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ABSTRACT

Face sketch recognition is considered as a sub-problem of face recognition. Matching composite
sketches with its corresponding digital image is one of the challenging tasks. A new convolution
neural network (CNN) framework for matching composite sketches with digital images is proposed
in this work. The framework consists of a base CNN model that uses swish activation function in the
hidden layers. Both composite sketches and digital images are trained separately in the network by
providing matching pairs and mismatching pairs. The final output resulted from the network’s final
layer is compared with the threshold value, and then the pair is assigned to the same or different class.
The proposed framework is evaluated on two datasets, and it exhibits an accuracy of 78.26% with
extended-PRIP (E-PRIP) and 69.57% with composite sketches with age variations (CSA) respectively.
Experimental analysis shows the improved results compared to state-of-the-art composite sketch
matching systems.
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INTRODUCTION

Face recognition is a problem that is being solved from decades by now. It is one of the most
challenging tasks and plays a very significant role in forensics. Another important subtask of face
recognition problem is identifying a suspect by a sketch. In crime scenarios, the suspect’s photo is
not available in most cases. Only the eye-witness description can be relied on for the identification
of the victim or the criminal. A sketch of the suspect’s face can be drawn by a forensic artist (Wang
and Tang.,2008) or even generated by facial software from the details provided by the eye-witness
(Han et al., 2012). After the sketch is generated, the next important step is to identify who that person
is in the sketch. This is performed by matching the sketch to the photos of mugshots/suspects in the
criminal database. The automation of this process is useful in identifying the suspects in less time
(Cheragi and Lee., 2019).

Numerous challenges can occur while matching a sketch and a photo. While drawing a sketch
various complementary information such as hair color, skin color, and ethnicity may not be
noticeable. Another critical challenge is the phenomenological gap between a sketch and a photo,
such as illumination, facial expressions, color background, brightness, etc. In addition to this, only
a single sketch is available unlike face recognition. Therefore, there is a chance that can lead to the
misidentification of the suspect (Peng et al., 2018). Information from other sources like a description
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from the multiple eye-witnesses and surveillance camera footage can be used to improve the
performance of suspect identification (Best-Rowden et al., 2014).

Forensic sketches can be categorized into three types such as viewed, forensic and composite
sketches. The viewed sketch is drawn by looking at a photo, and no description is provided for
drawing these types of sketches. Forensic sketches are drawn by forensic artists hearing the description
provided by the eye-witnesses. These sketches are used for investigation since 19th century. Composite
sketches are generated using software tools such as evoFIT, FACES etc. Here different facial parts
are selected to draw the composite sketch. Almost 80% of law enforcement agencies use software
oriented facial suspects to identify the suspects (Klum et al., 2013). Comparing the three types of
sketches, composite sketches require less time, effort and experience. So composite sketches are used
in the proposed framework to identify the corresponding digital images.

In order to provide identification based on composite sketch, many artificial neural network
(ANN) models are proposed. CNN (Zhang, H. et al., 2019) are also a category of ANN model which
are represented in a fully connected manner and thus avoids over fitting of the data. So a new CNN
framework is proposed in this work to identify matching pairs and mismatching pairs of a composite
sketch and a digital image. A CNN model uses Swish as the activation function in the hidden layers.
The model is tested with multiple activation functions and the Swish activation function proved to
provide the best performance among all other activation functions. The input provided to the system
is a pair of composite sketch and a digital image. The model trains both the images and an absolute
difference is taken as final value between composite sketch F_and digital image F,.The final output
matching score obtained from the network is compared with the threshold value and decision is made
to identify whether the input pair belongs to the same class or different class.

The key contributions of this work are stated below:

A new framework is proposed to perform matching of composite sketches and digital images.
To classify whether an input pair of composite sketch and a digital image belongs to the same
or different class, a new CNN framework is proposed.

A detailed analysis of the proposed framework is provided.

The result achieved from the proposed framework outperforms many state-of-the-art face sketch
recognition systems.

The organization of the paper is as follows. A brief discussion of previously developed face sketch
recognition systems in the form of literature survey is provided in section 2. The dataset description is
provided in section 3. The methods used for developing the proposed face sketch recognition system
are discussed in section 4. Section 5 provides detailed analysis and results obtained from the proposed
framework. The section 6 presents the conclusion of the paper.

LITERATURE SURVEY

Many systems have been developed to perform face sketch recognition. Some of the traditional
methods use features such as Eigen and Local Binary Patterns, Histogram oriented gradient (HOG)
and scale-invariant feature transform (SIFT) feature representations. A windows based real-time
application was proposed to perform face recognition by Haji and Varol (2016). The method used
feature representations extracted from algorithms such as Eigen and Local Binary Patterns which
eliminates the light exposure impact on the facial images. Further, an algorithm was proposed by
Mittal et al. (2017) which performs the combinations of various feature representations by considering
the facial attributes such as gender, ethnicity and color of the skin to develop a good classifier. The
feature combination includes the fusion of DAISY and HOG features.
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To perform a composite sketch to photo matching, a component-based framework was proposed
by Han et al. (2012). An active shape model (ASM) was used to detect facial landmarks. Multiscale
Local Binary Pattern (MLBP) was used to extract the features from the images. These features are
then matched and fused for obtaining matching results. Liu et al. (2016) developed a composite sketch
based face recognition method by performing feature extraction on two images, fusing these two feature
representations and then combining the facial parts with different weights. A novel technique for
matching composite sketch with the images captured by unmanned aerial vehicle under uncontrolled
environment was proposed by Fernandes et al., (2015). Here image quality assessment is performed
to detect whether image captured from unmanned aerial vehicle has varying conditions. Suitable
feature extraction method and classification approach is applied to perform mapping of composite
sketch to digital images.

A deep learning based architecture was proposed by Galea et al., (2017) in which transfer learning
is applied to both sketches and photos. Proposed framework reduces the error rate by 80.7% for
viewed sketches and reduces the retrieval rank by 32.5% for forensic sketches. A robust framework
called local feature based discriminant analysis was proposed by Klare et al., (2010) .The proposed
framework outperforms the other existing approaches in case of matching viewed sketches. An
evolutionary genetic algorithm was proposed by Bansode et al., (2016) which generates face sketch
from face description.

A composite sketch recognition system was proposed by Shivaleela Patil and Shibhangi (2020)
stating composite sketches provide better results than forensic sketches in face recognition. The
methods used are Weber Local Descriptor (WLD), MLBP, Tchebichef moments and ANN. In recent
trends, there is a lot of interest is developed in deep learning methods proposed by Gadekallu T. R
et al.(2020) for performing face sketch recognition. A Sketch Photo Network (SP-Net) was proposed
by Cheragi and Lee (2019). Here network uses VGG-Face net as the base model, which is followed
by two branches S-Net and P-Net. The network provided good results by comparing the matching
and mismatching pairs of sketches and photos.

A coupled deep neural network architecture was proposed by Iranmanesh et al. (2018), which
considers facial attributes such as eye, hair, skin color and ethnicity. A joint loss function was also
introduced which performs the identification of facial attributes and also verifies the subspace of a
sketch and a photo. The main limitation of using state-of-the-art methods for sketch- photo recognition
is the unavailability of a huge dataset. To tackle this limitation, transfer learning can be applied by
using pre-trained models. This method was adopted by Galea and Farrugia (2017) to perform face
sketch recognition. To avoid the over-fitting of the model, 3-Dimensional morphable software was
used for synthesizing new images artificially.

A deep convolution network was used by Kazemi et al., (2018) to perform sketch photo
recognition. The model was used to learn deep shared features (R M et al.,2020) between a sketch
and a photo. An attribute-centered loss function was proposed in their work for training the network.
The network matched the facial attributes of the sketch and the photo. After comparing the previously
developed face sketch recognition systems, it is found that the deep learning model’s (Venkatraman S.,
etal., 2019) performance is better than the traditional models. Hence in proposed system, a new CNN
framework is proposed to perform face sketch recognition. A brief summary on different methods
applied for forensic face recognition is illustrated in the Table 1.

PROPOSED METHODOLOGY

A face sketch recognition system is developed in the proposed work. It consists of three stages: pre-
processing, classification and output. The input provided to the proposed framework is the pair of
composite sketch and its corresponding digital images. The steps involved in the pre-processing of
these images are mentioned in the image pre-processing section. The process of collecting composite
sketches is a very challenging and tedious task. Hence the input images are limited. Therefore, to get
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Table 1. A Summary on different methods for forensic face recognition

Author

Methodology

Advantages

Haji et al.(2016)

Eigen with Local Binary Patterns

Eliminates the light exposure on
facial images

Mittal et al.(2017)

Combination of DAISY and HOG
features

Facial attributes such as gender,
ethnicity and color of the skin were
considered

Han et al.(2012)

Combination of active shape model with
multi scale local binary pattern

Here features were fused to get the
matching results

Shivaleela Patil et al.(2020)

Weber Local Descriptor (WLD), MLBP,
Tchebichef moments and Artificial
Neural Network (ANN)

Provides better results for composite
sketches rather than forensic sketches

Iranmanesh et al.(2018)

Joint Loss function

Facial attributes such as eye, hair,

skin color and ethnicity were
considered

Kazemi et al.(2018) The model used here will learn the
deep features between sketch and

photo

Attribute centered loss function

a better performance of the system, more input images are necessary. To tackle this issue, the images
are heavily augmented in the training phase. Therefore, the network learns the input images well.

The most important section of the architecture is the identification of the matching face for the
sketch provided. Therefore, in the classification section, the composite sketches and digital images are
trained separately in proposed framework. The absolute difference is computed between the composite
sketch F_and digital image F, which is treated as outputs matching score. The matching score obtained
in the cla351flcat10n stage is compared with the threshold value in the output stage. The images are
trained in terms of a matching pair and mismatching pair. The threshold value decides whether the
given input images belong to matching pair and mismatching pair. The schematic illustration of the
proposed framework is shown in Figure 1.

Dataset

In the proposed face sketch recognition framework, two datasets are selected. The first dataset used
is E-PRIP dataset (Mittal et al., 2014). It consists of 123 composite sketches and its respective digital
images. The digital images used in the E-PRIP dataset are taken from AR dataset (Wang and Tang,
2008). The original PRIP dataset was developed by (Han et al., 2017) and the E-PRIP dataset was
developed by (Mittal et al., 2014). The dataset is created by four different sets created by multiple
users. Using FACES software, an American artist created one set. Two sets were created by an Asian
artist using FACES and Identi-kit software (Identi-kit, 2020). Another set is created by an Indian
artist using FACES software that is the contribution in the extended dataset (Mittal et al., 2014).
The second dataset used for the evaluation of the proposed work is Composite Sketch with Age
Variation dataset collected from IIIT, Delhi (Chugh et al., 2017). The dataset consists of multiple
age-separated digital images for a sketch image. There are a total of 3529 sketches and digital images
available in the dataset collected from 150 individuals. The dataset is collected from multiple sources,
which includes 52 from FG-NET Aging dataset (Lanitis, 2008), 82 from IIIT-D Aging Dataset (Yadav
et al., 2014) and the rest subjects are taken from the Internet, and their corresponding composite
sketches are generated from FACES software (Faces, 2003). The dataset consists of three groups of
different age variations ranging from 1 to 65 years namely younger age, same age and older age. In
proposed framework, only the same age group individual digital images and sketches are considered.
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Figure 1. Block diagram of proposed framework
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The number of digital images, along with their corresponding composite sketches in the dataset
is 98(belonging to same age variation category). The illustration of sample images from both the
datasets are shown in Figure 2.

Image Pre-Processing

The images provided in the datasets may vary in size, colour format etc. This may affect the
performance of the recognition system (Bhattacharya et al., 2020). Therefore, it is necessary to bring
all these images in to common uniform format. The digital images in the dataset are provided in
RGB format. However, the composite sketches are in grayscale format. Hence, all digital images are
first converted into grayscale images. Both digital images and sketches are resized into a dimension
of 32 x 32. The illustration of the images in the datasets and the pre-processed images is shown in
the Figure 3.

To train a deep model (Alazab et al., 2020) the dataset must be large. But, the dataset available for
composite sketch matching is very less. Therefore, to generate more number of images, augmentation
must be performed. In the proposed framework, the sketch images are augmented using multiple
operations such as horizontal flipping, vertical flipping, image transformation by scaling the images
by -10% or +10%, and rotating the images by +20 degrees or -20 degrees. The augmentation of the
images is performed only for the training and validation phase.

Classification

The main aim of the classification network proposed in this work is to estimate whether a given sketch
matches the same individual or not. The network was evaluated on multiple CNN layer configurations
and also fine tuned using various parameters. The results obtained from proposed framework are
described in this section. The architecture diagram of the proposed model is illustrated in Figure 4.

The proposed model is a six layer CNN. Two sets of image pairs are provided to the proposed
model, namely, a matching pair and a mismatching pair. The matching pair is a composite sketch
with its corresponding digital image and the mismatching pair is the composite sketch, which has a
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Figure 2. lllustration of composite sketches and digital images from: (a) E-PRIP dataset (b) CSA dataset

(B)

digital image of a different individual. Composite sketches and digital images are trained separately
by proposed model. The network learns feature representations that discriminate the composite
sketches from the digital images. Feature visualization is the process of visualizing each layers in
neural networks and see how they work. The proposed model is a six layer CNN. CNN are kind of
deep neural networks which operates on two dimensional image data which preserves the spatial
relationship based on the learning performed by the model. Filters and activation maps are used to
perform feature visualization. Filters are nothing but the weights which can be used to detect the
type of features that the proposed model is using and activation maps are used to detect the features
generated from the given input image.

Figure 3. lllustration of sample images before and after pre-processing step (before augmentation)

Original digital image Preprocessed digital image

—>
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Figure 4. Architecture diagram of proposed framework for matching composite sketches and digital images

CNN model is a good model for feature visualization because it possess a uniform structure with
a combination of convolution, pooling, flatten and dense layers.

Steps to Perform Feature Visualization in the Proposed Model

e Review the filters in the proposed model by specifying the layer details including layer name
and shape of filters in the layer.
Layers in proposed model are well defined and organized in to blocks as shown in the Figure 5.
Given input image is provided with three channels red, green and blue. Each filter can be visualized
as a plot with three images.

e Retrieve the filters from each layer. The weight values should be normalized in the range 0-1
which makes the process of visualization easy. Plotting of six filters for each of the layers from
proposed model is shown in the Figure 6.

The absolute difference between the matching and mismatching pairs is adopted in the network
to find the variant visual structures in the sketch and the digital image. Based on the final output
resulting in the network’s final layer compared with the threshold value, the pair is assigned to the
same or different class.

The proposed model consists of convolution blocks, max pooling layer and hidden convolution
layer. A new activation function named “Swish” (Ramachandran et al., 2017) is used in the hidden
convolution layer. The reason for choosing the Swish activation function is stated in the upcoming
section. The formula of the Swish activation function is represented in Equation 1.
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Figure 5. Layers in proposed model organized in to blocks
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The dimension of the both the input images are 32 x 32. The network architecture consists of
six convolutional layers with varying filter sizes. The size of the filters at first two layers is 16, next
two layers are 32 and last two layers are 64. The image size (m) after convolution is represented in
Equation 2 where n*n denotes image size and f*f denotes filter size.

m=((n=f+D)*((n-f)+1) @)

The convolution operation can be stated as the dot product of the weights in the filter and the
input image. The feature representations from the input images are learnt in the convolution layers
of the network.

The absolute difference of the output obtained from the training of composite sketch (Fs) and
digital image (Fd) is taken. This can be represented in Equation 3.

Absolutedifference = abs(F, — F,) 3

This output is again provided to the Gaussian noise layer in order to make the model more robust.
Gaussian noise layer is a regularization layer which takes only real values and also adds additional
noise to the input. This property of adding noise to the input makes the network more robust by not
over fitting the input. Dropout layer is also a regularization layer. As the name suggests, the dropout
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layer randomly drops certain nodes and trains only the remaining nodes. This property of dropout
layer, does not learn the input completely and avoids the over fitting of the model.

In the proposed model we have considered dropout as 20% to 25% i.e., out of 100 neurons it
will drops 20 to 25 neurons which are redundant and passes the data of remaining 75 neurons to the
next layer. In the final layer, the sigmoid activation function is used to generate a score. If the score
generated is greater than the threshold value 0.5, the input pair is assigned as the same class, else
if the score generated is less than or equal to the threshold value 0.5, the input pair is assigned as a
different class.

RESULTS AND DISCUSSION

In the proposed framework, the face sketch recognition system is designed. As mentioned earlier, two
composite sketch datasets are used for evaluating the proposed framework. They are E-PRIP and CSA
datasets. The system is trained by providing input pairs of sketch and a digital image. The datasets
are split into training, validation and testing. The split of the datasets for E-PRIP and CSA are stated
in the Table 2 and 3. It can be observed the number of pairs for training the system is less for a deep
model. Therefore, both training and validation data is heavily augmented to learn different variations
of sketches and digital images which is explained in image pre -processing section.

The use of activation function in the hidden layers of the activation function plays an important
role in the network’s performance. Therefore, the activation function must be chosen carefully. In this
work, three different activation functions are tested for obtaining the best performance. The activation
functions considered for the hidden layers in the network are Exponential Linear Unit (ELU) (Clevert
et al., 2015), Leaky Rectified Linear Unit (LeakyReLU) (Mittal et al., 2015), and Swish activation
function [(Ramachandran et al., 2017).

ELU activation function is one of the activation functions that tend to converge faster which
produces better and accurate results. Compared to the ReLU activation function, ELU results in a
smooth curve. It accepts the negative inputs as well, unlike ReL.U. Therefore, ELU is considered in
the hidden layers of the network. LeakyReLLU activation function is a variant of ReLU activation
function. In this, a small negative slope is added to overcome the “dying ReLU” issue. It also proved
to provide better results in this work. However, the use of Swish activation functions in proposed
model proved to provide the best results for both the datasets. Swish activation function results in a
smooth function; that is, there is no abrupt change in the direction. Therefore, this activation function

Table 2. Dataset split of E-PRIP dataset

Dataset split #Pairs
Training 75
Validation 25
Testing 23

Table 3. Dataset split of CSA dataset

Dataset split #Pairs
Training 65
Validation 10
Testing 23
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is chosen for the final network in the proposed framework. The performance of different activation
functions on the two datasets is shown in Figure 7.

The performance of the two datasets obtained is analyzed through various metrics. Confusion
matrix is one of the metric which describes the performance of classification model based on test
data for which true values are known. It is also used to calculate True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative(FN). The confusion matrices obtained for E-PRIP and
CSA datasets are shown in the Figure 8 and Figure 9.

It can be observed from the matrices that the proposed framework provides a Rank-1 accuracy
of 78.26% on E-PRIP dataset and 69.57% on CSA dataset. From the confusion matrix, various
performance metrics can be calculated to evaluate the system. Those performance metrics considered
for evaluating the proposed framework are accuracy, precision, Recall (True Positive Rate-TPR), F1-
score and False Positive Rate(FPR). The results of different performance metrics obtained for both
the datasets is tabulated in Table 4.

Figure 7. Evaluation of proposed framework with different activation functions in the hidden layers of the network
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Figure 8. Confusion matrix obtained on testing data for E-PRIP dataset
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Figure 9. Confusion matrix obtained on testing data for CSA dataset
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Accuracy can be defined as closeness of measurement to a specific value which is represented
in Equation 4.

TP +TN @)
TP+TN + FP+FN

Accuracy =

Precision can be defined as the measure of exactness which is represented in Equation 5.

TP
L &)
TP + FP

Recall can be defined as percentage of certain class that is correctly being identified which is
represented in Equation 6.

Precision =

TP ©)

Recall = ———
TP + FN

Table 4. Performance evaluation of the proposed framework on E-PRIP and CSA datasets

Performance E-PRIP CSA
Measures
Accuracy 78.26% 69.57%
Precision 63.64% 54.55%
Recall (TPR) 87.50% 75%
F1-score 73.68% 63.16%
FPR 0.2667 0.3333

1
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F1- score is a score which balances between precision and recall which is represented in Equation

F1— score — 2% (precision * recall)
— 3 —
(precision + recall)

)

False Positive rate (FPR) is the probability of falsely rejecting the hypothesis which is represented
in Equation 8.

FP

FPR= ————
FP+TN

®)

The performance measures on E-PRIP and CSA dataset is shown in the Figure 10. In this plot,
values in X- axis denotes different performance measures like accuracy, precision, recall(TPR), F1-
score, FPR and values in Y-axis denotes the results for both the datasets.

The Receiver Operating Characteristic (ROC) curve is a graphical plot that illustrates the
performance of classification model. In this plot, a value in X-axis indicates False Positive Rate (FPR)
and values in Y-axis indicates True Positive Rate (TPR). The ROC curve is plotted based on TPR and
FPR obtained from the confusion matrix for both the datasets is shown in the Figure 11 and Figure 12.

The performance of the system is compared to other face sketch recognition systems. The results
achieved in the proposed framework outperform the previous recognition systems. The comparison of
the proposed framework with other face sketch recognition systems for both the datasets is indicated
in Table 5 and Table 6.

The performance analysis of existing approaches and proposed framework on both the datasets
is illustrated in Figure 13 and Figure 14. In both the plots, values in X-axis indicates the names of
different methods and values in Y-axis indicates the recognition accuracy.

From the comparative study it is observed that proposed framework gives the Rank 1- accuracy of
78.6% on E-PRIP dataset and 69.57% on CSA dataset and it outperforms the other existing approaches.
An observation can be made that the proposed framework resulted in good performance compared
to many previously developed face sketch recognition systems and outperform many state-of-the-
art face sketch recognition systems (Cheragi et al.,2019, Mittal et al.,2015, Iranmanesh et al.,2018,
Mittal et al.,2017, peng et al.,2019).

The proposed model consists of a new framework which includes training of the composite and
digital images with two individual networks and by the difference obtained from the two networks,
the pair of the digital image and composite image is assigned to a matching or non-matching class.
The use of this type of framework is not performed in any of the previous works and also the use
of Swish activation function in the network is a first for composite sketch matching. In the previous
works, networks such as coupled deep learning model, deep belief networks, combination of saliency
features and texture features etc. are used. The accuracies obtained from the previous works are
comparatively less from the accuracy obtained for the proposed model.

In the proposed model, the digital and the composite images are fed in to two different CNNGs.
This mechanism allows the learning of information of the two sets of images individually. The use
of Swish activation function provided better results as compared to ELU and LeakyRelu activation
functions. Swish function is an unbounded value activation function, i.e., there is no bound on the
maximum value generated from the hidden layers. Swish activation function proved to outperform
other activation function with varied batch sizes. In addition to this, the proposed model is robust as
it outperformed even when additional noise is incorporated in the images. Considering all the above
reasons, the proposed model is better than other previously proposed systems for composite sketch
matching.

12
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Figure 10. List of performance measures on E-PRIP and CSA dataset
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Figure 12. ROC curve for CSA dataset
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Table 5. Comparison of previous works with the proposed work for face sketch recognition on E-PRIP dataset

Authors Methods used Rank-1 Accuracy
Cheragi. (2019) SP-Net 28.1%
Mittal et al. (2015) Deep Belief Network 58%
Iranmanesh et al. (2018) Coupled deep neural network 76.4%
Mittal et al. (2017) Visual Visual saliency and combination 58.4%
of texture features
Peng et al. (2019) Sparse Graphical representation 70%
based discriminant analysis
Proposed framework Swish Activation function with 6 layer CNN 78.6%

Table 6. Comparison of previous works with the proposed work for face sketch recognition on CSA dataset

Authors Methods used Rank-1 Accuracy
Paritosh M et al.(2015) Single Shot Detector (SSD) with Gentle 58.6%
Boost KO classifier
Roy et al. (2019) RBPLQ with neural networks 60.72%
Proposed framework Swish Activation function with 6 layer CNN 69.57%

14
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Figure 13. Performance analysis of existing approaches and proposed framework on E-PRIP dataset
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Figure 14. Performance analysis of existing approaches and proposed framework on CSA dataset
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CONCLUSION

A new framework for performing face sketch recognition is proposed in this work. A CNN model
using swish activation function in the hidden layers of the network is used for training the sketch and
digital image. The network is separately trained for matching and mismatching pairs. An absolute
difference between the output generated from the sketch and the digital image is adapted to find the
variant visual structures. Gaussian noise is added to the network to make the network more robust.
The proposed framework extracts discriminative facial features from the sketch and photo. The
absolute difference is used in the network to learn the similarity or dissimilarity in the matching and
mismatching pairs of sketch and a digital image. The network’s final layer provides a score that is
compared with a threshold value to assign it to the same class or different class for the matching and
mismatching pairs. To prove the reliability of the proposed framework, the framework is tested on two
datasets. The model resulted in state-of-the-art accuracy for E-PRIP and CSA datasets (Cheragi et al.,
2019, Mittal et al.,2015, Iranmanesh et al.,2018, Mittal et al.,2017, peng et al.,2019). The framework
resulted in promising results by outperforming most of the state-of-the-art face sketch recognition
systems which can be adopted in real-time application as well. The proposed model’s performance
can be improved by experimenting with multiple light-weight CNN models and also by increasing
the size of the dataset. Combination of different neural network architecture can be performed to
improve the system’s performance. However, the datasets can be combined to increase the number
of images thereby improving the performance of the proposed model. The limitation of this work is
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that the performance of the proposed model can still be improved by testing on larger datasets. The
deep networks’ performance increases with more data. Therefore, if more number of images is given
to the network, the performance of the proposed model can be improved. In the future, the advanced
neural network models can be used for training the sketches and digital images with larger datasets.
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