The Environmental Effects of FDI: Evidence From Middle East and North Africa Countries

Vijay Pereira, NEOMA Business School, France*
Imad A. Moosa, Ton Duc Thang University, Vietnam
Vikash Ramiah, University of Wollongong, Dubai, UAE
Yama Temouri, Khalifa University, UAE

ABSTRACT

Empirical work on the environmental effects of FDI has produced a mixed bag of results, with hardly any evidence for Middle East and North Africa (MENA) countries. A theoretical model is presented, postulating that whether FDI has a positive or negative effect on the environment depends on the position of the underlying country or region on the environmental Kuznets curve (EKC). The empirical results indicate that FDI leads to environmental degradation in MENA countries and that they fall on the rising sector of the EKC. The theoretical model is supported by the empirical results.

KEYWORDS

Environmental Degradation, Environmental Kuznets Curve, Foreign Direct Investment, Pollution Halo Hypothesis, Pollution Haven Hypothesis

1. INTRODUCTION

Interaction between the environment and foreign direct investment (FDI) flows takes one of two forms. The first is that regulation aimed at combatting environmental degradation may deter FDI as foreign firms may choose destinations where environmental regulation is not stringent. In this case, the effect runs from the environment to FDI. Conversely, FDI may exert a negative or positive effect on the environment. The negative effect arises when a polluting industry relocates to the host country and when foreign firms choose to outsource their polluting operations by using the services of domestic firms. The positive effect arises when foreign firms utilising modern, less-polluting production techniques displace polluting domestic firms and when the latter are forced to use less polluting technology in response to the presence of foreign firms.

From a theoretical perspective, the impact of FDI on the environment can be decomposed into a scale, composition and technique effects. These effects are produced respectively by growth in economic activity, changes in industrial structure, and the implementation of technological innovations to reduce the pollution intensity of output. In general, two conflicting hypotheses describe the effect of FDI on the environment: the pollution haven hypothesis, which predicts a negative impact of FDI on the environment, and the pollution halo hypothesis, which predicts that FDI leads to environmental degradation.
improvement. Numerous empirical studies have been conducted to find evidence for either hypothesis, producing (as always) a mixed bag of results.

A large amount of work has been done on the relation between FDI and the environment, covering a large number of countries and regions. At least one study uses meta-data obtained from previous studies. While a large amount of work has been done on the determinants of FDI flows into Middle East and North Africa (MENA) countries, far less work has been done on the environmental effects of FDI. This is an important issue because if FDI has a negative effect on the environment, then a balance must be struck between the costs and benefits of FDI. In some cases, the environmental damage of FDI exceeds its benefits by far—two notorious examples are the Bhopal disaster, when a foreign direct investor killed by poison gas over three thousand Indian villagers, and the Lago Agrio case against the Chevron-Texaco oil company, which polluted the Amazon during its operations in Ecuador between 1964 and 1992.

This paper contributes to the general literature on the environmental effects of FDI, and on the sparse literature on MENA countries. While previous studies go straight to the specification of an empirical model containing the variable of interest and control variables, this study is based on a mathematical model that encompasses the environmental Kuznets curve (EKC). The model tells us that whether FDI has a positive or negative effect on FDI depends on the position of the host country on the EKC. It is postulated that if a country falls on the upward-sloping section of the EKC, FDI will have a negative effect on the environment, and vice versa. Before estimating and testing the model empirically, a simulation exercise is run to show that the model works in the way predicted by the mathematical derivation. Another contribution of this study is that the empirical specification and estimation of the model make it possible to account for the effects of factors other than the variable interest (CO2 emissions) without identifying them explicitly, which is a formidable task. Furthermore, the model is estimated in a time-varying parametric framework. In short, the paper should make a contribution to the literature by suggesting a completely new methodological approach.

This paper is structured as follows. Following the introductory section, a literature review is presented in section 2. Since the empirical evidence for MENA countries is sparse, most of the literature review section covers the principles as applied generally. In section 3, a mathematical exposition is presented where the model is derived by combining the relation between income and FDI with the environmental Kuznets curve. The shape of the functional relation between emissions and FDI is derived diagrammatically. In section 4, the validity of the theoretical model is confirmed by simulation, showing that in the presence of the environmental Kuznets curve, the relation between emissions and FDI looks like an inverted U-shaped curve. The empirical model is specified in section 5 by introducing unobserved components that take care of the effects of variables that do not appear explicitly on the right-hand-side of the equation. The data and empirical results are presented in section 6, covering the EKC and the emissions-FDI relation. Section 7 contains some concluding remarks, followed by an appendix that shows further mathematical derivations involving alternative functional forms.

2. LITERATURE REVIEW

The effect of FDI on the environment is frequently examined by using the theoretical approach proposed by Antweiler et al. (2001) to decompose the impact of trade openness on the environment into scale, composition, and technique effects. The scale effect of FDI refers to the environmental degradation resulting from growth in economic activity, in which case FDI exerts a negative effect on the environment. The composition effect stems from the possibility that FDI may alter the industrial structure of the host country, which may be positive or negative, depending on which industries gain importance at the expense of others. For example, if non-polluting industries thrive as a result of FDI, the effect on the environment will be positive. The technique effect arises when FDI brings about environmentally-friendly technological innovation, which is conducive to clean production, in which
case the effect of FDI on pollution will be negative. The total effect, therefore, may be negative or positive, depending on the balance of the three effects.

In general, two conflicting hypotheses describe the effect of FDI on the environment (Zarsky, 1999; Albornoz et al., 2009; Chung, 2014; Hille, 2018). The first is the pollution haven hypothesis whereby foreign firms seeking a competitive advantage relocate their dirty production to countries with lower environmental standards, leading to environmental deterioration in the host country. The pollution halo hypothesis, on the other hand, postulates that foreign enterprises may bring their environmental knowledge and advanced technologies, leading to a clean-up of the environment. This would happen if foreign firms from developed countries are less pollution-intensive than the domestic firms of a developing country.

Several arguments can be put forward to support the proposition that FDI has a positive effect on the environment. First, firms from developed countries (the source of FDI) typically use newer, more energy efficient technology than the domestic firms of host developing countries. Second, foreign firms are typically larger than domestic firms, which means that the former are likely to have better access to the resources needed to undertake a greater degree of research and development and staff training. They are also more likely to adopt environmental management practices and accreditation schemes such as ISO 14001. Third, the production systems used by foreign firms are likely to be compliant with stringent OECD environmental regulation, and as such they are likely to continue to operate these systems in developing countries, particularly if they wish to export to OECD markets. However, profit-maximising firms may not use less-polluting but more expensive technology if they can get away with it, which is bound to happen in the absence of stringent environmental regulation.

Among others, Cole et al. (2017) and Shabbaz et al. (2015) provide an overview of the empirical literature. A large variety of methods are used to analyse the FDI-environment relation, including (but not limited to) input-output models (Jiang et al., 2015), causality testing (Omri et al., 2014), computable general equilibrium models (Hübler, 2011), and variance decomposition (Yang et al., 2008). Some studies examine one country (typically at a regional level) while other studies consider a group of countries.

China in particular has received a lot of attention with respect to this topic. Liang (2006) and He (2006) analyse sulfur dioxide (SO$_2$) emissions for 260 cities and 29 provinces in China. Liang (2006) uses a reduced form equation and finds negative correlation between FDI and air pollution over the period 1996-2003, concluding that FDI may be beneficial for the environment. By employing a system of simultaneous equations to estimate the FDI-emission relation, He (2006) reveals that FDI had a very small negative effect on industrial SO$_2$ emissions between 1994 and 2001. Likewise, He (2008), Bao et al. (2011), and Yang et al. (2013) use simultaneous equation models. He (2008) finds a very small negative effect of FDI whereas Bao et al. (2011) reveal that the environmental impact of FDI varies from one case to another, depending on the pollutant and region. Similar results are found by Yang et al. (2013), who compare the environmental effects of domestic and foreign capital for six different pollution intensities in 25 Chinese provinces between 1992 and 2008.

Elliott et al. (2013) investigate the influence of FDI on the energy intensity of Chinese cities to find that FDI has a negative impact on energy intensity, although this effect varies by region. They argue that regional differences reflect the abilities of regions to absorb and benefit from environmental spillovers. Wang and Chen (2014) also examine the effect of FDI in Chinese cities and consider the role played by institutions. They find that FDI tends to boost SO2 emissions, which can be mitigated by strong legal and environmental institutions. Another study of China by Lan et al. (2012) shows that the effect of FDI on the environment depends on the technological capabilities of a region, which they capture by using measures of human capital. They find that FDI reduces pollution emissions in provinces with higher levels of human capital.

Some studies have been conducted on a variety of countries, with contrasting results. Kheder (2010), for example, finds mixed effects for French FDI outflows to developed, developing and emerging economies between 1999 and 2003. Using a reduced-form equation, Pazienza (2015)
examines the impact of FDI inflows on CO\textsubscript{2} emissions from fuel combustion. For a set of 30 OECD countries, FDI produced a rather small reduction in emissions over the period 1981-2005. Overall, research has produced mixed results when the scale, composition and technique effects of FDI are considered simultaneously. The results in general show that FDI produces either a positive or a rather small negative impact on the environment.

Cole et al. (2017) review the literature on the relation between FDI and the environment, suggesting that the first theoretical contributions to the FDI-environment debate consider the impact of regulatory differences on comparative advantage (for example, Baumol and Oates, 1988; Markusen et al., 1993; Chichilnisky, 1994; Motta and Thisse, 1994). These studies reach the conclusion that capital flows from countries with stringent regulations to those with less stringent regulations, providing support for the pollution haven hypothesis. For example, Baumol and Oates (1988) present a partial-equilibrium two-country model with two sectors that differ in terms of their pollution intensity and demonstrate that the developed country has more stringent regulations and hence a comparative disadvantage in the production of dirty goods, whereas the opposite is true in the developing country. Pearson (1987) considers environmental issues as part of the decision to invest abroad, taking environmental services to be a factor of production alongside labour and capital.

Some papers follow the political economy approach, whereby FDI may influence and be influenced by environmental regulation (for example, Markusen et al., 1995; Hoel, 1997; Kayalica and Lahiri, 2005; Ulph and Valentini, 2001; Cole et al., 2006; De Santis and Stahler, 2009). It can be demonstrated that environmental differences are generated endogenously when firms seek lower environmental standards or at least to avoid higher standards (for example, Oates and Schwab, 1988; Hillman and Ursprung, 1992, 1993; Rauscher, 1995; Fredriksson, 1997, 1999). The conclusion derived from these papers is that FDI flows from high- to low-regulation countries or regions. Contrary to these theoretical predictions, some empirical studies fail to find conclusive evidence for the pollution haven hypothesis. Supportive evidence is produced by Tang (2015), Xing and Kolstad (2002), Eskeland and Harrison (2003), List and Co (2000), Keller and Levinson (2002), Kheder and Zugravu (2012), Zhang and Fu (2008), and by Millimet and Roy (2015). No evidence is found by Javorcik and Wei (2004), Kahouli et al. (2014), Manderson and Kneller (2012), Rivera and Oh (2013), and by Bu and Wagner (2016). Mixed evidence is found by Bialek and Weichenrieder (2015), Dam and Scholten (2008), Waldkirch and Gopinath (2008), Dean et al. (2009), Fredriksson et al. (2003), Rezza (2013), and by Kalamova and Johnstone (2012).

Zugravu-Soilita (2017) examines the impact of FDI from France, Germany, Sweden, and the United Kingdom on national emissions of a range of pollutants, concluding that the environmental impact of FDI depends on the host country’s environmental regulation, capital endowments, technology gap between foreign and domestic firms, and domestic labour productivity. More specifically, he finds that FDI is associated with a reduction in pollution in countries with relatively low capital-labour ratios and relatively stringent regulation. In contrast, FDI is associated with an increase in pollution in relatively capital-abundant countries with lax regulations. These findings are consistent with the factor endowment hypothesis and the pollution haven hypothesis (Cole and Elliott, 2003; 2005).

Kim and Adilov (2012) also undertake a country-level study of the effects of FDI, this time on CO\textsubscript{2} emissions. They find that FDI into developing countries has the effect of reducing per capita CO\textsubscript{2} emissions, which they interpret as evidence that FDI brings with it advanced, cleaner technology. In contrast, Shahbaz et al. (2015) find that inward FDI has the effect of boosting CO\textsubscript{2} emissions in developing countries, indicating that such results appear to be sensitive to the econometric specification and to the choice of countries and time periods within the sample.

More recently, the effect of FDI on the environment has been examined by Wang et al. (2020), Sabir et al. (2020), Pavlovic et al. (2020), and by Demena and Afesorgbor (2020). Wang et al. (2020) examine the case of China and find that FDI inflows lead to a deterioration of environmental quality, thus validating the pollution haven hypothesis. Sabir et al. (2020) investigate the effect of FDI on the environment in South Asian countries and find evidence for the environmental Kuznets curve and
for a negative effect of FDI on the environment. Pavlovic et al. (2020) look at the case of the Balkans and produce evidence that supports the pollution haven hypothesis. Contrasting results are obtained by Demena and Afesorgbor (2020) who conduct a meta-analysis of 65 primary studies that produce 1006 elasticities. They conclude that FDI reduce environmental emissions significantly.

The evidence for MENA countries is sparse. Koçak and Şarkgüneşi (2018) examine the impact of FDI on CO2 emissions in Turkey by estimating an augmented version of the EKC. Their results indicate the existence of a long-term relation between FDI, economic growth, energy usage, and CO2 emission, and that the potential impact of FDI on CO2 emission is positive. Asghari (2013) tests the validity of pollution haven and halo hypotheses by analysing correlation between carbon emissions and FDI inflow of seven MENA countries during the period 1980-2011. The results show that FDI inflows have a weak and statistically significant negative relationship with CO2 emission, which suggests weak support for the pollution halo hypothesis.

3. RESEARCH DESIGN

The starting point is to combine two functional relations representing the effect of FDI on income per capita and the EKC. The final equation shows that FDI may exert a positive or negative effect on the environment, depending on whether the underlying economy is on the rising or falling sector of the EKC.

The literature tells us that FDI is beneficial to the host country, in the sense that it boosts growth. Accordingly, it is assumed that income per capita is positively related to FDI such that

\[ y = \alpha_0 + \alpha_1 f \]  

where \( y \) is income per capita and \( f \) is foreign direct investment inflows. Suppose that the relation between environmental degradation, proxied by CO2 emissions, and income per capita follows the environmental Kuznets curve (EKC) such that

\[ e = \beta_0 + \beta_1 y - \beta_2 y^2 \]  

where \( e \) is emissions per capita. For equation (2) to have the inverted U-shaped EKC, the conditions \( \beta_2 > 0 \) and \( \beta_1 > 0 \) must be satisfied. By substituting (1) into (2), we obtain

\[ e = \beta_0 + \beta_1 (\alpha_0 + \alpha_1 f) - \beta_2 (\alpha_0 + \alpha_1 f)^2 \]  

By expanding and rearranging equation (3), we arrive at the following expression:

\[ e = (\beta_0 + \beta_1 \alpha_0 - \beta_2 \alpha_0^2) + (\beta_1 \alpha_1 - 2 \beta_2 \alpha_0 \alpha_1) f - \beta_2 \alpha_1^2 f^2 \]  

By differentiating equation (4) with respect to \( f \), we have

\[ \frac{de}{df} = \beta_1 \alpha_1 - 2 \beta_2 \alpha_0 \alpha_1 - 2 \beta_2 \alpha_1^2 f \]
The first order condition for a turning point is satisfied when the first derivative is equal to zero, which gives
\[ f = \frac{\beta \alpha_1 - 2\beta \alpha_0 \alpha_1}{2\beta^2} \]
\[ (6) \]

The second order condition for a local maximum is satisfied since
\[ \frac{d^2e}{df^2} = -2\beta^2 \alpha_1^2 < 0 \]
\[ (7) \]

Therefore, the effect of FDI on the environment may be positive or negative, depending on the position on the EKC. In the absence of the EKC, equation (2) reduces to
\[ e = \beta_0 + \beta_1 y \]
\[ (8) \]
which gives
\[ e = \beta_0 + \beta_1 (\alpha_0 + \alpha_1 f) \]
\[ (9) \]
where
\[ \frac{de}{df} = \beta_1 \alpha_1 > 0 \]
\[ (10) \]

which means that in the absence of the EKC and the presence of a monotonic positive relation between emissions and income per capita, FDI leads to environmental degradation. In the appendix two more possibilities are considered: (i) the relation between emissions and income is linear (positive or negative), which represents the rising and falling sectors of the EKC separately, and (ii) the relation between income and FDI follows an inverted U-shaped curve. The second possibility can be justified on the grounds that too much FDI may be bad for the host economy.

The relation between emissions and FDI in the presence of the EKC can be derived diagrammatically as shown in Figure 1. Part 1 of the diagram (top right) represents equation (1), whereas part 2 (top left) is a twisted EKC (\( y \) as a function of \( e \) rather than \( e \) as a function of \( y \)). Parts 1 and 2 of the diagram define the same levels of \( y \) associated with \( f \) and \( e \). Part 3 (bottom left) is a 45-degree line that is used to switch the axes, such that \( e \) is measured on the vertical rather than the horizontal axis. The fourth part (bottom right) depicts the relation between emissions and foreign direct investment, which is positively (negatively) sloped for the rising (declining) sector of the EKC.

4. A SIMULATION EXERCISE

The kind of behaviour exhibited by the variables can be illustrated by running some simulations based on calibrated stochastic versions of equations (1) and (2). The simulation results are displayed graphically in Figure 2, showing that in the presence of the environmental Kuznets curve, the relation
between emissions and FDI assumes a similar shape. This indicates that when emissions rise with the level of income (the country falls on the rising sector of the EKC), FDI has a negative effect on the environment (rising emissions), whereas if emissions fall with the level of income (the country falls on the declining sector of the EKC), FDI has a positive effect on the environment (falling emissions).

For the purpose of simulation, it is assumed that inward FDI grows by 2% per time period, subject to random variation. Starting from a level of 100 at time 0, FDI follows the stochastic equation

$$f_t = 100(1 + 0.02)^t + \varepsilon_t$$

(11)

where \( t \) assumes discrete values between 0 and 28. The behaviour of FDI over time as determined by equation (11) is displayed in the top left part of Figure 2, where it rises over time subject to random variation. If the level of income depends positively on FDI, the corresponding income series is generated from the equation
Accordingly, the behaviour of income is displayed in the top right part of Figure 2. Income is seen as following a trend interrupted by some cyclical and random variations. In the presence of the environmental Kuznets curve, the relation between emissions and income may take the following stochastic form

\[ e_t = -20130 + 232.38y_t - 0.6308y_t^2 + \zeta_t \]  

Equation (13) produces the inverted U-shaped curve depicted in the bottom left part of Figure 2, showing that emissions rise with income up to about when income is 180, then they start declining. It follows that the relation between emissions and FDI takes the following form

\[ e_t = -3034.6 + 61.09f_t - 0.2173f_t^2 + \nu_t \]  

which is shown in the bottom right part of Figure 2. We can see that up to a level of 140, FDI has a negative effect on the environment in the host country as it leads to (or associated with) rising emissions. Higher levels of FDI are associated with declining emissions. Further results can be obtained by deleting the quadratic term from equation (13), making emissions a monotonic rising function of income. In this case, the emissions will turn out to be a monotonic rising function of FDI.

5. THE EMPIRICAL MODEL

The corresponding empirical model contains a stochastic trend that accounts for the effects of the explanatory variables that do not appear explicitly on the right hand-side of the equation. A structural time series model describing the effect of FDI on the environment can be represented by the following equation

\[ e_t = \mu_t + \delta_f f_t + \varepsilon_t \]  

where \( e \) is emissions of some sort as a proxy of environmental degradation and \( f \) is a measure of FDI inflows. \( \mu_t \) and \( \varepsilon_t \) are the time series components of \( e_t \); \( \mu_t \) is the trend and \( \varepsilon_t \) is the random component. If \( f \) has any effect on \( e \), the coefficient \( \delta \) must be statistically significant. The trend, which represents the long-term movement of the dependent variable, is specified as

\[ \mu_t = \mu_{t-1} + \varphi_{t-1} + \eta_t \]  

\[ \varphi_t = \varphi_{t-1} + \zeta_t \]

where \( \eta_t \sim NID(0, \sigma^2_\eta) \), and \( \zeta_t \sim NID(0, \sigma^2_\zeta) \). The model may also contain a cyclical component, but a pre-examination of the data series indicates the absence of cycles.
The model is estimated in a TVP framework using maximum likelihood and the Kalman filter to update the state vector (Harvey, 1989; Koopman et al., 2006). If the coefficient on the explanatory variable turns out to be significant, while the trend is also significant, this means that while the explanatory variable appearing explicitly on the right hand side of the equation is an important determinant of the dependent variable, the effects of other determining variables are embodied in the trend. If the trend is insignificant, then only the explanatory variable determines the dependent variable. And if the coefficient on the explanatory variable is insignificant while the trend is significant, then the dependent variable is determined by variables other than the one appearing explicitly in the equation. The trend reflects the behaviour of the variables affecting emissions that do not appear explicitly as explanatory variables.

The same methodology is used to estimate the EKC as represented by the equation.
\[ e_t = \mu_t + \gamma_t y_t + \varepsilon_t \]  

where the trend is specified as in equations (16) and (17). The empirical results should be interpreted as supporting the theoretical model if \( \delta_t > 0 \) when \( \gamma_t > 0 \), and vice versa. This means that if MENA countries fall on the upward-sloping section of the EKC (\( \gamma_t > 0 \)), FDI has a negative effect on the environment as it boosts emissions (\( \delta_t > 0 \)).

6. DATA AND EMPIRICAL RESULTS

Annual data going back to 1990 on CO2 emissions, foreign direct investment inflows and GDP per capita are collected from the World Bank data base, which is a primary source of data for those working in the field of development economics. Alternatively known as “World Development Indicators”, it is described as “the World Bank’s premier compilation of cross-country comparable data on development” and a “compilation of relevant, high-quality, and internationally comparable statistics about global development and the fight against poverty”. The data base contains 1,400 time series indicators for 217 economies and more than 40 country groups, with some time series going back more than 50 years.

CO2 emissions are measured in metric tons per capita. FDI is measured in terms of net inflows as a percentage of GDP. GDP per capita is measured in current PPP dollars. The data sample covers the following individual countries: Algeria, Egypt, Iran, Jordan, Morocco, Saudi Arabia, Oman, Turkey, United Arab Emirates, Yemen, Sudan and Tunisia. Combined data have also been collected for MENA (excluding high-income countries) and total MENA. Figure 3 depicts the relation between emissions and income per capita, both measured as period averages for each country. It is quite clear that the two variables are positively related, implying that MENA countries fall on the rising segment of the EKC.

The results of estimating equation (15) are presented in Table 1, which displays the estimated coefficient on the explicit explanatory variable at the end of sample period (t statistic in parentheses), as well as the coefficient of determination, \( R^2 \) and the diagnostics for serial correlation \( (Q) \), heteroscedasticity \( (H) \) and normality \( (N) \). \( Q \) is the Ljung-Box statistic, which has a \( \chi^2 \) distribution and \( H \) is a test statistic for heteroscedasticity with an \( F \) distribution. \( N \) is the test statistic for the normality of the residuals based on skewness and kurtosis. Since we are only interested in the effect of FDI on the environment, estimates of the trend (which represent the effect of other explanatory variables) are not reported.

The t statistics are placed in parentheses underneath the estimated coefficients. The \( Q, H \) and \( N \) statistics are distributed as \( \chi^2(1), F(7,7) \) and \( \chi^2(2) \), respectively.

In all cases the model has a high explanatory power and passes the diagnostics for serial correlation, heteroscedasticity and normality. The coefficient on the explanatory variable (FDI inflows) is significantly positive (implying that FDI leads to environmental deterioration) except for the oil exporting countries: Saudi Arabia, Oman and the UAE. This may be explained in terms of the dominance of the oil industry, in which both domestic and foreign firms (government-owned) use similar technologies. In terms of the magnitude of effect of FDI inflows on CO2 emissions, a comparison can be found in Figure 4, which is a plot of the coefficient on the explanatory variable \( \delta_t \). The magnitudes of the effect of FDI on emissions are quite close, ranging between 0.00023 for Jordan and 0.00009 for Sudan. This means that for each percentage point rise in the FDI/GDP ratio, emissions rise by 0.00023 metric tons per capita in Jordan and by 0.00009 metric tons per capita in Sudan.

The results of estimating equation (18) are presented in Table 2. In each case CO2 emissions are positively related to income per capita as the coefficient \( \gamma_t \) is significantly positive in all cases,
implying that the countries fall on the positively-sloped section of the EKC. The magnitudes of the effect of income on emissions are also quite close, ranging between 1.353 for Tunisia and 1.086 for Yemen (Figure 5). This means that for each dollar rise in income per capita, emissions rise by 1.353 metric tons per capita in Tunisia and by 1.086 metric ton per capita in Yemen. The empirical results, therefore, support the theoretical model.

The $t$ statistics are placed in parentheses underneath the estimated coefficients. The $Q$, $H$ and $N$ statistics are distributed as $\chi^2(1)$, $F(7, 7)$ and $\chi^2(2)$, respectively.

In relation to the literature, the results presented in this study make a lot of sense. Let us recall the contrasting views implied by the pollution haven hypothesis and the pollution halo hypothesis whereby FDI leads to environmental degradation according to the first hypothesis and environmental improvement according to the second hypothesis. The results provided by the literature are mixed, depending (as Bao et al. (2011) explain) on the pollutant and region. In general, it has been found that FDI is associated with a reduction in pollution in countries with relatively low capital-labour ratios and relatively stringent regulation. In contrast, FDI is associated with an increase in pollution in relatively capital-abundant countries with lax regulations.

The analysis presented in this paper shows that the effect of FDI on the environment may be positive or negative, depending on the position of the country on the environmental Kuznets curve, which changes over time. Thus, the results (and the underlying theoretical framework) provide an explanation for the mixed findings of previous studies (Behl et al., 2021; Han et al., 2021; Elbeltagi et al., 2013). Most of the results, however, support the pollution haven hypothesis, which can be explained in terms of the observation that profit maximising firms tend to direct FDI from high- to low-regulation countries or regions for the purpose of cost reduction.
Table 1. Model Estimation Results (Equation 11)

<table>
<thead>
<tr>
<th>Country</th>
<th>$\delta_t$</th>
<th>$R^2$</th>
<th>$Q$</th>
<th>$H$</th>
<th>$N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>0.00023 (3.07)</td>
<td>0.89</td>
<td>3.11</td>
<td>0.15</td>
<td>5.12</td>
</tr>
<tr>
<td>Egypt</td>
<td>0.00017 (3.39)</td>
<td>0.73</td>
<td>6.10</td>
<td>0.21</td>
<td>2.71</td>
</tr>
<tr>
<td>Iran</td>
<td>0.00026 (2.90)</td>
<td>0.23</td>
<td>1.04</td>
<td>0.31</td>
<td>3.62</td>
</tr>
<tr>
<td>Jordan</td>
<td>0.00036 (5.75)</td>
<td>0.96</td>
<td>12.83</td>
<td>0.34</td>
<td>2.50</td>
</tr>
<tr>
<td>Morocco</td>
<td>0.00020 (4.29)</td>
<td>0.86</td>
<td>9.35</td>
<td>0.23</td>
<td>1.20</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>0.00021 (1.65)</td>
<td>0.29</td>
<td>1.69</td>
<td>0.21</td>
<td>2.01</td>
</tr>
<tr>
<td>Oman</td>
<td>0.00014 (1.51)</td>
<td>0.64</td>
<td>14.09</td>
<td>4.69</td>
<td>0.22</td>
</tr>
<tr>
<td>Turkey</td>
<td>0.00022 (7.39)</td>
<td>0.97</td>
<td>3.25</td>
<td>0.48</td>
<td>0.02</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>0.00020 (1.23)</td>
<td>0.08</td>
<td>2.29</td>
<td>0.10</td>
<td>14.20</td>
</tr>
<tr>
<td>Yemen</td>
<td>0.00019 (2.87)</td>
<td>0.48</td>
<td>7.34</td>
<td>0.68</td>
<td>0.81</td>
</tr>
<tr>
<td>Sudan</td>
<td>0.00009 (2.35)</td>
<td>0.47</td>
<td>1.30</td>
<td>7.30</td>
<td>0.02</td>
</tr>
<tr>
<td>Tunisia</td>
<td>0.00022 (4.85)</td>
<td>0.94</td>
<td>5.41</td>
<td>0.11</td>
<td>12.04</td>
</tr>
<tr>
<td>MENA (excluding high-income)</td>
<td>0.00023 (6.40)</td>
<td>0.93</td>
<td>5.18</td>
<td>0.12</td>
<td>1.02</td>
</tr>
<tr>
<td>MENA</td>
<td>0.00023 (6.27)</td>
<td>0.91</td>
<td>3.93</td>
<td>0.25</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Figure 4. Magnitude of the Effect of FDI on CO2 Emissions
Table 2. Model Estimation Results (Equation 14)

<table>
<thead>
<tr>
<th>Country</th>
<th>$\gamma_1$</th>
<th>$R^2$</th>
<th>$Q$</th>
<th>$H$</th>
<th>$N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>1.270 (48.67)</td>
<td>0.99</td>
<td>2.50</td>
<td>1.73</td>
<td>9.97</td>
</tr>
<tr>
<td>Egypt</td>
<td>1.227 (24.47)</td>
<td>0.99</td>
<td>0.36</td>
<td>6.54</td>
<td>3.63</td>
</tr>
<tr>
<td>Iran</td>
<td>1.264 (30.56)</td>
<td>0.98</td>
<td>5.15</td>
<td>2.59</td>
<td>1.55</td>
</tr>
<tr>
<td>Jordan</td>
<td>1.214 (17.55)</td>
<td>0.99</td>
<td>1.21</td>
<td>3.14</td>
<td>0.93</td>
</tr>
<tr>
<td>Morocco</td>
<td>1.165 (20.29)</td>
<td>0.99</td>
<td>0.97</td>
<td>2.07</td>
<td>0.29</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>1.177 (28.73)</td>
<td>0.99</td>
<td>3.25</td>
<td>1.81</td>
<td>1.16</td>
</tr>
<tr>
<td>Oman</td>
<td>1.103 (32.75)</td>
<td>0.99</td>
<td>4.80</td>
<td>1.02</td>
<td>1.06</td>
</tr>
<tr>
<td>Turkey</td>
<td>1.146 (4.51)</td>
<td>0.99</td>
<td>3.22</td>
<td>3.09</td>
<td>3.78</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>1.171 (28.02)</td>
<td>0.98</td>
<td>0.46</td>
<td>3.75</td>
<td>0.72</td>
</tr>
<tr>
<td>Yemen</td>
<td>1.086 (21.67)</td>
<td>0.97</td>
<td>3.70</td>
<td>2.73</td>
<td>7.22</td>
</tr>
<tr>
<td>Sudan</td>
<td>1.296 (22.55)</td>
<td>0.99</td>
<td>3.01</td>
<td>0.51</td>
<td>0.50</td>
</tr>
<tr>
<td>Tunisia</td>
<td>1.353 (31.31)</td>
<td>0.99</td>
<td>0.62</td>
<td>2.03</td>
<td>2.09</td>
</tr>
<tr>
<td>MENA (excluding high-income)</td>
<td>1.267 (24.21)</td>
<td>0.99</td>
<td>1.10</td>
<td>2.68</td>
<td>0.09</td>
</tr>
<tr>
<td>MENA</td>
<td>1.254 (25.09)</td>
<td>0.99</td>
<td>0.95</td>
<td>1.63</td>
<td>1.53</td>
</tr>
</tbody>
</table>

Figure 5. Magnitude of the Effect of Income on CO2 Emissions
7. CONCLUSIONS AND IMPLICATIONS

FDI may have a positive or negative effect on the environment in the host country. A positive effect arises if the foreign firms providing FDI flows use less-polluting production techniques, which may also force domestic firms to use less polluting technology in response to the presence of foreign firms. The negative effect arises when a polluting industry relocates and when foreign firms choose to outsource their polluting operations by using the services of domestic firms. The net effect of FDI on the environment is determined by the relative weights of the scale, composition, and technique effects of FDI (Yang and Yi, 2021; Han et al., 2021; Wu et al., 2016; Lin et al., 2021).

While an extensive amount of work has been carried out to find evidence on the pollution haven and halo hypotheses, this work has produced a mixed bag of results. Hardly any work exists that examines this issue for MENA countries. This paper presents results indicating that FDI leads to environmental degradation in MENA countries—hence, they are consistent with the results produced by the only similar study on MENA countries (Asghari, 2013). The theoretical model predicts that this can only be the case if the underlying country falls on the rising sector of the EKC. The empirical results show that this is the case.

The results do not only fill a gap in the literature, but they also provide policy implications. Countries all around the world strive to attract FDI, most likely without any consideration of the environmental consequences of FDI. If the results show that a country is on the declining sector of the EKC, such that FDI has a positive effect on the environment, then there is no need to worry about the environmental consequences of FDI. The case for MENA countries is the opposite, which means that environmental considerations should not be overlooked by pursuing unconstrained pro-growth policies through FDI. The results should be useful for government agencies and policy-makers, indicating that the benefits of FDI have to be balanced against the resulting environmental damage inflicted by FDI. Another implication is that the negative effects of FDI can be offset by upgrading environmental regulation to avoid mishaps like those of the Bhopal and Ecuador episodes.

As a caveat, we have to acknowledge the fact that the results are based on one measure of environmental degradation, which is CO2 emissions. Hence, the results are specific to this particular measure of the environmental effects of FDI. An extension of this study may take the form of using other measures of environmental degradation, such as air and water pollution or other emissions such as SO2. Even by using CO2 emissions, an update will be required once more data are available because a country’s position on the environmental Kuznets curve may change with time. These are possible agendas for the future.
REFERENCES


ENDNOTES

1. ISO 14001 is the international standard that specifies requirements for an effective environmental management system. It provides a framework that an organisation can follow, rather than establishing environmental performance requirements.


4. CO2 emissions are those stemming from the burning of fossil fuels and the manufacture of cement. They include carbon dioxide produced by the consumption of solid, liquid, and gas fuels and gas flaring.

5. FDI is measured as the net inflows of investment intended to acquire a lasting management interest (10% or more of voting stock) in an enterprise operating in an economy other than that of the investor. It is the sum of equity capital, reinvestment of earnings, other long-term capital, and short-term capital as shown in the balance of payments. This series is the ratio to GDP of net inflows (new investment inflows less disinvestment) in the reporting economy from foreign investors.

6. GDP per capita is converted to international dollars using the exchange rates consistent with purchasing power parity. An international dollar has the same purchasing power over GDP as the U.S. dollar has in the United States. GDP at purchaser’s prices is the sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources.

7. For example, Lopez (2019) refers to the Chevron case in Ecuador, “along with other environmental and social crimes involving multinational corporations - from the recent breakdown of the toxic mining waste dams of the Vale and BHP corporations in Brazil, to the repression and criminalization of communities and even the murder of environmental defenders, such as the still unsolved murder case of Berta Cáceres in Honduras”. In the particular case of Chevron, he argues that the company operated in the Ecuadorian Amazon “with the aim of obtaining the largest possible economic return for the company”. The company, he argues, “used obsolete techniques and was fully aware of the pollution it was causing”. This is why the case is also known as the “Amazonian Chernobyl”. The practices of multinationals in the real world are more consistent with the pollution haven hypothesis.
APPENDIX A: FURTHER MATHEMATICAL DERIVATIONS

Consider the rising and falling sectors of the EKC as being represented separately by linear rising and falling functions of income. In this case the relation between emissions and income is written as follows:

\[ e = \beta_0 + \beta_1 y \]  \hspace{1cm} (A.1)

where \( \beta_1 \) may assume positive or negative values. If \( \beta_1 > 0 \), the underlying country falls on the rising sector of the EKC as it has not reached the turning point yet. On the other hand, if \( \beta_1 < 0 \), the underlying country is on the declining sector of the EKC, having already reached the turning point.

If income is a rising function of FDI, such that \( y = \alpha_0 + \alpha_1 f \), it follows that

\[ e = \beta_0 + \beta_1 \alpha_0 + \beta_1 \alpha_1 f \]  \hspace{1cm} (A.2)

If \( \beta_1 > 0 \), then \( \beta_1 \alpha_1 > 0 \), which means that emissions rise with FDI. If, on the other hand, \( \beta_1 < 0 \), then \( \beta_1 \alpha_1 < 0 \), which means that emissions fall with FDI.

Now consider the possibility that FDI exhibits diminishing returns, in the sense that FDI is beneficial to the host country at low levels, but beyond a certain point the effect of FDI turns negative. This kind of relation between income and FDI can be represented by the equation

\[ y = \alpha_0 + \alpha_1 f - \alpha_2 f^2 \]  \hspace{1cm} (A.3)

If the relation between emissions and income is represented by equation (A.1), it follows that

\[ e = \beta_0 + \beta_1 \alpha_0 + \beta_1 \alpha_1 f - \beta_1 \alpha_2 f^2 \]  \hspace{1cm} (A.4)

If \( \beta_1 > 0 \), then \( \beta_1 \alpha_2 > 0 \), which means that the relation between emissions and FDI takes the form of an inverted U-shaped curve. On the other hand, if \( \beta_1 < 0 \), then \( \beta_1 \alpha_2 < 0 \), which means that emissions will be a rising nonlinear function of FDI. In this case, emissions rise more quickly at higher levels of FDI.
Vijay Pereira (PhD) is Full Professor of Strategic and International Human Capital at NEOMA Business School, Reims Campus, France. He is the Associate Editor (Strategic Management and Organization Behavior), Journal of Business Research (the number 1 ranked h-index journal for Strategy) and the Global Real Impact Editor for the Journal of Knowledge Management. Dr Pereira is also currently an adjunct and visiting scholar at Manchester Metropolitan and Portsmouth Universities, UK and Adjunct Full Professor at the University of South Pacific (USP), Fiji.

Imad Moosa (PhD) has been an advisor to the U.S. Treasury, the United Nations, AusAid, the Australian Competition and Consumer Commission, the Central Bank of Kuwait, and the Gulf Monetary Council. Before turning to academia, he served as a financial analyst, a financial journalist, investment banker and also worked as an economist for the International Monetary Fund. He is the author of 25 books and over 200 journal articles. His book "The Economics of Covid-19: Implications of the Pandemic for Economic Thought and Public Policy" will be published by Edward Elgar in 2021. Imad Moosa is currently an adjunct professor at TDTU.

Vikash Ramiah, PhD, is an Associate Professor in Finance at University of Wollongong in Dubai. Vikash has been teaching economics and finance courses at the University of South Australia, Royal Melbourne Institute of Technology, University of Melbourne, La Trobe University and Australian Catholic University since 1999. He has published in reputable academic journals and supervises numerous PhD students. His industry experience involves ANZ investment banking, the Australian Stock Exchange, Finance and Treasury Association of Australia and the Australian Centre for Financial Studies. Other services to the community includes being a research fellow for Institute of Global Business and Society, Cologne University of Applied Sciences and Tianjin Academy of Environmental Science. He has established his leadership both domestically and internationally as he is appointed as a Professorial Research Associate at Victoria University, Adjunct Professor at Ton Duc Thang University, Adjunct Associate Professor at UniSA and Professor at Global Humanistic University. He specialises in Applied Finance and his research areas are financial markets, behavioural finance, and environmental/sustainable finance.

Yama Temouri is an Associate Professor of International Business at Khalifa University and an Associate Editor for the Business Research Quarterly (AVQ1 ranked). He is also affiliated with Aston University in the UK. Before joining Khalifa University in 2020, he was at the Australian University of Wollongong in Dubai (2016-2020) and Aston University (2008-2016). He completed my Ph.D. in Management in 2008 at the Aston Business School. His research interests are in firm internationalization, foreign direct investment and its effects on firm performance and labour markets. He is currently working on the links between COVID-19 and the impact on economies and societies. Another theme of his research looks at the determinants of tax haven FDI and its impact on firms and economies for which he has received several prestigious grants. He has published widely in high ranking international journals, such as the Academy of Management Perspectives, Journal of World Business, Journal of International Management, Journal of Business Research, British Journal of Management, Corporate Governance: An International Review, Economica, among others. He also has extensive consultancy experience, including projects for the OECD, European Commission and for several UK Government Departments, including the United Kingdom Trade and Investment (UKTI) Department; the Department for Business, Innovation and Services (BIS) and the Innovation foundation NESTA.