with m attributes, ζj is used 
to classify X using eq. (6).

G X RF X

j jth

j i j( , ) ( , )� � �� ��
where,  presents  party where integgrated model is constructed

 and i j p q f measure f mi� � � �, , ,... eeasurej
X is the test instance

 (6)

The second approach to optimization is used if there is significant difference between the 
sample sizeni on which the local models are trained for each of the parties involved. In this approach, 
training sample size ni of party Pi is normalized. Normalized sample size of Pi is represented as ηi 
and calculated using eq. (7).
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 (7)

In case vi
j � � �{ , }1 1 , then output of the integrated model is calculated using eq.(8).

G X RF X

where j jth

j i i( , ) ( ( , )* )

,

� � ���
 is the  party where the inntegrated model is constructed

X is the test instance

 is�i   normalized sample size

 (8)

Here G Xj( , )ζ can be either positive or negative. In caseG Xj( , )ζ is positive, x is predicted to 
be +1 and otherwise, x is -1.

4. RESULTS AND DISCUSSIoN

In this section, results of the proposed system are presented and discussed. In the following subsection, 
we describe the datasets used followed by the performance metrics used to evaluate the performance 
of the proposed system. Finally, results of the study are presented.

4.1 Dataset Description
In our experiments, we use the Cardiotocography Dataset (CTG) available at UCI machine learning 
repository (http://archive.ics.uci.edu/ml/datasets/cardiotocography/) that consists of measurements of 
fatal heart rate (FHR) and uterine contraction (UC) features on cardiotocograms classified by expert 
obstetricians. There are total of 2126 instances in the dataset with 22 attributes. Description of these 
attributes is available on the above given url address. Classification labels used in the dataset are 
Normal (represented by 1), Suspect (represented by 2), and Pathologic (represented by 3).

The dataset is horizontally partitioned into three disjoint datasets D1, D2 and D3. D1contains first 
900 instances of the Cardiotocography Dataset; next 900 instances are storedin D2 and remaining 
last 326 of the Cardiotocography Dataset instances are stored in D3.Out of 900 instances in D1, 
574 belong to class 1, 245 belong to class 2 and 81 belong toclass 3.Similarly in D2, there are 809 
instances belonging to class 1, 45 instances are inclass 2 and remaining 46 belong to class 3. There 
are 272 instances in class 1, just 5 in class2 and 49 instances are in class 3.

The second dataset used in this study is the Thyroid Disease Dataset (TDD) available at UCI 
machine learning repository (http://archive.ics.uci.edu/ml/datasets/thyroiddisease/). TDD is made 
available by the Garavan Institute, Australia. There are a total of 7200 instances in the dataset with 22 
attributes. Classification labels used in the dataset are Normal (represented by 1), Hyperthyroidism 
(represented by 2), and hypothyroidism (represented by 3). The TDD is horizontally partitioned into 7 
disjoint datasetsD1, D2, D3, D4, D5, D6 and D7. Additionally, one disjoint test dataset with 500 test 
instances is also obtained from the TDD. The total number of instances and the number of instances 
belonging to a particular class are given in Table 2.

http://archive.ics.uci.edu/ml/datasets/cardiotocography/
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4.2 Performance Metrics
Accuracy, f-measure, and Cohen’s Kappa statistics are used as performance measures to evaluate the 
performance of the proposed local as well as integrated data mining models.

Accuracy (α) is calculated as the total number of correct predictions divided by the total number of 
instances in the dataset. Accuracy of a local model RFi is calculated using the formula given in eq.(9).

�i
iRF

�
Number of instances correctly classified by 

Total nummber of test instances taken from D
i  (9)

Accuracy (α) is a popular metric to evaluate the performance of a classifier and works well on 
balanced data. But, in case the data is imbalanced in the test dataset, accuracy may give misleading 
information regarding accuracy of models.

f-measure also called as F1-score or F-score is considered a more accurate way to measure the 
performance of the classifier. f-measure is calculated as shown in eq. (10).

f measure precision recall
precision recall

where

precisi

� �
�
�

2( )

,

oon TP
TP FP

recall TP
TP FN

TP FP

�
�

�
�

� � True Positive,  False Posittive,  False NegativeFN �

 (10)

Therefore, f-measure is basically the harmonic mean of precision and recall and thus effective for 
handling the imbalanced data distribution in different classes. f-measure for each class is computed 
and f-measurei of local model RFi is computed by averaging the f-measures obtained for each class 
using eq. (10).

Table 2. Horizontal partitioning of TDD dataset

Dataset Total number of 
instances

Number of class 1 
instances

Number of class 2 
instances

Number of class 3 
instances

D1 2000 47 106 1847

D2 1500 34 86 1380

D3 900 25 45 830

D4 800 15 41 744

D5 700 18 35 647

D6 500 10 21 469

D7 300 7 7 286

test 500 10 27 463
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Cohen’s Kappa Coefficient: In imbalanced class classification task, accuracy is not good 
enough as a main evaluation. So to solve the problem of multiclass and imbalanced data we have used 
the Cohen’s kappa metric. (κ) is an effective metric to evaluate the performance of a classifier and 
evaluate classifiers themselves as well. Measures like accuracy and precision/ recall do not provide 
complete picture of performance of multi-class classifiers. κ also performs comparatively better to 
evaluate performance of classifiers in case of imbalanced classes. κ is evaluated using eq.(11).

� �
�

�
(

(

Observed Accuracy  Expected Accuracy)

  Expected Acc1 uuracy) 
 (11)

4.3 Local Model Performance Analysis of The CTG Dataset
Local ensemble models RF1, RF2 and RF3 are trained using the training data obtained from datasets 
D1, D2 and D3 respectively. Each dataset is partitioned into training and test datasets with probability 
of 0.7 and 0.3 respectively. Training datasets used to train RF1 and RF2 have 634 instances each 
and remaining 266 for each model are in the test dataset. Training dataset obtained from D3 used to 
train RF3 contain 233 instances while the remaining 93 instances are in the test dataset. Accuracy, 
f-measure and κ of each local model is obtained using the random forest configuration settings as 
follows. Number of trees, t = 300 in the random forest model and number of variables tried at each 
split is equal to 8.

RF1 achieves accuracyα1 = 0:9135 and the confusion matrix for classification obtained using RF1 
is given in Figure 1(a). Local ensemble model RF2 getsaccuracyα1 = 0.9398. The confusion matrix 
for RF2 is given in Figure 1(b). RF3 achieves an accuracy of 100% with α1 = 1.0000. The confusion 
matrix for RF3 is given in Figure 1(c). It can be observed that there are 93 test instances that are input 
to RF3 with 81 instances belonging to class 1, just 1 instance in class 2 and only 11 instances in class 
3. There is certainly problem of class imbalance in the test data and even if the only single instance 
of class 2 is misclassified, we can still achieve accuracy equal to 1. We used 266 test instances from 
D2 and 93 test instances from D3 and merged them together to create a new test dataset to test the 
performance of RF3. As such, 359 instances with 318 instances in class 1, 16 instances in class 2 and 
25 in class 3. It is in place to mention that RF3 is trained using 233 training instances obtained from 
D3. Accuracy of the RF3 is 0.9471 and the confusion matrix is given in Figure 1(d).

The f-measure for the local models suggest that RF1 perform better than rest of the models and 
both RF2 and RF3 perform nearly same. RF3 trained with 359 instances is shown to have maximum 
accuracy but a careful examination of the corresponding confusion matrix reveals that this model 
performs quite bad classifying instances belonging to class 2. This fact is highlighted by calculating 
f-measure for the classifier. The f-measure and κ values for trained local models is given in Table 3. 
Insight into the comparative performance of all these local models using f-measure is further advocated 
by κ values for these classifiers. Cohen’s kappa coefficient (κ) for each classifier given in Table 3 
also suggest that performance of local model RF1 is better than rest of the local ensemble models.

4.3.1 Local Model Parameter Tuning in CTG Dataset
Two important parameters that effect the performance of local random forest models are number of 
decision trees (t) in the random forest and number of attributes considered at each node of the decision 
tree.In order to analyze the effect of number of trees on error rate, all the local models are trained 
with number of trees, t = 500. The plot of out of bag (OOB) error rate along with the error rates for 
each class at varying number of trees for all the local models is given in Figure 2. It can observed 
from the figure that OOB error rate and error rates for each independent class start to stabilize with 
t ≥ 300. Therefore, 300 trees for each RFi in this case is sufficient because more number of trees do 
not enhance the performance of these local models further. Accuracy of each local model using t = 
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300 and t = 500 is recorded and the results are shown as bar chart in Figure 3. It can be observed 
from the figure that there is a very small difference between model accuracies obtained using 300 
and 500 decision trees respectively.

Second important parameter that influences accuracy of the local ensemble random forest models 
is the number of attributes (mTry) considered at each node of the decision tree. The tuneRF function 
in R is used to search for the optimal mTry value till the relative improvement in OOB error is at least 
0.5. The OOB error at different mTry values for local models is listed in Table 4. It can be observed 
from the table that OOB error vary with varying mTry values. RF1 achieve lowest error rate with mTry 
= 8, RF2 show lowest OOB error rate with mTry = 4, and finally, lowest error rate for RF3 is recorded 
with mTry = 8. Therefore, a careful selection of mTry value can be used to enhance the performance 
of the local model. Figure 4 show the plot of mTry and OOB error for the local ensemble models.

Figure 1. Confusion matrices of local and integrated models obtained from the CTG dataset; (a) Confusion Matrix of RF1 obtained 
using test dataset from D1, (b) Confusion Matrix of RF2 obtained using test dataset from D2, (c) Confusion Matrix of RF3 obtained 
using test dataset from D3, (d) Confusion Matrix of RF3 obtained using test dataset from D2 and D3, and (e) Confusion Matrix of ζj 
obtained using test dataset with 235 instances.

Table 3. Performance measurement of local models

Model α f-measure κ

RF1 0.9135 0.8920 0.8237

RF2 0.9398 0.7913 0.6794

RF3 0.9471 0.7975 0.7026
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4.4 Integrated Model Performance Analysis of The CTG Dataset
Local ensemble models RF1, RF2, and RF3 are trained using 80% data instances in D1, D2 and D3 
respectively. Next, all the local models are tested with 237 test instances and the predictions using 
each model are recorded. Integrated model ζj running on party Pj use its own local model and local 
models from remaining participating parties to test each instance through all these ensemble models 
and bag the prediction results. The class with maximum number of votes is the predicted output of 
the final integrated model ζj for each test instance.

Confusion matrix of the predicted results obtained using the final integrated model for the test 
instances is given in Figure 1(e). Out of the total 237, 235 test instances are successfully classified 
using ζj. There are three local models and the data is multivariate with 3 possible classes. Therefore, 
2 instances are not at all classified by ζj because no majority vote for any particular class is obtained 
for these instances. However, this tie rate for the test instances using ζj is 0.008439. Tie rates that 
tend to 0 are desirable in the integrated model.

The performance metrics for the integrated model ζj are given in Table 5. The model achieves 
an accuracy of over 95% which is good. The f-measure for the classification done by the integrated 
model is 0.8230 which means that all the classes are fairly predicted correctly by the integrated model. 
The comparative performance on the basis of α, f-measure and κ of the integrated model with local 
ensemble models is shown as bar chart in Figure 5. It can be observed that the accuracy achieved 
using integrated model is higher than the accuracy achieved with each individual local model. The 
f-measure and κ metrics for the integrated model is also higher than these metrics for local models.

4.5 Local Model Performance Analysis of The TDD Dataset
The local ensemble models RFi (where, 1 ≤ i ≤ 7) are trained using the training data obtained from 
the respective datasets (Di). Parties Pi use 100% data from the respective datasets (Di) for training their 
local ensemble models RFi. The total number of instances in the dataset and the number of instances 
belonging to a specific class are given in Table 2. The test data set named Test in Table 2 with 500 
test instances is fed to each local model to analyze the performance of each model. The performance 
metrics accuracy (α), f-measure and κ for each local model is obtained using the following random 
forest configuration settings. Number of decision trees (t)= 500, and number of variables tried at 
each split (mTry)= 8.

The confusion matrices for local models RF1 to RF7 are given in Figure 6(a)-(g) and the 
performance metrics obtained for these models are given in Table 6. The performance metric values 
given in Table 6 shows an increasing trend with increase in dataset size (|Di|) given in Table 2. Local 
models RF1 and RF2 achieve an accuracy of 99% and 99.2% respectively. The f-measure and Kappa 
coefficient values obtained for these models are also good indicating capabilities of these models to 
classify all the classes with relatively high accuracy. Local model RF2 perform slightly better than 
RF1 because RF1mis-classify a single instance belonging to class 1 as an instance of class 2. Local 
model RF3 performs poor with regard to classifying class 1 instances; 40% of the class 1 instances 
are misclassified by RF3 as class 2 instances 6. This has an adverse effect on the overall performance 
of the local model RF3. The values of all performance metrics decrease for local models RF4 to RF7. 
As discussed above, this decrease in classification performance can be attributed to the decrease in 
the size of the training datasets. The training dataset size for each local model is given in Table 2. For 
example, the training dataset (D7) of the local model RF7 has a total of 300 instances. D7 has just 7 
instances belonging to class 1, 7 instances belonging to class 2 and 286 training instances belonging 
to class 3. One can, therefore, expect the model to classify class 3 more accurately compared to 
classes 1 and 2. Figure 6(g) shows the confusion matrix obtained after classifying 500 test instances 
in the Test dataset. Local model RF7mis-classifies 40% of the class 1 instances, 92.6% of the class 2 
instances and only 1.5% instances belonging to class 3. The misclassification rate of class 2 instances 
by RF7 is alarmingly high making it unsuitable for sensitive applications like medical data mining. 
However, poorly trained models like RF7 can be improved by using integrated models as proposed 
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in this work. The f-measure and Kappa coefficient (κ) values for RF7are very low because of high 
misclassification rates for classes 1 and 2. There is a positive correlation between training dataset 
size and performance of the classifer as shown in Figure 7.

The performance of all the local models (RFi) was checked with different permutations of number 
of decision trees (t) and the number of variables tried at each split (mTry) values and it was found 
that all the TDD local models perform best with t = 500 and mTry = 8.

4.6 Integrated Model Performance Analysis of The TDD Dataset
The local models RF1 and RF2 obtained from the TDD dataset perform very accurate classification 
overall as well as at the class level. However, local model RF7 perform very poor classification at 
class level as discussed in Section Local Model Performance Analysis of the TDD Dataset.

An integrated model ζj = {RF1, RF2, RF3, RF4, RF5, RF6, RF7} is constructed by the party Pj, where 
j∈ {x | 1 ≤x≤ 7}. The confusion matrix obtained by using the integrated model ζj to classify the test 
instances in the Test dataset is given in Figure 6(h). The performance metric values for the same Test 
dataset obtained using the integrated model ζj are given in Table 7. It can be observed from Table 6 

Figure 2. Effect of number of decision trees on error rate. (a) Error rate for RF1, (b) Error rate forRF2, (c) Error rate for RF3.
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and Table 7 that the integrated model ζj shows a considerable improvement in performance compared 
to the local models RF3, RF5, RF6 and RF7. The integrated model ζj, however, fails to improve the 
performance of local models RF1, RF2 and RF3 and more or less reduce their own performance. This 
is because of integrating poor performing models in the final integrated model. In order to avoid the 
negative impact caused by the integration of these poor models, the optimization criteria presented in 
the Integrated Model Optimization section are used. Moreover, the integrated model ζj fails to classify 
a single instance in the Test dataset because of a tie between majority votes for two or more than two 
classes. The tie rate however is quite low and equals 0.002. The bar chart of the performance of the 
local model and the integrated model is shown in Figure 8.

4.6.1 Integrated Model Performance Optimization of The TDD Dataset
Integration of local models to develop the integrated model ζj results in deteriorated performance of 
local models RF1, RF2 and RF4. Therefore, it becomes important to adopt some optimization criterion 
to select and integrated models that make sure to improve the performance of the integrated model. 
In this section, performance of the integrated model ζ4 developed by party P4 by following the first 

Figure 3. Effect of number of decision trees (t) on local model accuracy
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Table 4. Effect of mTry on local model performance

Local Model mTry OOB Error Rate

RF1

2 10.73%

4 7.57%

8 6.78%

16 6.78%

RF2

2 4.26%

4 3.79%

8 4.73%

RF3

2 2.58%

4 2.15%

8 1.72%

16 2.58%

Figure 4. Effect of mTry on OOB error rate. (a) mTryvs OOB Error rate for RF1, (a) mTryvs OOB Error rate for RF2, and (c) mTryvs 
OOB Error rate for RF3

Table 5. Performance measurement of Integrated Model (ζj)

Model ζj

α 0.9574

f-measure 0.8230

κ 0.7170
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Figure 5. Performance comparison of CTG integrated model with local ensemble models

Table 6. Performance measurement of TDD local models

Model α f-measure κ

RF1 0.990 0.9316 0.9433

RF2 0.992 0.9453 0.9658

RF3 0.982 0.8782 0.8548

RF4 0.988 0.9148 0.9200

RF5 0.982 0.8738 0.8663

RF6 0.964 0.7411 0.8279

RF7 0.982 0.3322 0.5653
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optimization criterion presented in the Integrated Model Optimization section. The integrated model 
ζ4 can thus be represented as given in eq. (11).

� 4 1 2 4�{ , , }RF RF RF  (11)

Integrated model ζ4 produces better performance metric values compared to ζj as given in Table 
7. The comparison between all the performance metrics obtained from RF4 and ζ4 also suggest 
considerable improvement. ζ4classifies each test instance successfully and thus the tie rate equals 0 
in this case.

4.7 Comparative Analysis of The Proposed Technique
Performance of the integrated model is by and large influenced by the performance of the constituent 
local models. Therefore, in order to enhance performance of the integrated models, it is imperative to 
strive for improving the performance of the respective local models. There are two major concerns 
that need to be addressed while choosing a classification learner for predicting sensitive data like the 
medical data. First, the learning model must achieve high performance while making predictions in 
the practical environment. Second, the model should be comprehensible, i.e. humans should be able 
to understand, what the models are doing, especially when they are responsible for the consequences 
of their application.

Learning models like the Neural Networks are trained models but are difficult to interpret. Neural 
networks in particular consist of hundreds to millions of different parameters depending on the size of 
the network, all interacting in a complex way. Lack of comprehensibility makes it complicated to use 
Neural Networks in areas where trustiness and reliability of the predictions are of great importance. 
Random Forests are also difficult to interpret because they consist of many (usually hundreds) of 
individual trees. Even if a single tree is easy to understand, the large number of trees makes the 
ensemble difficult to understand. More recently, however, approaches have been developed to identify 
the most representative trees in an ensemble (Banerjee et al. (2012)). By means of their analysis, the 
ensemble can finally be interpreted.

In general, ensemble random forest models perform better on simple data whereas neural 
networks show comparatively better performance with complex data. In this section, we present 
comparison between performance of the ensemble random forest model with the performance of 
some popular learners. The Support Vector Machine (SVM) model is used with linear and quadratic 
kernal functions. The second model used for comparison is the K-nearest neighbors model (KNN); 
the number of neighbors used by the Fine KNN model is 1 and Medium KNN uses 10 neighbors. 
Finally the ensemble boosted tree model (AdaBoost) is used with maximum number of splits set 
to 8 and number of learners equal to 300.The comparative performance of the learning models are 
evaluated using the CTG and the TDD datasets. 70% of the instances in each dataset are used to train 
the learning models whereas remaining 30% instances are used to test the performance of the models.

5. CoNCLUSIoN

In this paper, a decentralized privacy preserving distributed random forest-based data mining technique 
is proposed to mine the sensitive health data maintained with different healthcare facilities without 
revealing any patient specific information in the process. A collaborative framework is proposed 
to take advantage of the knowledge obtained from the data of each healthcare facility to build an 
integrated model. Experimental results show that accuracy of the integrated model is better than the 
accuracy of the individual local models. The models are trained with small datasets and as such only 
three local models and thus the integrated model obtained using these three local models is used in the 
experimental study. A sufficiently large dataset and multiple local models can enhance performance 
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of the proposed model further. In future, we intend to try different optimization criteria at both local 
as well as integrated model level to increase the performance of the model.

6. FUNDING SoURCE(S)

This research received no specific grant from any funding agency in the public, commercial, or not-
for-profit sectors.

Figure 6. Confusion matrices of local and integrated models obtained from the TDD dataset; Figures (a-g) are the confusion 
matrices of local models RFi (1 ≤ i ≤ 7), Figure (h) is the confusion matrix of global integrated model, and Figure (i) is the confusion 
matrix of integrated model ζ4 = {RF1, RF2, RF4}

Table 7. Performance measurement of TDD integrated models

Model α f-measure κ

ζj 0.9860 0.9137 0.9129

ζ4 0.9900 0.9320 0.9340
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Figure 7. Effect of the training dataset size on the local model (RFi) performance
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Figure 8. Performance comparison of TDD integrated model with local ensemble models
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