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ABSTRACT

The specification and verification of algorithms is vital for safety-critical autonomous systems 
which incorporate deep learning elements. The authors propose an integrated process for verifying 
artificial neural network (ANN) classifiers. This process consists of an off-line verification and an 
on-line performance prediction phase. The process is intended to verify ANN classifier generalisation 
performance and to this end makes use of dataset dissimilarity measures. The authors introduce a novel 
measure for quantifying the dissimilarity between the dataset used to train a classification algorithm 
and the test dataset used to evaluate and verify classifier performance. A system-level requirement 
could specify the permitted form of the functional relationship between classifier performance and a 
dissimilarity measure; such a requirement could be verified by dynamic testing. Experimental results, 
obtained using publicly available datasets, suggest that the measures have relevance to real-world 
practice for both quantifying dataset dissimilarity and specifying and verifying classifier performance.
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1. INTRoDUCTIoN

Autonomous systems make use of a suite of algorithms in order to understand the environment in 
which they are deployed and make independent decisions. These algorithms typically solve one or 
more classic problems, such as classification and prediction. Artificial neural networks (ANNs) 
are one such class of algorithms, which have shown great promise in view of their ability to learn 
complicated patterns underlying high-dimensional data. The decision boundary approximated by such 
networks is highly non-linear and difficult to interpret, which is particularly problematic in cases 
where these decisions can compromise the safety of either the system itself, or people. Furthermore, 
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the choice of data used to prepare and test the network can have a dramatic impact on performance 
and, in consequence, safety.

Verification and validation (V&V) are vital parts of the development and deployment of any 
engineering system. V&V processes are well established in more mature sectors of engineering such 
as aerospace and automotive. However, they are not as well developed in areas such as autonomy and 
machine learning (ML), and the broader field of artificial intelligence (AI). Since ML technologies 
are being more widely adopted, it is ever more important that they behave as expected, and interact 
safely with people. Our focus is on the verification of ANNs when used for image classification in 
safety-critical systems.

Systems are verified with respect to the specified requirements. One such requirement for 
a classifier might state a necessary level of classification performance, and this requirement 
can be verified by dynamic testing. However, it might be the case that such a requirement 
does not specify any properties of the test dataset. If a test dataset provides only a modest 
classification challenge to a network, then a high-level of classification performance does 
not mean that the network will operate well during operation. An additional condition 
needs to be specified i.e. the properties of the test dataset used to evaluate the classification 
performance. For example, the test dataset might be characterized in terms of its relation 
to the dataset used to train the classifier, or in terms of its noise content, or in terms of the 
intrinsic separability of its component classes. System requirements addressing discriminative 
capability could then state the permitted form of a function mapping test dataset properties 
to classifier performance. If these requirements are specified and verified, we can have a 
degree of confidence that the classifier will perform at a certain level in an operational mode 
when applied to input instances of a certain type.

This paper introduces a measure and its variants that can be used to quantify the dissimilarity 
between a test dataset and a training dataset. This dissimilarity will henceforth be termed ‘dataset 
dissimilarity’. Classifier performance for a particular test dataset might itself be measured in terms 
of accuracy for example. If so, classifier accuracy can then be given as a function of this dataset 
dissimilarity measure i.e. each test dataset is assigned a dataset dissimilarity value, and this quantity 
will map to an accuracy value. This in turn allows system-level requirements to be formulated in 
terms of the required relationship between performance and the test dataset dissimilarity measure. If 
such a requirement is verified, evidence has been gathered that a classifier will perform at a certain 
level when applied to test datasets; there will be a greater level of confidence that a classifier will 
generalise as required to data which is dissimilar to the training dataset.

The contribution made by the study reported in this paper is, firstly, the introduction of a 
novel measure which gauges the dissimilarity between a test dataset and a training dataset. This 
measure adopts and extends some of the concepts reported in DeepGauge on testing criteria (Ma 
et al., 2018). Secondly, we demonstrate that the measure can be used to determine the relationship 
between test dataset dissimilarity and classifier performance. Thirdly, we investigate the suitability 
of the MMD, an established measure, for gauging test dataset dissimilarity and thereby predicting 
classifier performance. Finally, we propose an integrated process for the verification of ANN classifier 
generalisation performance. Dissimilarity measures play a key role within this verification process. 
The outputs of the verification process presented in this paper have “cross-domain usage” across 
many industries including maritime, transportation, and aviation.

The remainder of this paper is structured as follows. We briefly introduce some important 
V&V concepts derived from software engineering, and then review the relevant literature. We then 
discuss our contribution to the field, before presenting and analysing our experimental work. We 
next introduce a novel integrated verification process for ANN classifiers that describes how the 
dissimilarity measures are applied. Thereafter the paper examines how the approach described could 
be extended and finally draws conclusions.
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2. Key VeRIFICATIoN AND VALIDATIoN CoNCePTS

Verification can be defined as: ‘methods by which confidence can be gained in the correctness 
of a system with respect to its specification’ (Hond, White, Asgari, 2020). In traditional software 
engineering, corner cases are a key aspect of verifying the correctness of a program’s behaviour 
through dynamic testing. A corner case is a state in which several factors reach the edge of their 
operating or behavioural range (each being an edge case) simultaneously (e.g. when several program 
inputs achieve their maximum or minimum values) (Chico, 2021). The idea of a corner case naturally 
transfers to ML input data. Here, corner cases can be considered inputs that are outliers with respect 
to the training data. As ML algorithms enter deployment, we need to be able to state and verify the 
expected, or mandated, prediction or classification performance for corner cases.

There are a number of reasons why an input would be an outlier, and therefore a corner case, with 
respect to the training data. ML training and test dataset instances correspond either to points in an 
input space or, after feature extraction, to points in some feature space. One of the key assumptions 
of ML systems is that the training and test data is independently and identically distributed within 
the input space. This is referred to as the independent and identically distributed assumption (Chung, 
et al., 2018), (Vapnik, 1999). In practice, this means that the two datasets (test and train) must be 
randomly sampled from the same source, usually a single set of data. However, this assumption will 
often not hold when ML models are deployed to the real world because of domain shift (Kouw, 
2018), (Tsymbal, 2004).

3. ReLATeD woRK

In (Asgari, et al., 2019), a review of selected aspects of Robotics and Autonomous Systems (RAS) from 
different sectors is covered. This review includes the defined level of autonomy, the technological and 
regulatory aspects, and current verification, validation, certification and assurance (VVCA) aspects. 
The current VVCA are mainly based on the standards and regulations for the safety and security of 
systems that are composed of deterministic functions. The incorporation of ML in RAS will require 
new techniques which can deliver reliable and resilient adaptation and learning, and new formal 
and dynamic verification methods which can be applied to non-deterministic autonomy algorithms.

Many studies addressing the formal verification of ANN classifiers have examined the 
extent to which test instances can be perturbed without yielding a change in the assigned class 
(Weng, 2018). This seam of research was a response to the observation that images which have 
been correctly assigned to a particular class by an ANN classifier, are sometimes assigned to an 
alternative, incorrect class when subject to minor modifications. While it is often the case that 
small perturbations happen by chance, a specially generated noise pattern can be generated which 
causes a specific misclassification. Such generated noise is termed adversarial (Szegedy, et al., 
2013) and might be produced for malicious reasons.

Metamorphic Testing (MT) has been used for the dynamic testing of ANN classifiers (Spieker,et 
a., 2020). MT is a software testing method which makes use of metamorphic relations (MR). An 
MR is a property of the function under test which can be used to generate metamorphic test cases. 
In general, an MR will state the expected relationship between the outputs produced by a system for 
a set of inputs, where those inputs are related by systematic transforms; MT establishes whether the 
MR holds. For example, there are a number of transformations which can be applied to an image, 
such as rotation, which do not change its assigned ground truth class (if the extent of the transform 
is sufficiently limited).

The field of ANN classifier dynamic testing has also been concerned with identifying 
adversarial images. In (Ma et al., 2018), (Tian, et al., 2018), (Pie, et al. 2017), the authors propose 
test coverage metrics which assess the extent to which neural networks are exercised by test datasets. 
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Adding adversarial images to a test image dataset tends to increase neuron coverage, as empirically 
demonstrated by the authors of DeepGauge (Ma et al., 2018).

The metrics proposed by the DeepGauge paper are all based on the range of activation values 
of the neurons within the deep neural network (DNN) under test. The paper defines a number of 
neuron coverage (NC) measures. At the core of the formulation of these measures are two 
complementary concepts: the major function region (MFR) and the corner-case region of a neuron. 
Suppose that a set of images is used to train a network to completion. If this same training set is then 
submitted to the now fully trained network, each of the member images will generate an activation 
value for each neuron. The MFR of a neuron is the interval between the highest and lowest activation 
values generated for that neuron by the set of training images. The corner case region of a neuron is 
then defined as the complement of the MFR: it is the set of values outside of that interval, and within 
-∞  and +∞ . When a test image is submitted to a network, each neuron will produce an activation 
value which will fall within either its MFR or its corner case region. This is illustrated in Fig. 1. This 
conception is in keeping with the earlier discussion, in that a corner-case is considered an outlier. In 
Fig. 1, the blue region spans the major function region, i.e. the range of neuron output values observed 
when processing the set of training images. By definition, only test images can produce neuron output 
values outside of the major function region. The axis has a zero marked to the left because it is being 
assumed that the neuron is a rectified linear unit (ReLU).

The practical usefulness of NC criteria has been questioned (Kim, 2019), because of the 
aggregation of information over an entire test dataset, with the loss of detail about specific test inputs. 
A more practical measure should provide information about inputs on an individual basis. The authors 
of (Kim, 2019) propose Surprise Adequacy for Deep Learning (SADL) that measures how surprising 
a test input is with respect to the data the network was trained on. They introduce two variations: the 
Likelihood-based Surprise Adequacy and the Distance-based Surprise Adequacy. The likelihood-
based method uses Kernel Density Estimation to estimate the probability distributions of the neuron 
activations during training. This estimated probability distribution is then used to determine the level 
of surprise of new inputs, for example, during testing. The second method measures the Euclidean 
distance in neuron space between the test input and two training inputs each from a different class.

Another algorithm which compares the neuron activations generated by training and testing 
data is Deep k-Nearest Neighbors (DkNN) (Papernot, 2018). Whilst not strictly intended for Deep 
Learning (DL) system testing, DkNN calculates the nonconformity of a test activation with respect 

Figure 1. The definition of upper and lower corner activation values for a given neuron, based on the maximum (highn) and 
minimum (lown) activation values recorded for that neuron over the set of training images
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to training activations. The nonconformity value is used as part of a conformal prediction calculation 
to assign both a confidence and credibility value to a given prediction.

A range of statistical distance measures for estimating the safety of machine learning classifiers 
are discussed in (Aslansefat, 2020). The measures in (Aslansefat, 2020) are not specific to a certain 
type of machine learning classifier, such as ANNs. The authors of (Ali, et al., 2018) employ similarity 
measures to enhance the classification of heterogeneous data. Data instances are assigned to groups on 
the basis of the similarity of their feature values, and customized classifiers are applied to each group.

The Maximum Mean Discrepancy (MMD) (Gretton, et al., 2012) is an established non-parametric 
measure for comparing distributions. It has been applied to sets of neural network activation values to 
measure the difference between real and synthetic imagery (Seo, et al. 2018), and between domain-
shifted datasets (Tzeng, 2014). The MMD was applied to raw data in (Liang, 2017) in order to 
determine the distances between in- and out-of-distribution datasets.

4. A NoVeL MeASURe oF TeST DATASeT DISSIMILARITy

An ML classifier requirement might state the required form of the relationship between classification 
performance and some quantitative property of a test dataset. This paper defines such a quantitative 
and informative dataset property: a value returned for a test dataset which measures its dissimilarity 
to a training dataset.

We have formulated a novel distance which returns a value for a given test instance with respect 
to a particular training dataset. We have also defined a normalized form of this distance. Our novel 
dataset dissimilarity measure is the median of this normalized distance over a test dataset. In this paper, 
these measures have only been applied to ANN classifiers used for image classification. However, 
they can be used for other forms of input data, and further ANN architectures and applications.

As per DeepGauge (Ma et al., 2018) let N = {n1, n2, …} be the set of neurons which make up 
a trained DNN and ϕ(x, n) be a function which returns the output of neuron n given network input x, 
e.g. an image. For a neuron n, let highn and lown be the upper and lower bounds of the set of values 
returned by ϕ(x, n) for all inputs in the training dataset. [lown, highn] is the MFR of n.

4.1. Neuron Region Distance
Our core, novel distance is termed the Neuron Region Distance (NRD), and is based on the MFR 
of the ANN neurons (Hond, Asgari, Jeffery, 2020). The NRD of a given input is defined as the 
number of neurons which do not activate inside their MFR. From (Ma et al., 2018) a network is 
entirely in its MFR for input x iff ∀ n ∈  N: ϕ(x; n) ∈  [lown; highn]. The NRD of an input x is 
therefore defined as:

NRD x n N x n low high
n n( ) = ∈ ( ) ∉  

{ }: , ,φ  

Note that the NRD is returned for each input x, rather than for a whole dataset. A simplified 
graphical representation of the NRD is shown in Fig. 2. With only two neurons, n1 and n2, the maximum 
NRD is two, which is assigned when both neurons are activated outside their MFR.

If the MFR for each neuron is mapped to 0 and the corner case region is mapped to 1, the neuron 
outputs produced by an input x can be represented by a binary vector, with as many components as 
there are neurons in the network. A training input would be represented by a vector of zeros. For this 
representation, the NRD can be treated as a Hamming distance between the binary vectors generated 
for x and any training input (as portrayed in Fig. 2). In Fig. 2, training inputs, by definition, produce 
neuron output values within the MFRs of both neurons (indicated by the central zone) and have an 
NRD of 0. An input which activates one neuron within its MFR and the other neuron outside of its 
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MFR has an NRD of 1. If the input produces activation values external to the MFRs of both neurons 
it is assigned an NRD of 2.

4.2. Fractional Neuron Region Distance
The NRD can be normalized to produce a Fractional Neuron Region Distance (fNRD). The fNRD 
is calculated as the proportion of neurons in a network which are activated outside the MFR by a 
given input x:

fNRD x
n N x n low high

N

n n( ) =
∈ ( ) ∉  

{ }� : , ,φ
 

fNRD values can be interpreted as indicating the normalized extent to which test instances differ 
from a training dataset; the values for an entire dataset can be used to generate a measure of test dataset 
dissimilarity. Since the measure is normalised, the fNRD returned for an input can be compared across 
different ANNs, where these networks might vary in their total neuron count.

4.3. Median Fractional Neuron Region Distance
Our dataset dissimilarity measure is the median of the set of fNRD values returned for an entire 
test dataset: the median fNRD. We show that the median fNRD of a dataset relates monotonically 
to classification performance, and thus helps add context to a quoted performance figure (such as 
accuracy or recall).

• Proposed Median fNRD Usage: Test Coverage

Our novel distances and measure can be used as additional analytical tools for test coverage 
assessment, for example in addition to those offered by DeepGauge.

Figure 2. A representation of the NRD associated with activation values generated within a network with just two neurons, n1 and n2
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• Proposed Median fNRD Usage: Qualifying Performance evaluation

Suppose that a neural network is trained with an image dataset, and that multiple test datasets are 
prepared. By finding the fNRD of each image, the median fNRD can be found for each test dataset. 
We suggest two potential behaviours in the context of image classification as described below:

Behaviour Type 1: If the performance of the network for each test dataset significantly decreases 
as the test dataset’s median fNRD increases, then the network is not generalising well to more 
distant data.

Behaviour Type 2: If performance is stable across a range of median dataset fNRD values, then 
classifier generalisation is relatively good.

If Behaviour Type 1 is observed, and the system specification requires better generalisation 
than observed, then this indicates that the network requires further retraining in order to meet the 
specification. If Behaviour Type 2 is observed, and the range of median dataset values with acceptable 
classification performance is greater than that found in the specification, then this provides evidence 
towards the correct operation of the network.

5. INVeSTIGATIoN oF FRND APPLICABILITy

Having established the median fNRD measure, an experimental investigation is required to assess 
its effectiveness for placing performance evaluation in the context of test dataset dissimilarity. The 
Research Questions (RQ) to be addressed are as follows:

RQ1: Is there a positive relationship between the median fNRD of a test dataset and some alternative 
established measure of the dissimilarity of the test dataset to the training dataset?

RQ2: Can the median fNRD be employed to predict the ability of an ANN classifier to generalise?

5.1. Research Question 1: Analysis
An ANN classifier employed in a real-world system, perhaps an autonomous vehicle, is likely to 
receive input data during operational deployment which is not drawn from the same distribution as 
the dataset used to train the network. It is also likely that operational data which differs from the 
training data will be semantically different, in ways perceptible to a person. Further, it can be assumed 
that the greater the dissimilarity between the operational data and the training data, the greater the 
extent to which classification performance will deteriorate. The median fNRD should therefore 
reflect semantic differences between training and operational (or test) datasets if it is to be of utility 
for measuring real-world, practical dataset dissimilarity. In order to investigate whether the median 
fNRD shows this desired property, a series of datasets were generated from a source test dataset, 
where each dataset in the series was treated with additive noise of progressively increasing variance.

The use of additive noise in this manner has four advantages: a) additive noise variance is a 
controllable measure of dataset dissimilarity, b) additive noise of progressively greater variance 
produces a semantic, perceptible change in imagery, c) metamorphic testing can be applied to images 
with added noise, since it is known that, given the variance is not too great, the ground truth of an 
image will not be altered, d) it is known that noise distortion typically reduces performance for both 
machine vision algorithms and humans alike (Geirhos, et al., 2017).

The nature of the relationship between the median fNRD and this alternative measure of dataset 
dissimilarity, the variance of additive noise, was experimentally determined. An increasing monotonic 
relationship between the median fNRD and the variance of additive noise would provide evidence that 
the median fNRD is an effective indicator of significant test dataset dissimilarity, and that it might 
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reflect real-world, noticeable changes between datasets. This activity was intended to establish the 
measure’s potential as a practical tool. In addition, the relationship between the degree of additive 
noise and classifier performance was relevant to the study.

5.2. Research Question 2: Analysis
The second research question is to establish that the median fNRD of a dataset can be used to predict 
the ability of an ANN to generalise under real-world conditions. Our approach was to determine the 
relationship between classification performance and the median fNRD for multiple test datasets.

6. APPLyING THe MMD To NeURoN ACTIVATIoN VALUeS 
To MeASURe DATASeT DISSIMILARITy

6.1. The MMD
In addition to an experimental analysis of the median fNRD (a novel measure), an investigation 
was undertaken to determine the suitability of the maximum mean discrepency (MMD) (an 
established measure) for gauging dataset dissimilarity. The MMD is computed on the basis of 
the neuron activation values produced by each dataset instance. The median fNRD is also a 
function of neuron output values.

An input x supplied to a network will produce an activation value for each neuron. The activation 
values generated by a single input over the network can therefore be represented by a vector with N  
components, with each component being assigned the corresponding neuron activation value. Let m 
be the number of training images and n be the number of test images processed by a network. When 
supplied to the network, the images in the training dataset will produce a series of vectors 
a i m
i
: , ,= 1� . Similarly, the images in the test dataset will generate a series of vectors 

b i n
i
: , ,= 1� .

Following (Gretton, et al., 2012), the MMD between the training and test dataset is found, for 
some kernel k, as:

MMD
m m
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n n

k b b
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j i
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Therefore, in this work, the quadratic time version of the MMD is being calculated.

6.2. Determining the Bandwidth of Gaussian Kernel
The MMD is computed for the experiments undertaken using a Gaussian kernel as below:

k x y
x y

, exp( ) = −
−













2

22σ
 

The value of the MMD is linked to the bandwidth of the Gaussian function, σ. A method 
for calculating sigma is given in (Liang, 2017). The method is based on finding the distance 
between all inputs and then taking the median of the distances. This was the method we adopted 
for computing sigma.
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6.3. Benchmarking the Median fNRD with the MMD
If the MMD is regarded as a standard means of comparing distributions, then it can be used to 
benchmark the ability of the median fNRD to measure dataset dissimilarity. Therefore, as well as 
being assessed on its own merits as a tool for classifier generalisation verification, the MMD served 
as a point of reference for the investigation.

7. eXPeRIMeNTAL MeTHoD

The experiments described in this section were designed to answer the research questions.

7.1. Datasets
Our investigations centred around two well-known datasets: 1) the original Modified National Institute 
of Standards and Technology dataset (MNIST), which features images of handwritten digits (LeCun, 
1998), and 2) Fashion MNIST (Xiao, et al., 2017), which features images of items of clothing. We 
refer to the MNIST data as the “Base” dataset. Each dataset is divided into 10 classes.

7.2. Building and Training Classifiers
The LeNet5 convolutional neural network (CNN) architecture (LeCun, et al. 1998) was used to build 
classifiers for both the Base MNIST and Fashion MNIST datasets. This choice was made to allow 
comparison of our computed DeepGauge-based statistics with those reported in the original paper 
(Ma et al., 2018). This architecture is also relatively lightweight, with 60K weight and bias parameters, 
and therefore fast to train, even without access to intensive GPU processing.

In order to stabilise computed statistics, five class-balanced training, validation and test splits 
were drawn in the ratio 819:81:100 to generate five trained networks for each dataset. A performance 
metric and median fNRD score was calculated for each of the five trained instances of the networks 
when they were supplied with their allocated test data. Finally, the mean of the five performance 
metrics and the mean of the five median fNRD scores were determined.

Training was carried out using the ADAM (Kingma, 2014) optimization routine and all networks 
were implemented using Keras 2.3.1 with a Tensorflow 2.0 backend. Hyper-parameters and learning 
rate schedule were set as per the original LeNet5 paper (LeCun, et al. 1998). All experiments were 
run on a computer with an i7-7820X with 16GB RAM and a GTX 1080 Ti, running Windows 10.

To standardise training for the networks, early-stopping was implemented based on the accuracy 
computed on a validation dataset. The criterion for halting training was an inter-epoch difference 
in validation accuracy of < 0.5%. The model with the highest observed validation set accuracy was 
then retained.

7.3. Test Datasets
Two source test datasets were drawn from the Base and Fashion MNIST datasets respectively and 
derivative datasets were generated by adding additive white Gaussian noise. Fourteen further test 
datasets were produced, seven for each of the two source datasets, by adding noise of progressively 
greater variance. The variance of the additive noise for the two source datasets can be considered 
to be zero.

7.4. The effects of Additive Noise Variance on the Median fNRD of Test Datasets
This and the following section outlines the two experiments used to investigate RQ1. The first 
experiment for RQ1 was designed to determine the effects of increasing the variance of additive noise 
on the median fNRD value returned for a dataset. After fully training the network, the training data 
was re-input to the network, and the relevant MFR boundaries were recorded. Upon presentation of 
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the augmented testing datasets to the network, the fNRD of each image was measured. The median 
fNRD value was then calculated for each test dataset.

7.5. The effect of Additive Noise Variance on Classifier Performance
The second experiment recorded the effects of additive noise on classifier performance. The 
experimentation process was the same for both the Base and Fashion MNIST datasets, and was 
repeated five times in order to improve the statistical estimates. The classifier was applied to each of 
the noisy datasets. The measure of classification performance used was accuracy.

7.6. The effect of the Median fNRD on Classification Performance
RQ2 was addressed by determining the relationship between classifier performance and the median 
fNRD. The global performance achieved for a dataset was measured in terms of accuracy.

7.7. Applying the MMD as a Dataset Dissimilarity Measure
The last two experiments were repeated using the MMD as a dissimilarity measure in place of the 
median fNRD.

8. ReSULTS AND DISCUSSIoN

8.1. effects of Additive Noise Variance on Classifier Performance
Fig. 3 shows the effects of the eight different additive noise variances on the accuracy of the classifier. 
The dark round points correspond to the Base MNIST and the light crosses to the Fashion MNIST 
datasets. Each graphed accuracy measurement is an average, calculated over five repeats, as discussed 
above. The plots in Fig. 3 show that as the additive noise increases in strength, accuracy degrades.

8.2. effects of Additive Noise Variance on Median fNRD
As illustrated by Fig. 4, the median fNRD appears to increase with greater additive noise variance, 
and this is observed for both MNIST datasets. This makes intuitive sense i.e. adding noise shifts the 

Figure 3. Accuracy achieved for Base MNIST (round) and Fashion MNIST (crosses) datasets as a function of additive Noise Variance
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distribution of the test images away from that of the images used to train the network. This establishes, 
in this particular case, that the median fNRD has an increasing monotonic relationship with additive 
noise variance.

8.3. effect of Median fNRD on Classification Performance
Fig. 5 suggests that the relationship between classifier performance (accuracy) and the median fNRD 
score is monotonic and decreasing. This is the case for both MNIST datasets. These quantitative 
relationships capture the ability of the networks to generalise to dissimilar test datasets.

8.4. effects of Additive Noise Variance on the MMD
Fig. 6 shows that the relationship between additive noise variance and the MMD is monotonic for 
both the MNIST and Fashion MNIST datasets. These trends mirror those observed for the median 
fNRD. For the test datasets with no added noise, the MMD is close to zero for both Base and Fashion 
MNIST datasets.

8.5. effect of the MMD on Classification Performance
Again, the results displayed in Fig. 7 for the MMD parallel those seen for the median fNRD: 
performance steadily decreases as the MMD increases for both MNIST datasets.

8.6. Data Dissimilarity Due to Additive Noise Compared to Real-world Data Variation
The experiments which have been conducted have employed additive noise to render test datasets 
dissimilar to training datasets. However, there are many possible modes of variation between training 
data and real-world operational data. For example, real-world data received during operation could 
be intercepted and subject to systematically designed adversarial modifications. These experiments 
may therefore not be sufficient to establish the comprehensive behaviour of the median fNRD and 
MMD measures when applied to test or operational data whose dissimilarity is not wholly due to 
additive noise.

Figure 4. Variation in Median fNRD per dataset against the variance of additive noise applied to the datasets
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8.7. The MMD in Relation to the fNRD
The results in Fig. 4 and Fig. 6 suggest that there is a monotonic relationship between the median fNRD 
and the MMD. However, the results presented in these two figures were obtained for different random 
splits of the data into training and test sets. Further evidence that a monotonic relationship holds is given 
in Fig. 8, which presents a plot of the median fNRD against the MMD for values generated for the same 
training and test datasets. Each Base MNIST point corresponds to one of a series of datasets, generated 

Figure 5. Accuracy scores for the Base MNIST (solid round) and Fashion MNIST (dashed crosses) datasets as a function of 
Median fNRD

Figure 6. Relationship between MMD and Noise Variance
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by adding noise of progressively greater variance to a source Base MNIST dataset. The same applies to 
the Fashion MNIST points. The noise variance values are equal to those found in Fig. 4 and Fig. 6. As 
with all results presented in this paper, the points in Fig. 8 are generated by averaging over five repeated 
experimental runs, as described in the experimental method. Fig. 8 shows that datasets to which noise 
of a greater variance has been added return correspondingly greater values for both the median fNRD 
and the MMD. Since the MMD has been allocated the role of a benchmark, this monotonicity indicates 
that the median fNRD can operate as an effective measure of dataset dissimilarity.

Figure 7. Classifier Accuracy as a function of MMD

Figure 8. Relationship between MMD and fNRD
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The MMD, especially in its linear time form (Gretton, et al., 2012), is conducive to datastream 
processing. Therefore, the MMD is a candidate for possible on-line deployment as a dataset 
dissimilarity measure. Given its low computational complexity, it is also highly feasible that the 
median fNRD could be put to on-line operational use. Moreover, in contrast to the MMD, which is 
generally found between two sets of multiple instances, the NRD and fNRD are defined for individual 
test instances (in relation to a set of multiple training instances). It follows that an fNRD value can 
be computed as each input is received by a classifier during operation, and this in turn should allow 
rapid and scalable dissimilarity calculations, enabling on-going self-verification and performance 
predication.

The NRD and fNRD also provide explicit information about the occurrence of neuron activation 
values outside of neuron MFRs, whereas the MMD does not record such a form of analytical detail, 
nor offers such insight. There might be advantages to applying multiple measures to gauge dataset 
dissimilarity, for example using both the median fNRD and the MMD. It could be the case that a 
measurement obtained by processing the outputs of a set of measures in some way, would prove 
superior to that returned by any individual measure.

8.8. The NRD and Test Coverage
The NRD is based on neural network properties used to define DeepGauge test coverage metrics. 
Statistics describing the NRD or fNRD could be used as further test coverage metrics in the DeepGauge 
suite, since they provide additional information about the extent to which neurons are exercised by 
test datasets. Similarly, there is a dual to the NRD which is informative: the number (or proportion) 
of test instances in a dataset which activate a neuron outside of its MFR.

9. PRoPoSeD INTeGRATeD VeRIFICATIoN PRoCeSS FoR 
ANN CLASSIFIeR GeNeRALIZATIoN CAPABILITy

Here, we propose an integrated ANN classifier verification process. The scheme comprises an off-
line verification component, and an on-line performance prediction component. Verification relies 
on dynamic testing rather than formal means. In particular, the process addresses ANN classifier 
generalisation capability.

9.1. The Classifier Resilience Function (CRF)
The relationship between performance and dataset dissimilarity plays a key role within both of the 
verification process components. In general, this relationship might not take the form of a function, 
but instead be statistical in nature. In the latter case, a function can be derived from the statistical 
mapping. Fig. 9 illustrates how a function could be fitted to a statistical plot such that it returns near 
worst-case performance for a given dissimilarity. Each red cross in the figure represents a dataset. 
The red CRF curve serves to illustrate how a function could be fitted to the set of crosses so as to 
capture the lower limits of performance.

Any function that maps dissimilarity to performance will be termed a Classifier Resilience 
Function (CRF). Fig. 5 and Fig. 7 display examples of CRFs. A CRF can be used to specify and verify 
performance off-line, and to predict performance on-line. More generally, a CRF captures classifier 
performance as a function of some quantifiable property of a dataset. The gradient of a CRF can be 
referred to as the resilience of the classifier for the property quantified. A multivariate CRF would 
take values returned for multiple dissimilarity measures as arguments.

CRFs can be specified, when stating a requirement, or empirically measured, when verifying 
the requirement. The performance that a classifier is required to attain as a function of dataset 
dissimilarity is specified by means of a CRF, or a family of CRFs. The CRF produced during the 
verification process for a classifier, the empirically measured function, would have to belong to the 
specified family of CRFs if it is to be verified. Fig. 10 shows synthetic functions constructed for 
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illustration, with an example of a specifying and a measured CRF. In this instance, the specifying 
CRF takes the form of a horizontal line with the constant value Ymin, and this gives a lower bound on 
the family of acceptable CRFs. The full specification is that a measured function must belong to the 
set of functions whose performance values are at least equal to the specified lower-bound CRF for 
dissimilarity values less than or equal to some threshold Zth. Such a requirement can be stated as: the 
classifier X must perform at a level >= Ymin for dataset dissimilarity <= Zth. The second (discrete) 
function displayed in Fig. 10 represents a function based on measurements made during a classifier 
verification procedure. Since the measured function lies above the minimal, specifying CRF for 
dissimilarity values <= Zth, the classifier has been verified for this particular requirement.

9.2. The Full Verification Process
The full verification process (Fig. 11) commences with a stakeholder identifying requirements for 
classifier behaviour. These requirements are then restated as technical requirements, expressed in 
terms of one or more CRFs. Using the example given above, it might be the case that a classifier X 
must perform at a level >= Ymin for any test or operational dataset which has a dissimilarity <= Zth 
relative to the training dataset. The level of performance could be measured in terms of accuracy 
for example. Under these conditions, a technical requirement might specify a minimally acceptable 
CRF (being a lower bound on the family of acceptable CRFs) which has the form shown in Fig. 10.

The next stage of the process is to train the classifier by means of a training dataset in the standard 
manner. After training, various properties of the trained network are recorded in preparation for the 
subsequent verification stage. When the NRD is being used as the dataset dissimilarity measure, the 
MFR would be established for all (or a subset of) relevant neurons.

The off-line verification stage consists of a comparison of specified and measured CRFs: the 
classifier is verified if the measured CRF has a form belonging to the specified family of CRFs. 
If the classifier fails to be verified, there are a number of options: the classifier can be retrained 
using a modified training dataset; the requirement can be changed - for the example above, Ymin 
or Zth, or both, could be altered; and a modified or alternative classifier could be chosen. If the set 
of test datasets do not cover the dissimilarity range required for verification, in that the maximum 

Figure 9. A stylised example of fitting a CRF to a statistical relationship between performance and dissimilarity
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Figure 10. A stylised example of a specifying CRF (blue, continuous line) and a CRF which has been measured for verification 
(red crosses)

Figure 11. Classifier Verification Process Block Diagram
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dissimilarity observed for a dataset is significantly less than Zth, then datasets whose dissimilarities 
extend to Zth must be sought.

The CRF measured and recorded during the off-line verification stage can also be used for the 
final stage of the verification process: on-line performance prediction. This would require measuring 
the dissimilarity of data received during operation relative to the training dataset. Furthermore, it 
might be essential that the dissimilarity could be continually recalculated in real-time. These computed 
dissimilarity values would then be mapped to performance values by means of the CRF as measured 
off-line. This predicted performance can then be made available to downstream processing modules 
as necessary. A system can be engineered to respond accordingly to the level of on-line performance 
predicted. Returning to our example, and the case of a classifier which has been verified off-line, if 
the measured on-line dissimilarity Z’ is below Zth, then the performance Y’ will be predicted to be 
greater than or equal to Ymin. In this case, the system response might be set to be proportionate to Y’. 
However, if the dissimilarity exceeds Zth then another course of action such as a fail-safe response 
might be required.

It is feasible to measure dissimilarity on-line, and to update the measured value in real-time. 
The low computational complexity of the NRD makes it a candidate real-time dissimilarity measure.

9.3. Mapping Stakeholder Requirements to Technical Requirements
The topic of deriving technical requirements from stakeholder requirements is complex. In order 
to give a perspective on how stakeholder requirements might flow down to technical requirements, 
an example will now be given. This will be with respect to the off-line component of the full 
verification process.

Suppose that an ANN classifier is being trained for operation in an autonomous road vehicle. 
The classifier must identify on-road and roadside objects in a city environment. Training and test 
data is collected for several cities, where the test data is presumed to have been drawn from the 
same distribution as the training data. The classifier achieves a performance of, say, 97% for the test 
data. A stakeholder-level requirement on classifier generalisation capability might have been stated 
in the form: ‘The classifier must operate in all unseen cities with a performance of >=95%’. Note 
that stakeholders might well express classifier requirements in keeping with their own operational 
needs, viewpoints and linguistic terms; there is no reason to expect stakeholders to be familiar with 
the concept of dissimilarity measures, let alone typical values returned for such measures. Therefore, 
stakeholder-level requirements, such as the example quoted above, will need to be mapped to a 
technical requirement.

This mapping could be achieved in the following way. First, test data is collected from a number of 
unseen cities (locations from which no data has previously been gathered). This data would comprise 
one or more datasets associated with each city. For each dataset, the classification performance and 
corresponding dissimilarity measure value are found. The stakeholder requirement has specified a 
value for Ymin. The corresponding Zth value for the requirement is now derived from the scatter graph 
formed by plotting the set of measured (classification performance, dissimilarity measure value) 
points. In Fig. 12 each red cross corresponds to an unseen city dataset point. First, the maximum 
dissimilarity Zmax value is determined for the set of points. Next, a margin of safety is added to Zmax to 
give Zth. The margin of safety, a dissimilarity value interval, is introduced because of the uncertainty 
that the unseen city data represents the range of all possible unseen cities. Methods of calculating 
the margin of safety will not be covered here, but it would be at least partially based on the range of 
dissimilarity values returned for the unseen city datasets for which data has been compiled. At this 
point, a technical requirement can be stated in terms of the values established for Ymin (95%) and Zth: 
‘Classifier performance must be >= Ymin for dissimilarities <= Zth’. The blue line in Fig. 12 is a CRF 
which is the lower bound for the family of CRFs which satisfy the above requirement. This technical 
requirement can now be subject to verification. A near worst-case curve is fitted to the scattered 
points to produce an empirically based CRF (shown in red). The technical requirement demands 
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that this near worst-case curve should return performance values >= Ymin for dissimilarities <= Zth. 
The figure shows that this technical requirement has been verified: the near worst-case performance 
given by the fitted CRF is >= 95% for dissimilarities less than or equal to Zth=Zmax+Margin of Safety.

When the training and test datasets are compiled for the seen cities, they will need to be 
representative of factors which influence the nature of the captured imagery, such as the type of 
buildings, roads and vehicles found in a city, or the climate. The intention would be to sample the 
variation exhibited by these identified factors, both individually and in combination, so that an 
effective classifier can be developed. However, it is difficult to avoid bias, and so the factors referred 
to might not be sampled adequately with respect to the set of unseen cities. It is for this reason that 
the classifier performance for the unseen cities might fall below 97%, as anticipated by and accepted 
by the stakeholder. However, there might be further factors which are not present or active when 
the training data is collected, but whose subsequent impact could lead to the generation of test or 
operational imagery dissimilar to the training data. The possible presence of novel factors which 
could influence unseen data is one reason for introducing a margin of safety.

10. FUTURe woRK

So far, we have examined datasets which are frequently used by the ML community, using Base 
MNIST and Fashion MNIST as the source of training and test data. Applying the dissimilarity 
measures we have examined to more extensive public or industrial datasets would be the next step, 
and would allow us to check whether our results hold for more applications. Although imagery and 
CNNs have featured in this study, the measures can be applied to any form of input data, and other 
ANN architectures. We also intend to apply other transformations to source datasets, in the same 
manner that additive noise was applied in the set of experiments described. These would include 
further image processing transformations such as rotation and blurring.

We anticipate that classifier performance will degrade as the dissimilarity between the training 
and test datasets increases. Computational issues aside, the most useful dissimilarity measure is the 
one that is most effective at predicting this degradation. Finding an optimal dissimilarity measure 
would support its application in the verification processes described.

Figure 12. Verification of a CRF against a technical requirement derived from a stakeholder requirement
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11. CoNCLUSIoN

The Assuring Autonomy International Programme (AAIP) is developing a Body of Knowledge 
which will serve as a reference for the safety assurance of autonomous systems (Hawkins, 2019). Our 
proposed verification approach addresses several assurance objectives within the AAIP document. 
More generally, novel approaches for verifying the correctness, performance, and behaviour of ANN 
classifiers will raise levels of confidence in their robustness and safe operation, and in their suitability 
for real-world deployment. Our contribution, a proposed integrated ANN classifier verification process, 
and an assessment of the potential of novel and established dissimilarity measures for requirement 
specification, is a step towards this end.

In this paper, the neuron region distance (NRD) and fractional neuron region distance (fNRD) 
have been introduced as dissimilarity measures. Experiments conducted on two image databases have 
shown that classification accuracy is a monotonically decreasing function of the median fNRD. A 
similar trend was also observed for the MMD.

An acceptable relationship between classification performance and the median fNRD, or the 
MMD, could be specified in a requirement. An integrated verification process has been proposed 
which makes use of such performance specifications for off-line verification. The process then exploits 
the verified relationship for on-line performance prediction.
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