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ABSTRACT

This study is a systematic review of literature on the classification of sounds in three domains: 
bioacoustics, biomedical acoustics, and ecoacoustics. Specifically, 68 conferences and journal 
articles published between 2010 and 2019 were reviewed. The findings indicated that support vector 
machines, convolutional neural networks, artificial neural networks, and statistical models were 
predominantly used in sound classification across the three domains. Also, the majority of studies 
that investigated medical acoustics focused on respiratory sounds analysis. Thus, it is suggested 
that studies in biomedical acoustics should pay attention to the classification of other internal body 
organs to enhance diagnosis of a variety of medical conditions. With regard to ecoacoustics, studies 
on extreme events such as tornadoes and earthquakes for early detection and warning systems were 
lacking. The review also revealed that marine and animal sound classification was dominant in 
bioacoustics studies.

Keywords
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INTRODUCTION

Sound or acoustic signals are gradually gaining research popularity as a tool for environmental 
monitoring, security surveillance, diagnoses of diseases, critical information infrastructure protection, 
and data transmission (Bourouhou et al., 2019; Ibrahim et al., 2018; Loey et al., 2020; Luque et al., 
2018). Sound is considered as the second most important sense after sight that is capable of carrying 
information about the environment (Perr, 2005). Although sound varies depending on seasons, time, 
geographic location as well as propagation medium, it is considered as one of the most significant 
signals used to monitor and detect changes in the environment. Accordingly, the ability to differentiate 
(classify) one sound or acoustic signal type from another is pertinent that, if accomplished, would 
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result in significant progress in application areas such as early warning disaster management, medical 
diagnosis (Loey, Naman, & Zayed, 2020), and action or event detection. Recent studies have shown 
that machine learning (ML) algorithms are efficient in the domains of image and speech recognition, 
natural language processing, medical imaging, data extraction (Dwivedi et al., 2019; Malfante et al., 
2018; Tatoian & Hamel, 2018) and text classification (Elfergany & Adl, 2020; Sangwan & Bhatnagar, 
2020).

Classification aims at predicting accurately the target object and differentiating one object class 
from the other given a set of data. It is predominantly performed using selected features that feed 
classifier tools such as machine learning and neural networks (Mitilineos et al., 2018). In particular, 
sound classification is aimed at classifying audio segments into specific classes which requires the 
understanding of the fundamental structure of frequencies in acoustic signals (Dwivedi et al., 2019). 
This is commonly addressed with features used in speech and music processing such as MFCC 
(Mel frequency cepstral coefficient), linear prediction coefficients (LPC), linear prediction cepstral 
coefficients (LPCC) and fast Fourier transforms (Briggs et al., 2012; Chu et al., 2009; Davis & 
Suresh, 2019; Karbasi et al., 2011; Mitilineos et al., 2018; Oletic et al., 2012; Pramono et al., 2017; 
Sengupta et al., 2016). A variety of machine learning techniques have also been adopted to obtain 
robust sound classification models.

Considering the plethora of acoustic features and machine learning (ML) algorithms coupled 
with the nature of sound, it is imperative to offer researchers an indication of the major research 
trends and methodologies that can assist in designing and developing automatic sound classification 
systems. Accordingly, this study provides summaries of the existing literature on algorithms for the 
classification of sound and analyzes the use of ML in the various sound classification tasks. The 
specific objective of the review is to identify: (a) publication patterns in acoustic signal classification, 
(b) trends in the use of ML in acoustic signal/sound classification, (c) open questions and challenges 
in the use of ML algorithms in acoustic signal classification, and (d) research gaps in the subject area.

KNOWLEDGE GAP AND REVIEW QUESTIONS
Previous studies that conducted reviews on sound or acoustic signal classifications employed artificial 
intelligence (AI) techniques. These studies were evaluated using Greenhalgh’s (1997) evaluation 
criteria. The criterion evaluated systematic reviews by accessing the relevance of the review question, 
the search strategy, the methodological quality, and the sensitivity and presentation of results and 
findings. Although findings from the evaluation of existing reviews in the subject area indicated 
that studies available provided summaries and reproducible review methodologies, they focused 
predominantly on the classification of biomedical acoustic signals, particularly, on heart sounds 
(Dwivedi et al., 2019), lung sound (Palaniappan et al., 2013), respiratory sound (Pramono et al., 
2017), and speech sound disorder in children (Wren et al., 2018). Thus, systematic review on the 
classification of sounds is lacking. Considering the various applications of sound in various activities, 
the lack of sufficient summaries justifies the need for a systematic review of sound classification.

Recently, ML algorithms have been used for various classification tasks (Hao, Weiss, & Brown, 
2018). However, due to the plethora of ML algorithms (Hlioui, Aloui, & Gargouri, 2020: Salama & 
Hassanien, 2014), choosing a suitable algorithm for a specific classification task becomes difficult. 
Hence, there is the need to identify open questions, publication trends, and current approaches in 
algorithm usage that will assist researchers to position appropriately new research activities in sound 
classification and detection. To address this, this review examines two broad issues. The research 
questions stated in Table 1 are divided into two categories. The Category A consists of questions that 
seek to provide an overview of publication trends whereas the Category B seeks to provide a good 
methodological background for a broader work by identifying research gaps and current methodologies 
in the domain. Specifically, it is expected that the study will provide pertinent information regarding 
patterns in publications since 2010, academic outlets that are dominant and attracting more studies, 
and countries that have focused on acoustic signal classification most within the specified period. 
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As mentioned earlier, questions in Category B will provide information on techniques and 
domains of application. Accordingly, the review questions will seek to summarize information on 
application domains that have dominated artificial intelligence (AI) for acoustics signal studies, the 
most used datasets, the machine learning techniques adopted, and the various evaluation methods 
that are mostly adopted. Table 1 provides a summary of the proposed review questions and the 
corresponding rationale for posing them.

REVIEW APPROACH
A systematic search of the literature was carried out in two databases: Scopus and Acoustical Society 
of America (ASA). Scopus was selected because it is arguably the most extensive abstract and citation 
database for academic publications, whereas the ASA publications database was selected purposefully 
since it is the leading source of theoretical and experimental studies in acoustics-related studies. 
Publications were extracted from the selected databases using key search terms and their possible 
combination using the logical ‘and’ operator. The key search terms included classification, sound, 
acoustic signals, machine learning, deep learning, and artificial intelligence. The combination of 
the search terms produced the following search phrases (SP):

SP1		 Classification of sound and machine learning
SP2		 Classification of sound and deep learning
SP3		 Classification of sound and artificial intelligence
SP4		 Classification of acoustic signals and machine learning
SP5		 Classification of acoustic signals and deep learning
SP6		 Classification of acoustic signals and artificial intelligence

Table 1. Research Questions and Objectives

Research Questions Objectives

Category A

• What are the yearly publication trends?
• What journal has the highest number of 
publications? 
• What is the frequency of authors?
• What is the country’s origin of authors’ affiliated 
institutions?

• To identify the frequency of primary studies per year. 
• To identify the frequency of publications per journal. 
• To identify authors who are consistent in writing on the subject 
area. 
• To identify countries with the highest number of publications.

Category B

• What kind of sound is classified?
• What is the format of the sound?
• What are the sample rates of the audio 
recordings? 
• What datasets were used for the classification 
and (or) evaluation?

• To identify the dominant and less dominant types of classified 
sounds. 
• To identify predominantly used audio formats for classification. 
• To determine the maximum audio frequency that can be 
reproduced. 
• To identify datasets that are available for public use.

• What are the various application domains? • To identify domains in which sound classification is 
predominantly performed.

• What ML techniques have been used for sound 
classification? 
• What measures are used to evaluate model 
performance?

• To identify predominantly used ML techniques and performance 
metrics in sound classification.
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Inclusion and Exclusion Criteria
A set of specific eligibility criteria were defined and followed to limit the collection of articles to 
only those that fit with the research objectives. A suitability check of returned articles was performed 
after examining the title and removing duplicate papers. Only articles in which the aim, classification 
techniques, and/or results were explicitly stated in the abstract were considered. The inclusion and 
exclusion criteria are as follows:

C1	 Include only open-access journal articles and peer-reviewed conference papers written in English 
and published between the years 2010 and 2019.

C2	 Include articles whose titles contain keywords like classification and acoustic signals or sound 
and machine learning or deep learning or whose title suggests sound classification using artificial 
intelligence.

C3	 Exclude duplicate papers from the search results.
C4	 Exclude papers whose abstracts do not explicitly state the classification techniques and/or results 

of the evaluation metrics used.
C5	 Exclude by document type i.e., exclude secondary studies, books, thesis, reports, and letters.

Study Selection and Data Extraction
The six search phrases earlier mentioned were used to search the Scopus and ASA databases. The 
protocol for this systematic review has three main steps. In the first step, the retrieved articles were 
analyzed with an initial exclusion criterion (C1 to C2). In the second step, eligible articles were then 
exported to a spreadsheet (MS Excel) for further exclusion by duplicate, abstract, and type of study 
(C3, C4, and C5). ASA database does not have the export feature, hence this phase of exclusion was 
done directly from the browser and manually documented. The third step entailed downloading and 
reading eligible articles to extract relevant data concerning the review questions. The extracted data 
was collated in a spreadsheet for ease of use and analysis. Figure 1 is a flow diagram showing the 
results of the screening after each stage of exclusion or inclusion.

Figure 1. Flow diagram of study screening/selection



International Journal of Service Science, Management, Engineering, and Technology
Volume 13 • Issue 1

5

As shown in Figure 1, the initial search output contained 1,295 journal and conference articles 
published from 2010 to 2019. Out of these, 181 studies were included after an initial screening by title 
and keywords and a total of 90 articles were obtained after the removal of duplicates. Furthermore, 
22 studies were excluded based on abstract and document type. Finally, 48 journal papers and 20 
conference articles were selected and used in the study.

REVIEW RESULTS AND FINDINGS

Publication Trends (Category A)
This section presents the findings on the publication frequency, distribution of journals, authors, 
and their country of origin. As mentioned earlier, a total of sixty-eight (68) conference proceedings 
and journal articles were identified at the end of the selection process. This comprised 20 (29%) 
conference publications and 48 (71%) journal articles.

An analysis of the publication frequency (Figure 2) from 2011 to 2016 recorded between 2 and 
4 publications per year. However, from 2017 there was a change in trend such that both conference 
and journal articles were recorded each year. Also, there was an upsurge in the publications from 
2016 with a double leap from 9 publications in 2017 to 18 publications in 2018. Considering the 
upsurge in publication, the popularity of artificial intelligence as well as the emergence of sound as 
an alternative means of environmental monitoring, it is envisaged that the area of sound classification 
will draw more research attention.

Figure 2. Publications by year
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Further, an examination of the sources of the included studies showed that the 68 studies were 
distributed among 35 Scopus indexed conference proceedings and journals, and 69% of the studies 
were published in the Journal of America Society of Acoustics (JASA). The journals and their 
corresponding number of included studies are JASA (24), Applied Sciences (3), Sensors (3), IEEE 
Access (2), APSIPA Transaction on Signal and Information Processing (1), Biomedical Journal, 
ELSEVIER - Computers & Electronics in Agriculture, Electronics (1), Elektronika ir Elektrotechnika 
(1), Eurasip Journal on Image & Video processing (1), Expert Systems with Applications (1), Frontiers 
in Neuroscience (1), IEEE Signal Processing Letters (1), IEICE Transactions on Information anhd 
Systems (1), International Journal of Fuzzy logic & Intelligent Systems (1), International Journal 
of online & biomedical engineering (1), International Journal of online engineering (1), Noise 
mapping (1), PeerJ (1), PLoS ONE (1). While the conference proceedings include ACM International 
Conference Proceeding Series (2), ICASSP, IEEE International Conference on Acoustics, Speech 
and Signal Processing (2), Computing in Cardiology (2), Lecture Notes in Computer Science 
(including subseries Lecture Notes in Artificial Intelligence and Bioinformatics) (2), Proceedings of 
the Annual Conference of the International Speech Communication Association, INTERSPEECH 
(2), 8th International Conference on Health Informatics (1), International Conference on Machine 
Learning and Applications, ICMLA 2012 (1), International Conference on Pattern Recognition (1), 
Proceedings of the International Conference on Neural Networks (1), MATEC Web of Conferences 
(1), IEEE International Workshop on ML for signal processing, MLSP (1), Procedia Computer Science 
(1), 2019 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 
(1), Journal of Physics: Conference Series (1), 2010 Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society EMBC (1).

Authors and country origin. An analysis of the authors and their country origin (the country in 
which their affiliated institution is located) was performed to identify the author or group of authors 
who are consistent in writing on the subject area, as well as countries with the leading number of 
publications. With the number of authors per article ranging from 2 to 9, a headcount of the various 
authors showed that 229 authors wrote the 68 selected papers. Furthermore, 6 groups of leading 
authors in the subject area (i.e., authors with more than one publication) were identified (see Table 
2). And it was observed that out of the 6 groups, 4 groups of authors were all interested in classifying 
sounds from animals (bioacoustics) and their publications were all journal articles. The 5th group 
was interested in classifying environmental sound and they had both conference and journal articles, 
while the 6th group focused on heart sounds with conference articles only.

Furthermore, the authors’ country of origin (i.e., address of the authors) and the frequency of 
publications per year were identified. According to Figure 3, it is observed that the authors were from 
31 different countries with the UK and USA leading the trend by 16% and 12% respectively. China, 
France, India, and Korea made up 8%,7%, and 6% respectively. Portugal and Spain 5%, Germany 4%, 
while the other 22 countries make up 37% of the publication trend. Further, the highest number of 
publications in 2019 was from India (5), the highest in 2018 was from China (4) and Korea (4), and 
the highest in 2017 was from UK (5). Again, China (2) and the USA (3) had the highest publications 
in 2016 and 2012 respectively. Other years had one study per country. The countries with only one 
study include Ireland, Pakistan, Saudi Arabia, Morocco, Italy, Hong Kong, Jordan, Taiwan, Brazil, 
Estonia, Switzerland, Singapore, Sweden, and Austria. It is worth noting that publications from the 
UK are most consistent since 2012, each year there is at least one publication coming from the country.
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Sound Categories, Datasets, Classification Techniques, 
and Performance Metrics (Category B)
The discussions in this section are results obtained in line with Category B of the research questions. 
For ease of reference, the selected articles have been numbered in the order in which they were 
selected - A1 to A68 and will be used accordingly in further ana lysis (see Appendix for a list of 
included studies).

Table 2. Leading authors

Groups Paper Title Year Journal Study

1 An approach for automatic classification of 
grouper vocalizations with passive acoustic 
monitoring.

2018 The Journal of the 
Acoustical Society of 
America

A9

Classification of red hind grouper call 
types using a random ensemble of stacked 
autoencoders.

2019 The Journal of the 
Acoustical Society of 
America

A12

2 Dynamic time warping and sparse 
representation classification for birdsong 
phrase classification using limited training 
data.

2015 The Journal of the 
Acoustical Society of 
America

A18

A robust automatic birdsong phrase 
classification: A template-based approach.

2016 The Journal of the 
Acoustical Society of 
America

A14

3 Domestic cat sound classification using 
learned features from deep neural nets.

2018 Applied Sciences A30

Domestic cat sound classification using 
deep learning.

2018 International Journal of 
Fuzzy Logic and Intelligent 
Systems

A44

4 Non-sequential automatic classification of 
anuran sounds for the estimation of climate 
change indicators.

2018 Expert systems with 
Applications

A31

Temporally aware algorithms for the 
classification of anuran sounds

2018 PeerJ A33

5 Unsupervised Feature Learning for Urban 
Sound Classification

2015 ICASSP, IEEE International 
Conference on Acoustics, 
Speech and Signal 
Processing

A55

Deep Convolutional Neural Networks and 
Data Augmentation for Environmental 
Sound

2017 IEEE Signal Processing 
Letter

A46

6 Heart murmur classification with feature 
selection

2010 2010 Annual International 
Conference of the IEEE 
Engineering in Medicine 
and Biology Society

A67

Heart murmur classification using 
complexity signatures 

2010 Proceedings - International 
Conference on Pattern 
Recognition

A58
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Classification of sound and data sources. Sound produced by plants, animals, and humans are 
numerous and it varies on land, air, and water depending on the medium of propagation, seasons, 
activities, and geographic location. There are three main sources of sound - Anthrophony (sounds made 
or caused by humans) such as shipping and drilling noise; Geophony (sound from the environment) 
such as sea surface noise like the breaking of waves, icebreaking, raindrops; and Biophony (sounds 
from animals) such as vocalizations of mammals, anurans, groupers. This section highlights the 
different kinds of sounds that were classified, data sources, sample rates, and availability of datasets 
as found in the selected articles. As shown in Table 3, 31 studies focused on classifying sounds 
caused by animals (Biophony), 19 classified sounds caused/made by human beings (Anthrophony), 
and the other 18 classified sounds from a combination of the three sounds categories (anthrophony, 
geophony, and Biophony).

In the biophony category, researchers were predominantly interested in classifying sounds from 
different species of Odontocetes and Mysticetes (marine mammals). While some of the researchers 
were interested in automatically detecting, classifying, and localizing call types from different species 
(Guilment et al., 2018; Halkias et al., 2013; Roch et al., 2011; Shamir et al., 2014), others were only 
interested in classifying vocalizations of humpback whales, whistles & pulse of dolphins, song cycles 
of whales and echolocation clicks of beaked whales (Allen et al., 2017; LeBien & Ioup, 2018; Ou et 
al., 2013; Parada & Cardenal-Lopez, 2014).

Classified sounds caused by humans (anthrophony) included respiratory sounds, human voice 
disorder, blast sound, snore sound, and baby cry. The baby cry was classified to identify the health 
state of a baby (i.e., need, pain, discomfort, or a medical condition) (Aucouturier et al., 2011) while 
snoring as a medical condition was classified as a means to automatically differentiate types of snore 
sounds (Amiriparian et al., 2017). Similarly, to automatically detect medical conditions such as 
cardiovascular diseases and respiratory tract diseases, EEG signals and heart sounds were classified 
to identify wheezes, crackles, murmur, extra-systole, normal and abnormal heartbeats. It would 
appear that apart from organs involved in respiratory and cardiovascular activity no other sound 
from internal organs of the human body was of interest. It might be instructive therefore to consider 
extending work to cover sounds from other internal human organs such as for example the intestines. 
Such work might be useful in understanding ailments that affect the digestive system. Also, Blast

Figure 3. Distribution of publications by authors country of origin



International Journal of Service Science, Management, Engineering, and Technology
Volume 13 • Issue 1

9

Table 3. Summary of classified sounds and datasets

Sound source/ type Link to dataset/name of the dataset Article 
code

Biophony (sounds from animals)

1 Marine mammals – 
Whales and Dolphins

DEFLOHYDRO, OHAS-ISBIO, DCLDE 2015, Auau Channel 2002, 
French Frigate Shoals (FFS), CEMMA datasets (http://www.cemma.org), 
https://data.gulfresearchinitiative.org

A1, A4, 
A13, 
A15, 
A16, 
A17, 
A19, 
A20, 
A22 

2 Birds http://www.animalsoundarchive.org/Refsys/Statistics.Php, Birdcalls71, 
Flight calls, Anuran, CAVI, and CUB-20002011 standard dataset

A2, A5, 
A14, 
A18, 
A21, 
A41, 
A7

3 Fish and Groupers http://www.fishbase.org/and http://www.dosits.org/, SEACOUSTIC2014 A3, A9, 
A12, 
A37 

4 Primates- Marmosets and 
Monkeys

http://home.ustc.edu.cn/~zyj008/background_noise.wav., http://
marmosetbehavior.mit.edu

A8, 
A11, 
A35 

5 Amphibians – Frogs and 
Anuran

Recordings from commercial compact discs (CD), recordings from 
natural habitat, http://www.fonozoo.com/

A24, 
A31, 
A33, 
A52 

6 Domestic/farm animals 
– dog, cat, sheep, cattle, 
Maremma sheepdogs

Online video sources including YouTube, Kaggle challenge database and 
Flicker, and https://github.com/kyb2629/pdse.

A25, 
A32, 
A30, 
A44 

Anthrophony (sounds made/caused by humans)

7 Military blast sound LRPE, East South Central, APG, SERDP-PITT, MCBC-PITT, New York 
(Fort Drum)

A6 

8 Baby cry, human voice 
disorders

N/M A24, 
A48 

sound was classified to differentiate between blast noise and non-blast noise (Cvengros et al., 
2017). Sounds from the environment were predominantly classified to differentiate indoor, outdoor, 
natural, vocal, and non-vocal human sounds.

Table 3 continued on next page

http://www.animalsoundarchive.org/Refsys/Statistics.Php
http://www.fishbase.org/and
http://www.dosits.org/
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Table 3 continued

Sound source/ type Link to dataset/name of the dataset Article 
code

9 Respiratory/heart/
lung sound, EEG 
(electroencephalogram) 
signals

https://github.com/yaseen21khan/Classification-of-heart-sound-
signal-using-multiple-features-/blob/master/README.md, https://
physionet.org/challenge/2016/. https://www.cs.colostate.edu/eeg, (the 
Physionet database), Int. Conf. on Biomedical Health Informatics 
(ICBHI) scientific challenge database, Dataset B- PASCAL classifying 
heart sounds challenge, live recordings from patients using Bluetooth 
stethoscope

A27, 
A28, 
A29, 
A34, 
A38, 
A45, 
A47, 
A51, 
A53, 
A54, 
A56, 
A58, 
A61, 
A66, 

10 Snore sound Munich-Passau snore sound corpus A63

Geophony (sound from the environment) and combination of various sound sources

11 Cinematic sound 44-film dataset A57

12 Oil, water, and gas Life recordings A68

13 Environmental sound Real-world computing partnership (RWCP) sound scene dataset, 
DCASE challenge dataset, FindSounds database, Urban-sound 8k 
dataset, TIDIGITS dataset, ESC-10, ESC-50 dataset, freeseound.org, 
TUT database for acoustic scene classification & sound event detection, 
YouTube videos

A26, 
A35, 
A36, 
A39, 
A40, 
A42, 
A43, 
A46, 
A49, 
A50, 
A55, 
A59, 
A60, 
A62, 
A64, 
A65,

Environmental sounds classified are both indoor and outdoor sounds including air-conditioner, car horns, children playing, dog bark, drilling, engine 
idling, gunshot, jackhammers, siren, street music, running water, applause, footsteps, crowd, musical instruments, thunder, sea waves, etc.
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Sample rate, audio format, and signal representation. The sample rate which is the number of 
samples of audio carried per second ranged from 0.1kHz to 192kHz. The dominantly used sample rates 
lied between 22 and 44.1kHz. Out of the 13 classified sounds sound categories identified from the 
included primary studies, the dominant audio format used was the .wav format. Others included mp3 
(Parada & Cardenal-Lopez, 2014; Shamir et al., 2014), ARFF (Zhang et al., 2016), and HDF5 format 
(Bold et al., 2019). Furthermore, signals and audio files were predominantly visually represented as 
spectrograms. Spectrograms are graphical or visual representations of sound with frequency on the 
vertical axis, time on the horizontal axis, and a dimension of color that represents the intensity of the 
sound at each time-frequency location. According to (Amiriparian et al., 2017; Halkias et al., 2013; 
Malfante et al., 2018; Oikarinen et al., 2019; Ou et al., 2013), the classification of spectrograms as 
natural images allows it to be processed with available image processing tools. Additionally, it helps 
in removing the effect of background disturbances on the classification process (Thakur et al., 2019). 
Features extracted from spectrograms usually outperform hand-crafted features since spectrograms 
do not discriminate phrase classes with similar dominant frequency trajectories (Tan et al., 2015). 
However, disparate images in which the axes carry the same meaning irrespective of their location (i.e., 
the axes are shared weights across the vertical and horizontal dimensions), the axes of a spectrogram 
do not carry the same meaning (it has time and frequency as the vertical and horizontal dimensions).

Sources of data. To identify publicly available datasets, the datasets used in the reviewed articles 
were divided into two categories: pre-existing sound datasets and live recordings.

i.	 Pre-existing sound datasets: This was made up of sound collected from past experiments, past 
projects, or existing sound databases, 28 datasets were identified from this category. Out of the 
28, only 18 were stated to be publicly available, while the availability of others was either not 
mentioned or stated as not available due to licensing or privacy issues.

ii.	 Life recordings: This category of datasets was generated by the researchers specifically for their 
research. It is made up of recordings of the subject of interest either in their natural habitat (Allen 
et al., 2017; Briggs et al., 2012; Ibrahim et al., 2019; LeBien & Ioup, 2018; Roch et al., 2011; 
Shamir et al., 2014), or in a controlled environment such as recording rooms and laboratories (Giret 
et al., 2011; Oikarinen et al., 2019; Zhang et al., 2018). In some cases, a recording device was 
attached to the animals while for humans a Bluetooth stethoscope was used to obtain recordings 
of heart sounds. Other life recordings were collected with any of the following recording units, 
hydrophones, passive acoustic monitoring (PAM) systems, short-gun microphones, etc. attached 
to divers, seafloor moving boats, or sinks. In all, 24 datasets were privately generated and only 
5 are available to the public.

An important consideration in research into sound classification is the availability of datasets. 
Easy access to high quality dataset is critical to research success in the field. With a total of 52 
mentioned data sources from both categories, only 24 are reported to be publicly available, this is 
a confirmation of the challenges of limited datasets stated by researchers in sound classification. 
Whilst researchers may be able to readily generate or record some forms of sounds that can be used 
in research including outdoor sounds like barking of dogs, some other forms of sound may not be 
so easily generated or recorded, for example volcanic activity or sound from an impending tsunami.

Distribution of classified sounds according to the application domain. Considering the 
different types of classified sounds, the specific sound environment, and the researcher’s objective 
for classifying the chosen sound, the classified sounds were categorized into three broad domains. 
They include Bioacoustics, Biomedical acoustics, and Ecoacoustics (see Figure 4). The application 
domain of bioacoustics was the most explored making up 50% of the study population. This domain 
consists of studies that classified sounds made from animals and human beings with the predominant 
aim of differentiating sounds and call types between and within animal species. Variations in animal 
sounds were also classified based on geographical locations.
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On the other hand, the biomedical domain made up 24% of the study population and consists of 
studies that classified snore, heart, and lungs related diseases using sound. The goal of this domain 
was to provide an automated and efficient sound/acoustic signal classification system that will assist 
medical practitioners in smart diagnosis. Studies in this category also sought to eliminate the invasive 
traditional vision methodologies such as the use of medical imaging (Chen et al., 2019; Oweis et 
al., 2015; Vrbancic & Podgorelec, 2018). Equally, 26% of the studies explored sounds from the 
environment (ecoacoustics) to automatically recognize environmental acoustics scenes as well as 
to precisely classify the detected sound. This classification will enable the identification of sound 
events, environmental monitoring, and surveillance. The ecoacoustics domain consisted of sounds 
from sub-domains such as human activities, urban environment, surveillance, machinery, weather, 
and musical instruments.

Sound Classification Algorithms and Performance Metrics
An automatic classifier does not only identify or differentiate one sound from another, but it also 
reduces false detection of sounds (Binder & Paul, 2019). Thus, this section will provide a summary 
of the distribution of ML techniques and performance metrics used in the included studies for sound 
classification over the study years (i.e., between 2010 and 2019). Several ML techniques were identified 
from the studies and categorized as follows:

i.	 Support Vector Machine (SVM) – SVM, Linear SVM, Radial Basis Function (RBF) SVM, 
MIML (multi-instance multi-label) SVM

ii.	 Convolutional Neural Network (CNN) - CNN, Feedforward deep convolutional neural network, 
two-stream CNN (TSCNN-DS), CaffeNet pre-trained CNN, LeNet based CNN, SoundNet, 
EnvNet, multi-scale CNN (WaveMsNet), AlexNet, GoogleNet, and VGG16

iii.	 Artificial Neural Network (ANN) - Deep Neural Network (DNN), Multilayer perceptron (MLP), 
Self-organizing map, Deep residual networks (ResNets), Convolutional deep belief network 
(CDBN), Sparse Auto-Encoder (SAE), Self-organizing map-Spike Neural Network (SOM-SNN)

iv.	 Long Short-Term Memory - Recurrent Neural Network (RNN), LSTM-RNN, and Long short-
term memory-fully convolutional network (LSTM-FCN)

v.	 Random forest (RF)

Figure 4. The distribution of application domains
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vi.	 K-Nearest neighbor (kNN)
vii.	 Logistic Regression (LR)
viii.	Decision Tree (DT)
ix.	 K-Means
x.	 Ensemble Learners (EL)
xi.	 Others - Sparse Representation-based Classifiers (SRC), Dynamic Time warping (DTW), Hidden 

Markov Model (HMM), Gaussian Mixture Models (GMM), aural classifiers, Non-Temporally 
Aware (NTA), Kernel-based extreme machine (KELM), Multi-view simple disagreement 
sampling (MV-SDS)

Overall, SVM, CNN, and ANN were the three predominantly used ML techniques in sound 
classification. These 3 techniques put together were adopted by 62% of the included studies (see 
Figure 5). Figure 5 presents a summary of the amount of research interest that each ML technique 
has received during the past decade. Further, it highlights the distribution of research interest in ML 
techniques in each publication year. It is important to note that more than one ML technique was used 
in some studies. Compared to other identified ML techniques, SVM, CNN, and ANN have received 
dominant research interest over the years with at least one of these techniques used between 2010 
and 2019, except in 2014 where Gaussian mixture models (GMM) was used.

Support vector machine (SVM) has been identified as a robust technique in both classification and 
regression tasks. It is a supervised machine learning algorithm and it seeks to find the hyperplane which 
optimally separates the labeled data into their various classes (Bourouhou et al., 2019; Cvengros et al., 
2012; Noda et al., 2016; Qian et al., 2017; Yaseen et al., 2018). Most of the articles that used SVM 
were focused on improving the classification performance either by modifying existing approaches 
of SVM-based classification or by adding new features to it. Modifications to existing approaches 
included Recursive feature elimination (SVM-RFE) and linear SVM (Cvengros et al., 2012), and 
SVM with linear kernels (Han et al., 2016), while added features included cost parameter CSVM 
(Malfante et al., 2018). Generally, SVMs have been reported to be cumbersome for multi-class tasks 
but robust for binary sound classification.

Figure 5. Distribution of ML techniques over publication year
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Neural networks are algorithms that imitate the operations of a human brain to identify patterns 
and trends in data. Although its effectiveness is limited by the unavailability of labeled data, it is 
argued that they have self-organizing and adaptive learning properties with an outstanding ability to 
detect trends based on the sample data (Dwivedi et al., 2019). Accordingly, different types of Neural 
Networks in deep learning including CNN, ANN, LSTM were adopted by researchers in the included 
studies, and they made up 44% of the identified ML techniques.

Further, the identified classification techniques and their distribution of use were categorized as 
follows: supervised ML technique (76%), unsupervised ML technique (5%), semi-supervised (1%), 
ensemble learning (3%), and the others (sequential classifiers and statistical modeling techniques) 
made up 15%. Furthermore, advanced learning techniques such as transfer learning and ensemble 
learners were adopted by some researchers to obtain a more robust sound classification model as 
well as overcome the challenges of limited data, overfitting, and lack of labeled data. CNN pre-
trained models such as VGG16, VGG19 LeNet based CNN, SoundNet, EnvNet, multi-scale CNN 
(WaveMsNet), AlexNet, GoogleNet and CaffeNet were adopted for Transfer learning (Amiriparian 
et al., 2017; Boddapati et al., 2017; Bold et al., 2019; Pandeya & Lee, 2018; Zhao et al., 2018; Zhu 
et al., 2018). While an ensemble of stacked autoencoders (Ibrahim et al., 2019), and an ensemble 
of supervised, unsupervised, and semi-supervised learning techniques such as random forest, kNN, 
Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and SVM-RBF 
(Humayun et al., 2018; Pandeya & Lee, 2018) using majority voting and unweighted average were 
adopted for ensemble learning. Additionally, a semi-supervised learning technique called active 
learning was used to minimize the demand for human descriptions on sound classification training 
models (Han et al., 2016).

Figure 6. Distribution of classification techniques over application domain
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Furthermore, the ML techniques were analyzed with respect to the three application domains 
identified in this review. More specifically, the distribution of ML techniques as earlier categorized, 
was mapped to the domains of bioacoustics, biomedical acoustics, and ecoacoustics (see Figure 6). As 
shown in Figure 6, SVM and CNN were mostly used to classify medical and environmental sounds 
respectively. While ANN and other sequential classifiers and statistical models were mostly used 
to classify sounds from animals (bioacoustics). Generally, SVM, CNN, ANN, and other statistical 
models were predominantly used in the three domains. Figure 6 also shows that while all the identified 
classification techniques were used in bioacoustics, certain ML techniques were not used in the domains 
of biomedical acoustics and ecoacoustics. Specifically, random forest, K-means, and decision trees 
were not used in classifying medical sounds. Similarly, K-means and decision trees were also not 
used in the classification of sounds in the environment.

Performance Metrics. An examination of the performance measures adopted by researchers 
to validate the reliability of their proposed ML techniques for sound classification is presented in 
this section. This includes evaluation measures such as cross-validation methods and classification 
metrics. Seven cross-validation methods were identified in the included studies for the primary 
purpose of evaluating model performance and computing classification accuracies. They include 
10-fold cross-validation (Aucouturier et al., 2011; Han et al., 2016; Lebien & Ioup, 2018; Medhat et 
al., 2020; Pandeya et al., 2018; Salamon & Bello, 2015, 2017; Su et al., 2019), Leave-One-Out Cross-
Validation (LOOCV) (Bourouhou et al., 2019; Colonna et al., 2016; Oweis et al., 2015; Parada & 
Cardenal-Lopez, 2014; Vahabi & Selviah, 2019), 2-fold cross-validation (Ibrahim et al., 2018; Noda 
et al., 2016), 1 for 4-fold (Zhang et al., 2019), 5-fold cross-validation (Boddapati et al., 2017; Briggs 
et al., 2012; Fang et al., 2019; Mun et al., 2017; Tschannen et al., 2016; Yaseen et al., 2018), 20-fold 
cross-validation (Kumar et al., 2010), and 10-fold stratified cross-validation (Gingras & Fitch, 2013; 
Nogueira et al., 2019). Other specific reasons for the adoption of the cross-validation techniques were 
to determine validation error rate and estimates of algorithm performance (Han et al., 2016; Lebien 
& Ioup, 2018; Vahabi & Selviah, 2019).

Furthermore, classification metrics used to compare and evaluate the performance of the various 
ML and statistical techniques were identified. It is important to note that, more than one metric was 
used to evaluate the performance of a classification technique in most of the studies. Figure 7 provides 
an overview of the number and the proportion of reviewed studies using each performance metric. 
As shown in Figure 7, it is observed that accuracy is the predominantly used performance metric and 
it was adopted by 36% of the included studies. This is followed by Confusion Matrix (16%), Recall/
sensitivity (14%), and Specificity (10%). Precision, F1-score, AUC score, ROC curve, and UAR are 
other adopted metrics in the included studies with an equal distribution of 4%. True Positive Rate 
(TPR), False Positive Rate (FPR), G-mean, and mean error rate are the least used. Generally, it was 
observed that the classification techniques used in the included studies predominantly had good 
classification accuracies.
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DISCUSSIONS
The primary objective of the systematic review was to identify publication trends, methodological 
approaches, and current algorithms used in the automatic classification of sounds using ML techniques. 
This review was restricted to open-access conferences and journal articles published between 2010 
and 2019. Based on a set of inclusion and exclusion criteria, the included 68 studies were selected 
from Scopus and ASA databases with conference and journal articles making up 29% and 71% of 
the study population respectively.

This systematic review was guided by two categories of review questions which were answered 
accordingly. In the first category of this review, the publication trends between the years 2010 and 
2019 were highlighted. It was observed that 60% of leading authors (that is authors with more than 
one publication) in sound classification predominantly focused on classifying sounds from animals, 
while the other 40% had an equal interest in classifying sounds in the environment and the biomedical 
domain. In addition, most of the studies originated from European and Asian countries (including 
the UK, USA, China, France, India, Korea, Portugal, Spain, and Germany) with a minimum of 3 
publications and a maximum of 14 publications within the selected study years.

In the second category of review results, 13 groups of classified sounds that cut across the three 
major sound sources (anthrophony, biophony, and geophony) were identified. Further, these sound 
groups were divided into three application domains namely Bioacoustics, Biomedical acoustics, 
and Ecoacoustics. It was observed that the bioacoustics domain attracted more research interest and 
researchers were mostly interested in classifying sounds from marine mammals. Yet, little attention 
was given to classifying sounds from the underwater environment even in studies that classified 
environmental sound. This is a research gap considering that 70% of the earth is covered with water 
and the temperature of the ocean determines climate and wind patterns which in turn affects life on land 
and the ecosystem (Domingo, 2012). On the other hand, studies in the biomedical domain primarily 
focused on diagnosing respiratory diseases using sound. Although the classified sounds cut across 
three major application domains, the list of unclassified sounds is inexhaustive. For instance, studies 
in the biomedical domain should be extended to classify sounds from other internal body organs 
(as an alternative to radiography) to diagnose a variety of medical conditions. Studies should also 
investigate the classification of extreme events such as tornadoes, hurricanes, drought, earthquakes 
using sound. This will enable early detection and warning systems for natural disasters. 

Figure 7. Distribution of the studies over performance metrics
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Review results also showed that a major research challenge reported by researchers was the 
unavailability of standardized labeled public datasets. This was particularly challenging for the 
biomedical domain, thus, researchers collected data (life recordings) from patients using Bluetooth 
stethoscope. Yet, the problem abounds because the collected data cannot be publicly available for 
future research. Perhaps, this could be a delimiting factor that dissuades researchers from delving 
into certain areas of sound classification. 

In the identification of feature extraction techniques, it was observed that, although a variety 
of feature extraction techniques were used, specific patterns in the use of these techniques to a 
particular application domain could not be established. However, it was observed that MFCCs were 
predominantly used in feature extraction due to their ability to imitate the hearing properties of the 
human ear.

Furthermore, reported approaches for sound classification involved the use of both machine 
learning and non-machine learning techniques. Amongst the various identified classification 
techniques, support vector machines (SVM), convolutional neural networks (CNN), artificial neural 
networks (ANN), and other probabilistic statistical models were predominantly used in the domains 
of bioacoustics, biomedical acoustics, and ecoacoustics. The findings on the prevalence of ANN, 
CNN, and SVM in the classification of medical acoustics is similar to findings from the systematic 
review on ML in lung sound classification (Dwivedi et al., 2019; Palaniappan et al., 2013). Indeed, 
the predominant use of CNN for sound classification is no surprise considering that, most of the 
studies adopted an image-based approach for sound classification using spectrograms. Mitilineos et 
al., (2018) posit that neural network are adopted for sound classification due to their ability to identify 
specific patterns exhibited by sound sources using the distribution of energy over frequency and time. 
Also, machine learning techniques are outstandingly able to differentiate target acoustic signals/sound 
from an acoustic background (Shamir et al., 2014). Although neural networks reportedly require high 
computational power and large datasets, no study reported this as a limitation or a challenge. Overall, 
satisfactory results were reported for the various classification techniques as observed in the results 
of the performance metrics. Performance metrics such as cross-validation, classification accuracy, 
confusion matrix, recall, and precision were used to evaluate the performance of the classifiers. In 
cases of an unbalanced distribution of datasets, other performance metrics such as UAR, AUC curve, 
ROC curve were adopted.

Finally, two types of acoustic signal classification schemes were identified, they included 
detection-and-classification otherwise known as acoustic event detection (AED), and detection-by-
classification otherwise known as acoustic event classification (AEC). While the former involves 
detection of the sound and then its classification, the latter involves sound detection by classifying 
the audio segments. In detection-and-classification, no classification decision is made, rather 
segmentation is done when a segment boundary is detected based on a chosen threshold (Temko & 
Nadeu, 2009). Conversely, in detection-by-classification, the task of detection automatically translates 
to classification as its strategy is based on using classifiers (such as HMM, logistic regression) with 
inbuilt segmentation algorithms (Temko & Nadeu, 2009). As shown in Figure 8, 71% of the studies 
focused on AEC, while 29% adopted the AED approach. Also, detection and classification were 
performed in the domains of bioacoustics and environment only, while detection-by-classification 
cut across the three identified domains with bioacoustics as the most explored.
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LIMITATION OF THE STUDY AND CONCLUSION
This paper presented the findings of a systematic review of primary studies in the area of sound 
classification between the years 2010 and 2019. A major strength of this systematic review is that 
it was not specific to a particular sound, but it considered every kind of sound that cut across the 
domains of bioacoustics, ecoacoustics, and biomedical acoustics. It also identified two broad categories 
of sound classification schemes: acoustic event detection (AED) and acoustic event classification 
(AEC). Findings from the review indicated that automatic detection and classification systems were 
useful tools that could differentiate one acoustic event from the other, especially when deep learning 
techniques were used for the task.

Although the reviews provided methodologies and algorithms used in various domains of sound 
classification, findings indicated that the methodologies and domains (in terms of scope) were not 
exhaustive. For instance, there was no study on the acoustic classification or detection of extreme 
events such as seismic and volcanic activities or the classification of medical conditions other than 
respiratory tract-related diseases. Also, the unavailability of publicly benchmarked datasets for sound 
classification in certain domains posed a challenge to the reproducibility of research approaches. 
Another hindrance to reproducibility is that model architectures and methods used for training datasets 
were not disclosed, especially in conference articles. Considering the relevance of reproducibility 
in scientific research, this research gap should be addressed in future studies. Generally, future 
studies should seek to address research challenges such as limited bandwidth, threshold problems, 
lack of general applicability of classifiers and publicly available datasets. Furthermore, this study 
acknowledged that the search strategy is not exhaustive: limiting the search to only open-accessed 
Scopus and ASA creates the possibility of omitting other relevant related studies. 
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