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ABSTRACT

In order to improve the ability to detect network attacks, traditional intrusion detection models often 
used convolutional neural networks to encode spatial information or recurrent neural networks to obtain 
temporal features of the data. Some models combined the two methods to extract spatio-temporal 
features. However, these approaches used separate models and learned features insufficiently. This 
paper presented an improved model based on temporal convolutional networks (TCN) and attention 
mechanism. The causal and dilation convolution can capture the spatio-temporal dependencies of the 
data. The residual blocks allow the network to transfer information in a cross-layered manner, enabling 
in-depth network learning. Meanwhile, attention mechanism can enhance the model’s attention to the 
relevant anomalous features of different attacks. Finally, this paper compared models results on the 
KDD CUP99 and UNSW-NB15 datasets. The authors apply the model to video surveillance network 
attack detection scenarios. The result shows that the model has advantages in evaluation metrics.
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INTRODUCTION

With the advent of big data, the Internet constitutes an indispensable tool and platform for human 
society to progress, work and share information. While the network brings significant benefits to 
humanity, network information security also worries most network users and is widely concerning in 
all walks of life (Liu et al, 2018, Yin et al, 2017 and Zhang et al, 2021). Especially in the financial, 
medical, military, and public security fields. In these fields, abnormal network attacks and data 
privacy leaks have emerged, resulting in irreparable losses to the state, enterprises, and individuals 
(Zhang et al, 2021). So the issue of securing and maintaining a secure network environment needs 
to be addressed urgently.

As active defense tools, network intrusion detection models can monitor network traffic in 
real-time, sense hidden attacks and analyze various types of attack behaviors (Tian et al, 2021). As a 
result, these tools help maintain network information security and propose corresponding protection 
strategies. Compared with passive defense measures against network attacks, intrusion detection 
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models can detect known attacks while discovering unknown attacks and have produced many efficient 
model results. With the feasibility in improving the real-time monitoring efficiency, reducing false 
alarm rates, and shortening detection times, intrusion detection is still an indispensable focus of 
research for network security defense today.

Network intrusion detection systems include techniques based on traditional machine learning, 
based on deep learning, reinforcement learning, and visualization learning (Wang et al, 2021). The 
most widely used techniques in intrusion detection include the K-Nearest Neighbor algorithm(KNN) 
that can reflect the difference between normal and abnormal traffic, achieving classification for various 
attack types without parameter estimation. Hurley et al (2016) uses principal component analysis 
to re-extract features and then uses KNN-based models for attack identification and classification. 
But large and higher-order data can make the algorithm less accurate. Compared with other machine 
learning algorithms, the Support Vector Machine(SVM) can improve the detection accuracy based 
on solving the imbalance of data samples. Teng et al (2014) and Reddy et al (2016) used SVM-
based methods to effectively detect DDOS attacks, probe attacks, and other abnormal behaviors. In 
recent years, with the breakthroughs in deep learning research in natural language processing, image 
recognition, and other fields have been achieved. In contrast, the traditional machine learning methods 
require professionals with extensive domain knowledge to carry out manual feature extraction, as a 
shallow learning method has been unable to effectively cope with the massive data resources, and 
the network bandwidth increase caused by complex and variable data features.

Deep learning can learn the intrinsic patterns of data and adapt to high-dimensional prediction 
requirements, which is more efficient and has excellent potential in network intrusion detection. 
Recurrent Neural Network(RNN) (Manickam et al, 2017) and their variants such as Long Short-
Term Memory(LSTM), Bi-directional Long Short-Term Memory(BiLSTM), Gated Recurrent 
Unit(GRU) (Kim et al, 2016, Roy et al and 2018, Yan et al, 2018), which take sequential data as 
input, can efficiently obtain the temporal information from the data. These algorithms also have deep 
representation, which can better achieve global detection and find potential anomalous behaviors. 
CNNs are feed-forward neural networks with deep structure, and their convolutional computation 
can efficiently and accurately achieve feature extraction (Lin et al, 2018). Liu et al (2018) use CNN 
combined with multiple classifiers to detect unbalanced high-dimensional data accurately. The research 
and use of deep learning models has become a future trend in the field of intrusion detection. But 
still faces problems such as training speed, computational storage, hyper-parameters adjustments, and 
optimization of the model due to the heavy load of the learning process. So that the implementation 
of network intrusion detection using deep learning methods is still a challenging problem.

This paper discussed the acquisition of spatial and temporal feature information through 
TCN. Then this paper introduced the Attention mechanism to give corresponding attention to the 
characteristics of different attack types. Finally, this paper compared the results with other deep 
learning models while improving the classification accuracy of different types of attacks. The main 
work of this paper is as follows:

(a)This paper used a network intrusion detection model based on TCN networks. It introduces the 
Attention mechanism, which can fuse the functions of the temporal and convolutional models in 
the form of layers within a single model. Moreover, the model extracts the spatial and temporal 
attributes of the data in parallel, and reasonably allocate attention to the characteristics of different 
attacks to improve the effectiveness of the model.

(b)This paper evaluated the model using a weighted average of the evaluation metrics to avoid bias 
in the model predictions due to data imbalance.

(c)The model was evaluated on a subset of the KDD Cup 99 10% data and UNSW-NB15.A weighted 
average metrics are used to evaluate the results of multiple classifications.
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Related WORK
Deep learning methods have yielded good research results in the field of intrusion detection. Especially 
CNN and RNN models, their variants have significant advantages in capturing spatial and temporal 
information about the data when applied independently and in combination. The advantages of such 
models are briefly described next.

Multilayer Perceptron(MLP) (Ramchoun et al, 2016), also known as Artificial Neural 
Network(ANN), is the basis for all kinds of neural network variants. The classical MLP includes an 
input layer, an output layer, and an implicit layer, with full connectivity between layers. The model 
has a simple structure and a single internal unit function, but many units work in parallel and can 
learn actively to achieve efficient information processing. In addition, the structure of the MLP itself 
stores information on the weights of neurons to achieve a data memory function. This distributed 
storage also gives the MLP the ability for feature extraction and cluster analysis, so early deep learning 
research on network intrusion detection also uses the MLP.

Recurrent neural networks(RNN) (Zaremba et al, 2014) is a type of neural network that models 
sequential data. It can analyze the current output of a sequence in association with the output of the 
previous sequence. And the sequence possesses the ability to remember information about the data 
in the previous sequence. The network can then take it into account in the current computation. The 
hidden layers of the network have connectivity and temporal properties between them, and the output 
of the hidden layers includes the current and previous moment’s output. Thus the RNN network has 
the depth to mine the temporal and semantic information in the data Expression ability (Wang et 
al, 2021). CHEN et al. used this algorithm to construct a classification model for wireless network 
intrusion detection and optimized the network structure, hyper-parameters, and generalization of the 
attack classification model to achieve anomalous attack detection on the network (Chen et al, 2019). 
However, the model’s performance will degrade the longer the amount of memory data exceeds the 
model’s load capacity when processing large data.

LSTM (Hochreiter et al, 1997) is one of the variants of RNN. RNNs in practice suffer from 
the gradient explosion or gradient disappearance problem, while LSTM can avoid the problem and 
learn the long-term temporal dependence of temporal data. LSTM has a chain-like structure with 
four layers of neural networks interacting to achieve long-term memory with unit states throughout 
the network. The forgetting unit determines which previous information is discarded, and the input 
unit determines the input of new information. It updates the state of the currently stored information 
through a state unit, and finally, the filtered information is output through the output unit. Radford et 
al. treat network traffic packets as words in a sequence and use word embedding to form a vector and 
then use LSTM to extract the temporal features of network traffic (Benjamin et al, 2018), enabling 
the detection of anomalous network traffic is achieved.

GRU (Cho et al, 2014) is proven to be an effective variant of LSTM with a more straightforward 
structure compared to LSTM. GRU replaces the input, forgetting, and output units in LSTM with 
the update and reset gates. The reset gate is more sensitive to short-term timing dependencies, while 
the update gate performs more actively for long-term dependencies. The GRU is not only able to 
circumvent the gradient disappearance problem in back-propagation but also able to outperform the 
LSTM in terms of computational speed and efficiency (Cho et al, 2014). The intrusion detection 
model in the literature (Li et al, 2021) uses two GRU structures to store data to achieve non-linear 
classification decisions. The use of GRU allows the model to obtain the best detection performance 
using the smallest sample size, which converges faster and reflects the efficiency of GRU.

CNN is a feed-forward neural network with a deep structure, and a typical CNN consists of 
the input layer, the convolutional layer, the pooling layer, and the fully connected layer. The use 
of convolutional computation can extract data space features accurately and efficiently (Xiao et al, 
2019). Together with its advantages of fewer network parameters and translation invariance, some 
scholars to construct models for anomaly attack detection by converting network traffic into the form 
of images in the network intrusion detection problem (Liu et al, 2020). In addition, CNN is also good 
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at handling data with statistically smooth and locally correlated properties, so they are also used to 
perform the selection of traffic features and set the cost function weights for attack classification based 
on the number to solve the data imbalance problem in intrusion detection data (Naseer et al, 2018). 
However, CNN cannot learn serial correlation and cannot understand long-term data dependencies 
(Liu et al, 2019).

CNN-LSTM model, CNN, and LSTM models can acquire temporal and spatial characteristics 
of data, respectively. Many scholars have combined the advantages of the two types of models 
to construct intrusion detection models based on CNN and LSTM (Liu et al, 2019 and Yao et al, 
2021). Parallel local features of attribute information are extracted through convolution and pooling 
operations of CNN networks. The LSTM is then used to capture long-time dependent features, fully 
considering the interactions between feature information. The fusion model helps to reduce the false 
alarm rate of model detection while further achieving the improvement of intrusion detection model 
performance and detection accuracy.

The above methods are a combination of two independent models encoding the spatial and 
temporal characteristics of the data. The network structure is highly complex, involves more 
parameters, yet there is still room for improvement in the detection time of intrusion detection models. 
Lea et al. pioneered TCN for segmenting the actions of people in videos (Lea et al, 2016). TCN is 
considered an optimization of the CNN network, which is a typical one-dimensional convolutional 
neural network (Fan et al, 2021). Furthermore, TCN subsequently achieved optimal results in areas 
such as weather prediction (Yan et al, 2020), sound event localization and detection (Guirguis et al, 
2020), probabilistic prediction (Ngo et al, 2021), and machine translation (Kalchbrenner et al, 2016). 
Compared with the networks mentioned above, the TCN network has a clear and concise structure, 
can be parallelized, and provides more accurate results. In this paper, the model will be migrated to 
applications related to network intrusion detection based on its characteristics. On the other hand, 
the attention mechanism has also received much attention in recent years. The attention mechanism 
imitates the way humans observe objects and discover essential information from a large amount of 
information (Shu et al, 2020). The attention mechanism is also introduced into intrusion detection, 
which can better learn attack features.

METHOD

Temporal Convolutional Network
TCN (Bai et al, 2019) is composed of a one-dimensional fully convolutional layer with the same 
input and output lengths of causal convolution, dilated convolution, and a residual module. TCN uses 
zero paddings to keep the lengths between layers the same. The causal convolution in the network 
allows layers to form causal relationships, thus avoiding information leakage. Meanwhile the residual 
module and dilated convolution control over the length of memory. They ensure the model has long-
term memory capability and the gradient disappearance problem is avoided, further enhancing the 
model’s predictive capability (Zhai, 2021 and Yao et al, 2021). Firstly, TCN inherits the characteristics 
of the receptive field in convolutional neural networks with a flexible receptive field, which can be 
adjusted to the size of the receptive field according to different task characteristics. Secondly, the 
sharing of parameters in different stages allows the model to avoid the gradient vanishing problem 
in the recurrent neural network and enables parallel processing of temporal data without processing 
the data in a specific order. Finally, the sharing of convolutional kernels allows for a lower memory 
footprint and a shorter network feedback loop, making the model faster to train and validate.

Causal Convolution
Causal convolution was first proposed in WaveNet. Causal convolution has a unidirectional structure, 
i.e., it can only perceive memory history information with strict temporal constraints. The structure 
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is shown in Figure 1. For the values at the moment T of the previous layer, the causal convolution 
depends only on the next layer at the moment T and its historical values, i.e., the elements in the 
output sequence, depend only on the input sequence elements and the historical elements. To ensure 
that the inputs and outputs have the same length, they are padded with zeros. Zero paddings are 
applied to the front end of the input data sequence to ensure causality in the convolutional layer. In 
the absence of expansion, the total amount of padding required to maintain the same length as the 
input is kernel_size-1.

Dilated Convolution
Traditional convolutional neural networks use pooling operations to maintain features and avoid 
overfitting. But when the convolutional layers deepen, the network requires more parameters and the 
computational complexity increases. Dilated convolution (Yu et al, 2016) can cope with this problem 
well. The structure is shown in Figure 2. Dilated convolution changes the size of the convolutional 
kernel by adding a dilated rate to the standard convolution, which represents the number of intervals in 
the kernel, as shown in Figure 3. Compared to traditional convolutional networks, dilated convolution 
can achieve a larger receptive field with the same number of layers, and the larger the receptive field, 
the better the data memory capability.

Figure 1. Causal convolution

Figure 2. Dilated convolution
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The equation for the dilated convolution is as follows:
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In the formula, d represents the dilated rate, and k is the size of the convolution kernel. When d 
is equal to 1, the dilated convolution is transformed into a standard convolution. The control of the 
receptive field range is achieved by changing the value of d. The receptive field in a convolutional 
neural network refers to the size of the area mapped by the nodes in the feature map on the input 
map. Expanding the receptive field upgrades the long-term memory capability. The receptive field 
is linearly related to the size of the convolutional kernel and the number of convolutional layers. The 
formula for calculating the receptive field size is as follows:

R K N d
field size stack i

i

= 1+2 ⋅ − ⋅ ⋅∑( )1 	 (2)

Where N
s
 is the number of stacks, N

b
is the number of residual blocks per stack, d is a vector 

containing the dilations of each residual block in each stack, and K is the kernel size. Optimization 
of the dilated convolution is achieved by increasing the range of the receptive field, but multiple 

Figure 3. Expansion of the receptive field
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layers of stacked dilated convolution layers can also lead to the problem that some of the data is not 
involved in the computation. To ensure adequate access to information when deep convolutional 
neural networks are constructed, the dilated rate needs to be increased exponentially by a factor of 2 
as the depth of the network increases.

Residual Connections
As the depth of the network increases and the number of network layers increases, the more abstract 
and meaningful the features extracted become. Nonetheless, simply stacking the network layers 
would lead to a gradient problem, which would be solved using regularization and initializing the 
weight parameters. Yet, network degradation would arise. The idea of a residual network allows for 
a constant mapping of the redundant layers of the network, making the deeper network equivalent 
to a shallow network. It replaces one layer of convolution operations with a residual module, thus 
solving the network degradation problem. The residual module enables the network to transfer 
information in a cross-layer connection. The structure of the residual module is shown in Figure 4. 
The module provides two types of connections: identify mapping (shortcut) and residual mapping, 
with the residual mapping being set to 0 as the network reaches optimality and continues to deepen 
the network. The TCN residual module is internally connected as a residual function from the input 
after two rounds of dilated convolution, weight normalization, Relu activation, and Dropout. If the 
input undergoes one-dimensional convolution filters, it is connected as a shortcut. The introduction 
of the residual module in the TCN enables in-depth training of the data while avoiding the problems 
associated with multi-layer networks.

Attention Mechanism
Attention mechanisms were first applied to computer vision, where the human eye focuses on a 
specific part of a target object to catch the critical information when looking at a picture or an object 
(Liu et al, 2021). Attention mechanisms can be applied in various fields such as machine translation 
and sentiment classification. The key principle is to use attention to determine which part of the input 
data is of most interest. Then extract features from the key part and use the important information to 
complete the subsequent classification task. The attention mechanism helps to improve the interpret-
ability of neural network models and reduce some of the drawbacks associated with stacking deep 
neural networks. In this paper, the attention mechanism is applied to an intrusion detection model. For 
input multi-feature data, the attention mechanism can assign important weights to different inputs. It 
focuses on the feature content most relevant to anomalous attacks and ignore the noise and redundant 
information in the input, further helping the model to improve the classification effect.

Intrusion Detection Model Based on TCN- Attention Mechanism
In this paper, the data is pre-processed and fed into a TCN-Attention model to further extract features 
from the data. The model shows more optimized results on the multi-classification problem for a 10% 
subset of the KDD CUP99 and UNSW-NB15 datasets. The model has also demonstrated its ability 
to detect accurately in practical applications. The model structure is shown in Figure 5.

The model consists of five parts. The input data of the model is sent to the TCN network layer 
in shape as (timesteps, input_dim) after numerical and normalization processing. At this stage, a 
wider receptive field enables better memory and learning of the temporal and spatial information of 
the input data. Followed by the application of the attention mechanism to further deepen the focus 
on and attack features. It learns the differences between various attacks, and improves the model’s 
ability to discriminate between the features of different kinds of attacks. Finally, a fully connected 
layer is used to pass the output values to the Softmax function to complete the multi-classification 
intrusion detection task. The causal convolution, inflation convolution, and residual modules in the 
TCN layer widen the receptive field and extract the Spatio-temporal characteristics of the data in 
parallel. While the input data for intrusion detection are all high-dimensional and contain features 
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of different attack types. The attention mechanism introduced by the model identifies normal and 

Figure 4. Residual connections

Figure 5. Model structure
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abnormal data using the information most relevant to the abnormal attack. Besides, it also focuses on 
the differences in characteristics exhibited by the various forms of attack to make better judgments 
and solve the multi-classification problem. Finally, to ensure model training efficiency, accuracy 
and to prevent overfitting and make the model more robust, we set dropout=0.5 and introduce layer 
normalization to normalize all neuron nodes in each layer for a single sample. The TCN-Attention 
model combines the advantages of the temporal model, the convolutional model, and the attention 
mechanism, resulting in a simpler and more efficient internal structure.

EXPERIMENTS

Experiment Environment
The experiment environments include Tensorflow (2.4.1), Keras (2.4.3), Skit-learn, Python (3.7), 
and can be run on various platforms, such as CPU and GPU. Moreover, this paper introduce Adam 
optimizer and loss functions based on the mean-square error in training. The details are shown in 
Table 1.

Datasets
KDD CUP99
KDD CUP99 is a pre-processed extraction of approximately 5 million records of network connections 
based on the DARPA 98 dataset and is widely used for intrusion detection and assessment. The data 
set contains four main categories of 39 attack types, of which 22 attack types appear in the training 
set, and another 17 unknown attack types appear in the test set. The four types of abnormal attacks 
are DOS, R2L, U2R, and Probe.

The dataset uses 41 features to describe the network state, with item 42 being the corresponding 
label. Due to a large amount of duplicated and redundant data in the original dataset, a subset of 
10% of the KDD CUP99 dataset was used for training and evaluation of the model, containing a 
total of 494,021 connection records, and the ‘corrected’ sample was selected as the test set, which 
contained the types of attacks that did not appear in training. The specific details of this data subset 
are shown in Table 2.

UNSW-NB15
The raw network packets of the UNSW-NB15 dataset was created by the IXIA PerfectStorm tool in 
the Cyber Range Lab of UNSW Canberra for generating a hybrid of real modern normal activities 

Table 1. Experiment environment

Project Environment

Operating System Window 10

GPU Nvidia 1660Ti

VRAM 6G

Memory 16G

CPU Xeon Gold 6240

Function Base Tensorflow (2.4.1) & Keras (2.4.3)

Programming Environment Python(3.7)
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and synthetic contemporary attack behaviors. The tcpdump tool was utilized to capture 100 GB of 
the raw traffic. The Argus, Bro-IDS tools are used and twelve algorithms are developed to generate 
features with class label. The nine types of attacks in this dataset are Analysis, Backdoor, Dos, Exploits, 
Fuzzers, Generic, Reconnaissance, Shellcode and Worms. The training set and testing set of the data 
set are used in the experiment, the number of records in the training set is 175,341 records and the 
testing set is 82,332. There are 44 features contained in the two datasets. The more details of attacks 
in the data set are shown in the table 3.

Data Pre-Processing
Since neural networks operate on numeric data, this paper need to encode the categorical columns. 
Protocol type, service, connection status (flag), and 22 specific attack types in KDD dataset and proto, 
state, service, attack_cat in UNSW-NB15 dataset are all identified by text, the text corresponding to 
these features needs to be mapped to a numerical representation. Then deletd the rows with missing 
values. Next, for discrete feature in the data set, One-hot encoding is performed to take the discrete 
feature values to correspond to points in the Euclidean space for better model learning. One Hot 
encoding allows us to convert each category of a categorical feature into its own feature. Moreover, 
Neural Networks are sensitive to data with features that have large differences in their numeric range, 

Table 2. Details of KDD CUP99 10% subset

Types KDD Cup 99 10% dataset corrected

Normal 97,278 60,593

DOS 391,458 229,853

Probe 4,107 4,166

R2l 1,126 16,189

U2r 52 228

Total 494,021 311,029

Table 3. Details of the UNSW-NB15

Types Training set Testing set

Normal 56000 37000

Analysis 2000 677

Backdoor 1746 583

Dos 12264 4089

Exploits 33393 11132

Fuzzers 18184 6062

Generic 40000 18871

Reconnaissance 10491 3496

Shellcode 1133 378

Worms 130 44

Total 175341 82332



International Journal of Information Security and Privacy
Volume 16 • Issue 1

11

for continuous feature values, normalization is performed in order to ensure that all values in every 
numeric column are between 0 and 1. This is important in ensuring that no features are overshadowed 
by others during the NN learning process. The formula of normalization is as follows:

x
x x

x x
' min

max min

= 
-

−
	 (3)

Four types of attack labels and normal labels exist in the KDD CUP99 data set, these five 
categories are labeled with one-hot encodes, as shown in Table 4.

In the UNSW-NB15 data set, there are nine categories of attacks. These categories are labeled 
with one-hot encodes, as shown in Tables 5.

Evaluation Metrics
In this paper, as a classification task, the model will be evaluated using accuracy, precision, recall, 
and F1-Score when evaluating the performance of the intrusion detection model. Accuracy is the 
ratio of the total number of correct classifications to the classifications in the task. The formula for 
calculating the accuracy is as follows:

Table 4. One-hot encode for labels (KDD CUP99)

Number Types One-hot encode

0 Normal [1,0,0,0,0]

1 Dos [0,1,0,0,0]

2 Probing [0,0,1,0,0]

3 R2l [0,0,0,1,0]

4 U2r [0,0,0,0,1]

Table 5. One-hot encode for labels (UNSW-NB15)

Number Types One-hot encode

0 Normal [1,0,0,0,0,0,0,0,0,0]

1 Analysis [0,1,0,0,0,0,0,0,0,0]

2 Backdoor [0,0,1,0,0,0,0,0,0,0]

3 Dos [0,0,0,1,0,0,0,0,0,0]

4 Exploits [0,0,0,0,1,0,0,0,0,0]

5 Fuzzers [0,0,0,0,0,1,0,0,0,0]

6 Generic [0,0,0,0,0,0,1,0,0,0]

7 Reconnaissance [0,0,0,0,0,0,0,1,0,0]

8 Shellcode [0,0,0,0,0,0,0,0,1,0]

9 Worms [0,0,0,0,0,0,0,0,0,1]
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Accuracy= 
TP+TN

TP+TN+FP+FN
	 (4)

The calculation of precision, Recall, and F1-Score need to be based on the four categories of the 
model’s final prediction results, as shown in Table 6.

True Positive means that attack data is correctly classified as an attack by the model. False Positive 
means that normal data is incorrectly classified as an attack by the model. False Negative means that 
attack data is incorrectly classified as normal by the model. True Negative means that normal behavior 
is correctly classified as normal by the model. Precision refers to the proportion of the sample with 
an optimistic prediction that is a true positive sample. Recall is the proportion of positive cases in the 
sample that are predicted correctly. F1-Score is the summed mean of precision and Recall, reflecting 
the stability of the model. These three evaluation indicators are calculated as follows:

Precision = 
TP

TP+FP
	 (5)

Recall= 
TP

TP+FN
	 (6)

F Score  
Precision Recall

Precision Recall
1

2
− =

+
* 	 (7)

Considering the extreme imbalance in the number of different sample categories in the intrusion 
detection data set, this paper uses the weighted-average approach to calculate these three evaluation 
metrics: Wa-precision, Wa-recall, Wa-F1score with the following formula, a

i
 denotes the weight 

occupied by category i:

Wa-Precision= Precisionα
i

i

n

i
=
∑

1

* 	 (8)

Table 6. Confusion Matrix

Real Tags Predictive Tags

Attack Normal

Attack True Positive(TP) False Positive(FN)

Normal False Negative(FP) True Negative(TN)
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Wa-Recall= Recallα
i

i

n

i
=
∑

1

* 	 (9)

Wa-F1= F1-Scoreα
i

i

n

i
=
∑

1

* 	 (10)

Analysis of Experimental Results
The TCN-Attention network intrusion detection model designed in this paper combines the advantages 
of extracting temporal data features and capturing spatial characteristics of data in one model. In 
addition, attention mechanisms are introduced to suppress the negative effects of irrelevant information 
on the effectiveness of intrusion detection and to focus on the relevant characteristics of the attack 
data. The model is used for parallel extraction of spatio-temporal information from the KDD CUP99 
and UNSW-NB15 datasets. While the TCN allows for long term memory of the data and the attention 
mechanism captures the anomalous features of the attack data, the combination of which further 
improves the accuracy of the network anomaly attack detection. A weighted average metric is used 
to evaluate the results of multiple classifications, taking into account the extreme imbalance in the 

Table 7. Comparison of weighted average evaluation metrics for all models (KDD CUP99)

Baseline Wa-precision Wa-recall Wa-F1 score Accuracy

TCN-Attention 94.01% 92.33% 90.20% 92.81%

TCN 93.75% 90.78% 89.96% 92.38%

CNN-LSTM 91.68% 91.47% 89.49% 92.01%

CNN 93.57% 92.23% 92.20% 92.12%

LSTM 91.68% 91.47% 89.49% 91.29%

MLP 86.23% 77.50% 80.51% 85.68%

RNN 90.86% 91.96% 89.91% 90.03%

GRU 91.92% 92.01% 89.98% 92.00%

Table 8. Comparison of weighted average evaluation metrics for all models (UNSW-NB15)

Baseline Wa-precision Wa-recall Wa-F1 score Accuracy

TCN-Attention 72.39% 72.92% 70.55% 72.92%

TCN 63.71% 70.41% 62.89% 70.98%

CNN-LSTM 55.34% 68.37% 58.90% 68.38%

CNN 59.83% 72.38% 62.35% 70.27%

LSTM 49.15% 61.65% 53.14% 61.65%

MLP 55.65% 40.38% 30.29% 40.30%

RNN 64.39% 68.82% 69.64% 68.02%

GRU 58.04% 68.75% 61.68% 68.75%
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number of attack samples. Table 7, table 8 compares the evaluation metrics of the TCN-Attention 
model and the classical model of network intrusion detection models that can extract temporal and 
spatial information. In the KDD CUP99 dataset, the TCN-Attention model significantly outperformed 
the other models in Wa-precision, Wa-recall, and accuracy metrics, and ranked second in Wa-F1 
score metric results. In the UNSW-NB15 dataset, the TCN-Attention model outperformed the other 
baselines in all metrics and showed the best classification results.

Figure 6, figure 7 show the results of multi-classification tasks. For the KDD CUP99 dataset, 
the TCN-Attention model (red line) outperforms other models in more than 70% of the evaluation 
metrics, in which the proposed model outperforms other models in all metrics for both “Dos” and 
“Probe” types of attacks. The legend shows that the model does not detect well in U2r and R21. The 
underlying reason for this is some of the attacks are sparsely sampled, so the model cannot learn the 
two anomalous attacks attributes well, therefore underperforms. F1-score is the summed average 
of the precision and recall rates, which is a comprehensive assessment of the model’s performance. 
The overall performance of the TCN-Attention model is the best. For the UNSW-NB15 dataset, the 
TCN-Attention model outperforms other models in more than 85% of the evaluation metrics, the six 
labels “Normal”, “Dos”, “Exploits”, “Fuzzers”, “Generic”, “Reconnaissance” have more recorded 
data and the model has better detection results, so this paper only show the results of these six types 
in the figure 7. While for the labels “Analysis”, “Backdoor”, “Shellcode”, “Worms”, all models are 
unable to learn these attacks features well for detection. Due to the imbalance of the data and the low 
number of anomalous records in the dataset.

Comparing the results of the evaluation metrics in the above tables, the authors find that the MLP 
model has the worst results. The MLP is a feed-forward neural network and is not good at handling 
datasets with high-dimensional features. Furthermore, the model also does not have long-term 

Figure 6. Comparison of results (KDD CUP99)

Figure 7. Comparison of results(UNSW-NB15)
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memory capability and has poor access to information about the features, so the model is not effective 
at multi-classification. The three temporal models, RNN, LSTM, and GRU are more effective than 
MLP because they can capture the temporal information in the traffic data, which further enhances 
the effectiveness of the models. The CNN-LSTM model incorporates a convolutional layer capable of 
extracting spatial elements on top of extracting temporal attributes of the data. But the direct stitching 
of the two models is less effective than using the CNN model alone. Possible reasons for this result 
are that the CNN and LSTM models are incompatible in terms of connectivity, which leads to some 
feature attributes being ignored when passing information between the two networks during the 
extraction of features. Secondly, the spatial knowledge learned by CNN and the temporal knowledge 
learned by LSTM are not well integrated. The information obtained is not fully communicated with 
each other, resulting in a lack of significant improvement in classification. The CNN model is second 
only to the TCN model and the TCN-Attention model, indicating that the convolutional and pooling 
layers are better able to extract feature attributes. Nevertheless, the model cannot extract time-series 
information and still has an insufficient understanding of the data, leaving some room for improvement. 
The TCN model is able to learn the spatio-temporal properties of the data well. But, without the 
Attention mechanism, it does not capture the features of the anomalous attack data deeply enough.

One of the advantages of the TCN-Attention model is the simpler internal structure of the model. 
The ability to combine the advantages of a convolutional neural network with the advantages of a 
temporal model to extract the spatio-temporal characteristics of the data in a single model. In addition, 
the use of TCN avoids the gradient problem, enables long-term memory of the data. It improves 
the shortcomings of the convolutional model and fully explores the content of the data. The second 
advantage of the model lies in the introduction of the attention mechanism, which increases the 
interpretability of the neural network model. The attention mechanism focuses on the relevant features 
of different attack types for the input high-dimensional data, learns the data selectively. And again, it 
excludes the interference of irrelevant factors, allowing the model to have a deeper understanding of 
the data and to mine the information more fully. Therefore, the model is able to obtain better results 
when applied to detect anomalous attacks in practical scenarios.

APPLICATION

Video Surveillance Network Data
First, this paper researched the front-end devices deployed in the video surveillance network. Moreover, 
authors looked up vulnerability information and attack scripts for different brands of device models. 
Then, the authors studied the video surveillance network topology and business application scenarios 
so that the authors can understand the flaws in the network deployment. Finally, the attacks on the 
video surveillance network were attempted using various artifices to understand the characteristics of 
the attack methods. After completing the above preparatory work, the authors found that attacks using 
weak passwords, command damage, device and system vulnerabilities, and remote code execution were 
able to successfully bypass network defenses and achieve control of the network. In addition, these 
attacks have a higher success rate, are simple to implement, and have a greater negative impact on the 
network. After mastering the weaknesses of the video surveillance network, this paper conducted a 
network attack and defense maneuver at a video surveillance network in an area of Beijing. To allow 
for a more diverse sample of anomalous attacks, this paper also implemented attack methods that 
were not used earlier. To verify the effectiveness of the model in a real-world application scenario, 
the authors collected raw network traffic packets for one week.

Regarding the processing of packets: first, the packets are collated and filtered for information such 
as port and length. Then, the data flow is traced and the packets are parsed. To avoid a significant loss 
of anomalous features during data pre-processing, the authors use Wireshark directly to obtain binary 
information about the network and transport layers in the traffic packets. This binary sequence is then 
processed using One-hot encoding. The binary information is eventually presented in hexadecimal, 
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with each byte taking the shape of [1,257] after processing. This information is then fed into the 
model as a sequence. Finally, the traffic data is labeled. The dataset contains labels for both normal 
and abnormal attacks. The number of records in the training set is 30,000 and in the test set 10,000. 
The processing of the data is shown in Figure 8:

Application
The video surveillance network intrusion detection task is defined as a binary classification task 
that detects anomalous attacks. Table 9 shows the results of applying the TCN-Attention model to a 
practical application scenario of video-specific network intrusion detection, where the TCN-Attention 
model performs best. Faced with anomalous network attacks in a specific application scenario, 
the model is able to learn the features of different attack methods well and complete the intrusion 
detection task. The above application can prove that the TCN-attention model has excellent network 
attack detection capability. It can be widely used in real life to provide services for the public network 
security of society.

Figure 8. Data processing

Table 9. Comparison of evaluation metrics for all models

Baseline Wa-precision Wa-recall Wa-F1 score Accuracy

TCN-Attention 94.45% 90.83% 91.72% 93.10%

TCN 92.32% 87.59% 89.46% 91.97%

CNN-LSTM 91.68% 91.47% 87.67% 91.87%

CNN 86.67% 75.03% 77.78% 83.33%

LSTM 66.67% 66.67% 53.33% 66.67%

MLP 64.12% 67.50% 63.23% 63.68%

RNN 66.67% 66.67% 53.33% 66.67%

GRU 66.66% 66.67% 53.33% 66.67%
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CONCLUSION

The TCN intrusion detection model incorporating the attention mechanism is proposed in this work. 
The text data is first converted and normalized into numeric types. Then the One-hot encoded data 
is fed into the TCN network. After, the convolution and residual modules can achieve long-term 
memory and extraction of spatial and temporal information of higher-order network traffic features. 
The attention mechanism can further help the model focus on the feature attributes corresponding to 
different attacks and better solve the multi-classification problem. Since the TCN model is a variant 
of a convolutional neural network, it has the advantages of a convolutional model and, in addition, 
the ability of a temporal model to learn from long-term memory of the data. Therefore, to verify 
the performance of the model proposed in this paper, the authors chose to test the model using the 
classical temporal models RNN, LSTM, GRU, the convolutional model CNN, the concise deep 
learning model MLP and the fusion model CNN-LSTM for comparison. The dataset used for the 
comparison is the KDD CUP99 10% data subset and UNSW-NB15. These are two classical network 
intrusion detection datasets and have had duplicates and redundancies removed from the original data 
to ensure the validity of the model’s detection results. The performance advantages of the model are 
verified by comparing the evaluation metrics of accuracy, weighted average accuracy, recall, and F1 
Score. Finally, the model’s broad application capability is demonstrated by applying it to anomaly 
detection in a practical scenario in a video surveillance network.

Our model gives good results in applications, but its detection of anomalous categories with 
fewer attack records is not yet satisfactory. In the future, the work will first start to solve the data 
imbalance problem, improve the detection rate of anomalous attack types with fewer records. Secondly, 
try to validate and enhance the model’s detection efficacy on more novel attacks. Finally, solving 
the overfitting problem that tends to occur in the training of the model. Ultimately, the ability of the 
model to handle unbalanced data is improved.
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