
DOI: 10.4018/JITR.299374

Journal of Information Technology Research
Volume 15 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Benchmarking Serverless Computing:
Performance and Usability
Mubashra Sadaqat, Østfold University College, Norway

Mary Sánchez-Gordón, Østfold University College, Norway*

 https://orcid.org/0000-0002-5102-1122

Ricardo Colomo-Palacios, Østfold University College, Norway

ABSTRACT

With the increasing adoption of serverless computing, there is a need for a benchmark. The aim of this
paper is to present such a benchmark based on performance and usability testing to better understand
serverless services as well as help practitioners to select between two major clouds, namely, Amazon
and Azure. Jmeter tool and system usability scale are used to conduct performance and usability testing,
respectively. In addition, a replication package is provided to increase the validity and reliability of
the results. The main findings revealed that the serverless platforms are different in their architecture.
Even though both of them support the same serverless concept, they differ considerably in structure,
development, and creation of services. Overall, both the cloud vendors under study provide the same
core capabilities one would expect, but there are some differences too. In particular, usability could
be improved to extend the market and capture more customers.

KeywoRdS
Amazon, Benchmark, Cloud Services, Microsoft Azure, Replication Package, Serverless

1. INTRodUCTIoN

Serverless computing is part of the cloud computing paradigm, which is based on the microservice
architecture. It focuses on providing resources in a fine granular and flexible manner in order to
further utilize the benefits of cloud computing (Völker, 2018). Serverless computing aims to save
companies significant amounts of time, money and resources by hosting, running, and managing
the applications and core functions of a business. Using this model, a company is freed from the
efforts and processes of running and maintaining server applications (Hardin, 2018). As an instance
of such processes, traditional server architectures involve a server process, typically listening to a
TCP socket, waiting for clients to connect and send requests (Sadaqat, Colomo-Palacios, & Emil
Skrimstad Knudsen, 2018).

The serverless environments are delegating the job of running service functions to cloud providers,
thereby allowing them to decide how to manage execution. The cloud vendors such as Amazon Web

https://orcid.org/0000-0002-5102-1122

Journal of Information Technology Research
Volume 15 • Issue 1

2

Services (AWS), Microsoft Azure, Google, IBM, and Iron.io are all incarnations of this idea in various
stages of development and adoption where application logic is split into functions and executed in
response to an event (McGrath & Brenner, 2017). With services such as AWS Lambda, Microsoft
Azure Functions, Google Cloud Functions, and IBM OpenWhisk, users have the ability to write desired
applications. These applications are collections of stateless functions that are event-triggered, short-
lived, and fully managed by the cloud provider and function deploy directly to a serverless framework
instead of running tasks on traditional virtual machines with pre-allocated resources (Klimovic et al.,
2018). Moreover, serverless computing as normal cloud computing effectively eliminates the time
consuming and expensive traditional approach of purchasing hardware/software, installing servers,
configuring, and troubleshooting. This idea makes serverless services more attractive for IT and
business industry (Sadaqat et al., 2018).

There are several reasons for the rapid emergence of serverless computing mentioned in the
literature (Erwin van Eyk, Iosup, Abad, Grohmann, & Eismann, 2018). For example, the cloud users
are relieved of the need to manage resources, designing auto scaling procedures, and other operational
logic. This allows them to focus on their business logic, reducing the costs of development, removing
the need for huge distributed systems expertise and improving the time-to-market for applications.

Despite the above-mentioned facts, it is quite tricky and challenging for companies to select
the most suitable cloud vendor, related to their requirement of application and demand of customers
(Vázquez, Ramki Krishnan, & John, 2014). One way to develop and deploy services in a profitable
manner and resources, companies look at the variety of options provided by cloud vendors in the form
of pricing, performance, load-balancing, programming language and other sets of features. Therefore,
it becomes increasingly important for potential cloud users to have deep and clear knowledge to work
in an efficient way (Qu, Wang, & Orgun, 2013).

In this scenario, benchmarking is widely used for the evaluation of computer systems. The
benchmarks exist for a variety of levels of abstraction, from the CPU and the database software, to
complete enterprise systems (Cooper, Silberstein, Tam, Ramakrishnan, & Sears, 2010). However,
there is a cloud user need for serverless benchmarks of a technical and suitability perspective. In this
study, we focus on Amazon and Microsoft Azure platforms because these two platforms are very close
competent players of cloud according to (Scale, 2018). The benchmark of serverless would help the
developer and cloud users to differentiate the services provided by the cloud vendors, Amazon and
Microsoft Azure. We believe that having a serverless service benchmark would also provide a unique
opportunity for software engineering researchers and IT industry. The comparison would be helpful
for not only the IT industry but also for the new users of serverless computing to understand the
underlying features and important aspects of the serverless platform including developer experience.

2. BACKGRoUNd

2.1 Platform of Serverless Computing
There are some well-known serverless cloud vendors such as Amazon, Microsoft, Google, IBM
and, iron.io. Apart from these cloud providers, other open source providers of serverless platforms
also exist. However, Amazon cloud vendor is on top of the other providers with its solution named
“Lambda”. It is the most fully featured and provides the first widely used commercial serverless
solutions (Eivy, 2017). It is worth noting that other cloud providers also offer their own variation of
serverless services that share the main characteristic of Lambda. On the other hand, Microsoft Azure
platform is the second largest cloud platform (Scale, 2018). IBM cloud functions and Google cloud
functions are also commercial offerings of serverless services (Baldini et al., 2017). The platform
launched by IBM is the open source implementation of serverless service called OpenWhisk, which
was released by IBM as an apache project and OpenLambda. The cloud service provided by Google
deserves to be mentioned because it is a unique platform on its own way (E. van Eyk et al., 2018;

Journal of Information Technology Research
Volume 15 • Issue 1

3

Baldini et al., 2017). In the end, Iron Function is an open source serverless computing framework made
by iron.io (Kanso & Youssef, 2017). Figure 1 shows the evolution of serverless computing platform.

2.2 Related work
Lee et al. (Lee, Satyam, & Fox, 2018) evaluated four serverless computing environments in production
related to the CPU performance, network bandwidth, a file I/O throughput, and concurrent invocations
on serverless computing including Amazon Lambda, Microsoft Azure Functions, Google Cloud
Functions, and IBM Cloud Functions.

Feng et al. (Feng, Kudva, Silva, & Hu, 2018) investigated the use of serverless runtimes while
leveraging data parallelism for large models, showed the challenges and limitations, proposing
modifications to the underlying runtime implementations. They pointed out that serverless runtimes
can provide significant benefits. In addition, Ishakian et al. (Ishakian, Muthusamy, & Slominski,
2018) evaluated the suitability of serverless computing to measure the performance by the cost
of running three different MXNet trained deep learning models on the AWS Lambda serverless
computing platform. They studied the suitability of using a serverless platform for AI workloads.
Kim and Lin (Kim & Lin, 2018) examined the feasibility of analytical processing on big data using
a serverless architecture. It describes the design, implementation, and performance of Flint, along
with the challenges associated with serverless analytics. As a result, they show that big data analytics
using a serverless architecture is in fact feasible.

Saha and Jindal (Saha & Jindal, 2018) presented an analysis of resource allocation carried out in
serverless platforms. They introduce EMARS, an efficient resource management system for serverless
cloud computing frameworks with the goal to enhance resource allocation (with focus on memory)
among containers, building a prototype using an open-source serverless platform OpenLambda.
They conducted experiments in AWS and OpenLambda to motivate the need for EMARS in resource
management solution. For the analysis of memory requirements, authors wrote two functions, one,
more memory intensive and the other, for the response time with different memory limits imposed
on them.

Al-Ali et al. (Al-Ali et al., 2018) propose a new architecture called ServerlessOS. They present a
serverless abstraction that enables the seamless and scale-out features provided by current serverless
architectures while supporting a wide variety of application types in a model that programmers are
familiar with the same abstraction provided by an operating system today. Perera and Perera (Perera &
Perera, 2018) presented TheArchitect model, which focuses on generating best fitted microservices and
serverless based high-level architecture. They demonstrated a performance evaluation of TheArchitect
in terms of the processing time. They attempt to generate high-level architecture for few real-world
applications containing a different number of system requirements as well as summarized statistics
on a conducted user study to evaluate the worth of TheArchitect as a supportive tool for both software
architects and developers.

Figure 1 Evolution of serverless computing platform

Journal of Information Technology Research
Volume 15 • Issue 1

4

Jun et al. (Jun, Kang, Kim, & Kim, 2018) proposed a GPU-supported serverless computing
framework that can deploy services faster than existing serverless computing framework using CPU.
They designed a new system architecture based on Iron Functions and NVIDIA-Docker that offers
the commands to allow framework users to use the GPU for the following two purposes. The first
one is to use PyCUDA to deploy Python-based high-performance services. The second one is to run
the enrichment code using the remote computer’s GPU on a computer without a local GPU. Authors
concluded that developers who want to run deep learning programs without a GPU environment can
run code on remote GPUs with little performance degradation.

To the best of our knowledge, no academic literature is yet studied the usability test on the two
trendiest platforms of serverless services. This led us to include the study of usability testing on AWS
Lambda and Azure Function.

3. ReSeARCH APPRoACH

The research method used for this study is a quasi-experiment based on performance test and usability
test (Wohlin, 2007). Therefore, we collected quantitative data and qualitative data, respectively. In
this way, execution and measurement were in control. The design also included the possibility to
replicate this study which is another important aspect. Despite the fact that there are some serverless
computing platforms available both in commercial and open source in the market today, this study
is focused on AWS and Azure as mentioned above in section 2.1.

3.1 Research Questions
The aim of this study is to better understand serverless services and help practitioners to select
between two major competitors of cloud vendor by conducting a benchmark. For this, we formulated
two research questions which are as follows:

RQ1: Which platform performs better, Amazon or Azure?
RQ2: Which is more user friendly, Amazon or Azure?

3.2 Usability Test
According to ISO 9241-11, usability is defined as “the extent to which a system, product or service
can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction
in a specified context of use” (Bevan, Carter, Earthy, Geis, & Harker, 2016). The System Usability
Scale (SUS) method is a well-known usability test. In this case, a modified SUS was used in order
to evaluate the usability of the Amazon Lambda vs Microsoft Azure. It assesses whether a user can
freely navigate through the screens without any difficulties or not. The key strength of the method
is the possibility of evaluating application to any participant sample size, even a small one, without
affecting the results (Bangor et al., 2008; Sauro & Lewis, 2011). Figure 2 shows an overview of the
Usability Test Design of AWS lambda and Azure function.

3.2.1 Test Session Procedure
The testing sessions were conducted on 27th March 2019 and it took 1 hour to complete the set of
tasks using Azure and AWS, including the questionnaire. At the start of the session, the participants
had been shown a quick demo video in order to form a better understanding of what is expected from
them. The participants were ensured that the purpose of the session is to investigate which platform is
closer to the user-centered design (UCD) rules. After the video presentation, users were encouraged
to take a look on their own laptop at the Amazon Lambda and Microsoft Azure Function pages. They
were asked to follow a task-based scenario. After completing the set of tasks, the participants were

Journal of Information Technology Research
Volume 15 • Issue 1

5

asked to fill in a form with ten system usability scale questionnaires. The questionnaires mainly aim
to understand the background of the participants and to view feedback about their overall experience.

3.2.2 Participants
The participants were a group, composed of 11 students of Høgskolen I Østfold, Halden, Norway,
from the Advanced Topics of Information Systems course. The group was primarily represented by
1st year students. All of the participants were carrying out the Master in Applied Computer Science
degree program. Therefore, all the participants had a lot in common regarding the study arrangements.
However, their experience with Amazon Lambda and Microsoft Azure Function, in general, varied.
Therefore, we defined the user classification according to two levels of knowledge of the participants.
Level 1 is a user with less than one year of experience or no previous experience in the platforms
and services, while Level 2 is a user who has more than one year of previous experience with these
technologies.

3.2.3 Tool
The SUS statements will give a numerical score, which is used as a benchmark for estimating the
user’s experience. It gives ten inquiries, having a 5-point Likert scale from 1 to 5, respectively:
(1) strongly disagree, (2) disagree, (3) not sure, (4) agree, and (5) strongly agree. It is worth
noting that the ISO 9241-11 standard is used to evaluate system usability by adopting a SUS
modified statement. Table 1 shows a modified version of SUS statements for Azure and AWS
usability task test.

To calculate the SUS questionnaire score (Jordan, Thomas, McClelland, & Weerdmeester, 2014),
for the odd numbered questions i.e. 1,3,5,7 and 9, the score input is the scale position minus 1. For
questions 2,4,6,8 and 10 i.e. even numbered questions, the input is 5 minus the scale position. At the
end, multiply the sum of the scores by 2.5 to obtain the overall value of the system usability. SUS
scores have a range of 0 to 100, where the usability level increments respectively with the number.
The range from 0 to 25 represents worst imaginable result. Greater than 25 and lesser than 39 shows
poor result range. The range from above or equal to 39 to 51 represents an average usability level,
the range from 52 to 73 shows good usability of system. A result between 73 to 85 represents an
excellent result and onward shows the best imaginable system usability.

Figure 2. Usability Test Design of AWS lambda vs Azure function

Journal of Information Technology Research
Volume 15 • Issue 1

6

3.2.4 Test Scenario
There is a different option to deploy functions on each serverless platform. In what follows, we present
the test scenario used in each platform.
3.2.4.1 Microsoft Azure Function Test Steps
Prerequisites

1. Account on Microsoft Azure portal.
2. NPM installation.

Create Azure Function
1. Login to the Azure portal.
2. Create a resource.
3. In the search plane, search for Function app.
4. Create a new function.
5. Fill in the function details with windows OS and JavaScript runtime environment.
6. Wait for the deployment to complete.

Create an HTTP Triggered Function
1. Click on new function.
2. Select In portal option.
3. Choose WebHook + API and create.
4. The file index.js will appear.
5. In the body variable, type Hello world.
6. Save and run the function.
7. Click on get function URL and copy it.

Table 1. Modified SUS statements

ID Modified SUS Statements for Amazon web
service

Modified SUS Statements for Microsoft
Azure

1 I would like to use AWS service to develop
applications.

I would like to use Microsoft Azure service to
develop applications.

2 I found development of service to be quite
complex.

I found development of service to be quite
complex.

3 I thought creating applications on AWS is simple
and easy to go.

I thought creating applications on Microsoft
Azure is simple and easy to go.

4
I thought building the application required
technical support from service provider or
technical person.

I thought building the application required
technical support from service provider or
technical person.

5 I found the integration of services are well
included.

I found the integration of services are well
included.

6 I think that using AWS service contains too much
inconsistency.

I think that using Microsoft Azure service
contains too much inconsistency.

7 I found that using AWS service is very easy to use
and learn.

I found that using Microsoft Azure service is
very easy to use and learn.

8 I found the development of application on AWS
unwieldy to use.

I found the development of application on
Microsoft Azure unwieldy to use.

9 I felt very confident using AWS platform. I felt very confident using Microsoft Azure
platform.

10 I needed technical background before starting work
on AWS platform.

I needed technical background before starting
work on Microsoft Azure platform.

Journal of Information Technology Research
Volume 15 • Issue 1

7

8. Paste the function URL into browser address bar.
9. See the response returned by the function displayed in the browser.

3.2.4.2 Amazon Web Services Lambda Test Steps
Prerequisites

1. Account on AWS account.
2. Installed NPM dependencies.

Create a Lambda Function With the Console
1. Sign in to the AWS Management Console.
2. In the search panel, search for Lambda.
3. Create a function.
4. Fill in the basic formation about the function such as name, runtime, execution role.
5. Name the function and set the runtime to Node.js 8.10 version.
6. Click on create function.

Create an API Gateway, Which Will Trigger Lambda Function
1. Click on services, type API Gateway.
2. Create an API and chose REST API option.
3. Click on Create API.
4. From the menu Actions, chose create method of GET.
5. Select Integration type as the Lambda function.
6. Back to the Lambda function page.
7. Go to the Basic Settings and increase the timeout to 2 min. This is to let request/response

complete before Lambda terminates function execution.
8. In the body variable, type Hello world.
9. Save and run the function.

To send the request to the Lambda function, we will need URL.
1. Click on API Gateway, you will see Invoke URL.
2. Paste the function URL into browser address bar.
3. See the response returned by the function displayed in the browser.

3.3 Performance Test
Performance testing is to determine how the system behaves and performs. A desktop environment
was set and simulation was used to generate data randomly, then the outcomes were compared.
In this case, the threads hit the server with various number of users, iterations, and a numbers
of queries. It will help us to understand server performance which in turn allows conclusions
based on metrics. By reviewing the literature, the metrics chosen with best measurement of the
results are as follows:

1. Bytes throughput over time
2. Hits per seconds
3. Latencies over time
4. Response codes per second
5. Response time distribution
6. Response time over time
7. Throughput versus Threads
8. Time versus Thread
9. Transaction Per Second
10. Response time

Journal of Information Technology Research
Volume 15 • Issue 1

8

3.3.1 Test Environment
We hosted a data set for Twitter tweets on both Azure and AWS database and created Azure Function
and AWS Lambda APIs to call the queries. This allowed us to analyze both Azure and AWS for
the aforementioned metrics. Figures 3 and 4 depict an overview of the scenario to access MSSQL
database using Node.js runtime in Azure function and AWS Lambda, respectively. Moreover, Table
2 shows the Amazon and Azure setup.

To access the MSSQL Database from an Azure Function using node.js:

1. Create a function in the Azure Portal using the “Webhook + API” and choose JavaScript as the
runtime language.

2. While creating the function, select the option of consumption plan as a hosting plan, which
defines how resources are allocated to the function app.

3. Once the MSSQL database has been created, configure firewall settings by adding a fully qualified
DNS name (FQDN) rather than the IP address because IP address is not static.

4. After that, create a Node.js application and add dependencies package such as Tedious and
MSSQL to run function successfully.

5. On the other hand, to manage the database, download SQL Server Management Studio 2018.
6. Then, create a “table” named “twcs” with an identifier field and a name field.
7. In addition, upload the CSV file. To connect to the database, use the server name (e.g. server.

database.windows.net) with SQL Server Authentication using the username and password to
access remotely productively.

To access MSSQL Database from an AWS, using node.js function:

1. Use the Amazon Relational Database Service (RDS) to create a Microsoft SQL Server DB
Instance in AWS console.

Figure 3. Scenario to access MSSQL database using Node.js runtime in Azure function

Journal of Information Technology Research
Volume 15 • Issue 1

9

2. For the Amazon Lambda, specify the code source in a ZIP file and upload it in the
Lambda function.

3. When creating the function, the function needs minimal IAM roles to operate as it is not calling
any AWS Services directly.

4. In case of the node.js application, the dependencies are managed with NPM and MSSQL. Using
NPM, the required libraries for interacting with the services in Amazon are included in each
function while uploading the zip file into function.

In this experiment, the performance tests were run with 15Mbps internet connection on JMeter
version 5.1.1. The basic setup for using Apache JMeter in our scenario is MSSQL database and two
Java drivers. The Microsoft JDBC Driver 7.2 for SQL Server and JTDS Driver for SQL Server 1.3.1.
They required Java version 8.

Figure 4. Access MSSQL database using Node.js runtime in AWS Lambda

Table 2. Setup

Setup Amazon Azure

Trigger HTTP HTTP

HTTP version 2.0 version 2.0

Platform 64 bits 64 bits

Hosting plan Pay as you go Pay as you go

Runtime JavaScript Node.js 8.10

Operating system Windows Linux

Journal of Information Technology Research
Volume 15 • Issue 1

10

3.3.2 Dataset
Performance test of AWS and Microsoft Azure was carried out based on a Twitter dataset as mentioned
before. Such a dataset is the CSV file that we want to upload into “table” named “twcs”. The dataset
chosen for it was taken from the Kaggle website (kaggle.com, 2017). According to such a website,
the file was updated one year ago and the file size is 167MB. The dataset consists of over 3 million
tweets and replies from the biggest brands as well as a total of 93 instances and 7 attributes related
to customers. In this scenario, a simple select statement was formulated to test the performance of
AWS and Microsoft Azure: “‘select top 5 * FROM twitter.dbo.twcs’”.

3.3.3 Tool
Apache JMeter is an open source Java-based application. It helps to measure the respond time at
every load level (Stevens, 2019). JMeter simulates the client to send a request to the web server or
database server (Wang & Du, 2012). JMeter tool enables to create and execute test cases on cloud
and makes it possible to run the tests with the help of thousands of virtual users without requiring
any setups on machines (Kılınç, Sezer, & Mishra, 2018).

3.3.4 Test Scenario
For our analysis, we conducted many tests with 5, 50 and 100 users. We used 500, 1000, 5000, 10000
and 50000 queries combination with different number of users. Furthermore, we used 1, 5 and 10
loop count for each user and query combination. In total 45 treatments were performed. Therefore,
all combinations of these values are used.

4. ReSULTS

4.1 Usability Test Results
The SUS measures perceived usability of the evaluated system as well as user satisfaction. The
Appendix shows the system usability test score calculation.

In the testing sessions, 63,63% of the participants were male and 90,90% (10/11) of the
participants were classified in Level 1 while just one participant was in Level 2 because he has 2
years of experience with both platforms. Table 3 shows the SUS score. In summary, the SUS result
of AWS lies in the category of ‘Average’ whereas the result of Azure lies in the category of ‘Good’.
This finding is supported by one of the participants who pointed out that “By comparison of these
two platforms, I should say both are quite the same but as I become a bit more precise, I realized
that Microsoft Azure is easier to work with than AWS”.

After the usability testing, we came to the conclusion that both Azure and AWS are for
professionals with technical expertise and background along with basic knowledge about the domain
of computer science. The learning curve for both the platforms is steep and complex for new users. For
a non-technical person, navigating through both Azure and AWS is like walking through a maze even
with the platform’s official guidelines and instructions. From a practitioner perspective, the demand
for these platforms is high and users look in the market for the features provided by these platforms.
However, most of the non-specialist customers are unaware of these platforms’ full potential due to
their complex interface. They only use these platforms to achieve one or two specific functionalities
such as database hosting and are unaware of the rest.

4.2 Performance Test Results
The performance test results in detail are available on a Git repository (Sadaqat, 2019). In order to
keep document compact, a summary of the results of the ten metrics is as follows.

First, bytes throughput over time has received nearly similar bytes per second and delay after that
the data transfer ends in both the platforms, although AWS comes ahead in this metric (see details in

Journal of Information Technology Research
Volume 15 • Issue 1

11

(Sadaqat, 2019)). The AWS overall experiment average elapsed start time is 29:08.3, which shows
the time just before sending the request to just after the last response has been received, while elapsed
end time is 26:33.3, whereas, Azure overall average elapsed start time is 29:20.6 with an elapsed end
time of 26:19. The bytes received in a sec were 1369395.473 for AWS and 1362652.705 for Azure.

Second, hits per second is a metric where the total treatments average elapsed time is 28:24.2 and
server hits is 5.469506 hits per second for AWS compared to 29:30.3 elapsed time and 5.415002 hits
per second for Azure. Initially, AWS shows more diverse values but as the number of users increases,
the number of hits for both Azure and AWS section is similar. However, one interesting result was
given by the scenario of 5 users each, one iteration and combination of queries. Here, the number of
hits per second for both Azure and AWS was the same, 2.5 hits per second.

Third, latencies over time shows that the AWS overall average elapsed time is 30:00.6 with
response latencies of about 10071.86ms. In comparison, for Azure the overall average elapsed time
30:01.5 with 17190.45ms average response latencies. Based on this, we see that AWS outperforms
Azure as increased response is better for the end user.

Fourth, response code per second is based on minimum 5 users and maximum 100 users. We
receive an average elapsed time of 30:00.6 for AWS, whereas Azure has a delay of 30:01.5 before
sending the request to just after the last response has been received. Here, we get 2.365768154/
sec success error with 11.659346/sec error status from AWS, while on other hand, we receive a
2.724609769 per second success rate and 8.394029 per second error status from Azure.

Fifth, response time distribution is based on 45 treatments. Here, each treatment was repeated
10 times in order to improve the accuracy of the results for each user. The overall average shows that
Azure has 37766.67615ms response times, whereas AWS has 33452.22769ms. Based on this Azure
overtakes AWS in these metrics.

Sixth, response time over time shows the change in response time for requests over the period
or duration of test. Here, AWS shows an average elapsed time of 30:00.6 per second and a response
time of 30431.35ms. Whereas Azure shows the elapsed time is of 30:01.5 per second and response
time of 31721.69ms. Based on these results, we note that AWS outperforms Azure as less response
time and less elapsed time in results is more desirable.

Seventh, throughput over thread shows us the amount of throughput each thread receives in a
request over the progress of the test. Here, AWS shows an average around 25 active threads receive

Table 3. Summary of SUS scores

Gender Age Participants AWS SUS Score Azure SUS Score

Male 26 1 50,00 40,00

Male 33 2 45,00 45,00

Female 36 3 55,00 57,50

Male 27 4 47,50 52,50

Male 36 5 42,50 50,00

Female 33 6 62,50 62,50

Male 29 7 60,00 60,00

Male Not mention 8 55,00 45,00

Male 24 9 35,00 60,00

Female 23 10 52,50 60,00

Female 28 11 50,00 60,00

Average 50,45 53,86

Journal of Information Technology Research
Volume 15 • Issue 1

12

3.829578 transactions per second, whereas Azure —same number of active threads on average—
shows an average of 3.677647615 transactions per second.

Eighth, time versus thread gives us information about the response time each thread receives
throughout our test. As a result, we note that the approximate number of active threads of both Azure
and AWS is 25. However, average of response time in AWS is less than in Azure, 24831.45ms and
30504.93ms, respectively.

Ninth, transaction per second is the duplicate of response code per second which includes
elapsed time, and the success and failure of response per second. The aggregate report of the 45 tests
shows an average error rate around 37,62% for AWS and 36,88% for Azure while the error rate is
slightly similar.

Tenth, response time shows that the average response time for AWS is 24830.92ms, whereas
for Azure is 30504.53846ms. For Azure, minimum response time is 22503.31ms while maximum is
58578ms delay before the request is started. For, AWS minimum time is 15827.08 and maximum is
51618.38. Therefore, even with fewer throughputs because of less delay we get less response time
the standard deviation of AWS 8108.013ms is less than Azure 8964.175ms. It means that AWS has
more consistency with respect to response time. As response time of AWS is less, we can see that
average median, 90th percentile, 95th percentile, and 99th percentile of AWS compared to Azure is
less (see Table 4).

4.3 Limitation of Research
The main limitation of this performance test study was the budget. Initially the free tier subscription
service was used for serverless service on both AWS and Azure platforms. But later on, after the credit
became zero, the subscription was upgraded to “pay as you go”, which adds the factor of increasing
and managing the budget. Furthermore, the dataset was another major limitation so that further studies
should replicate this experiment using other datasets and different test scenarios (see section 3.4.4).

For the usability test, a major limitation was the small sample size. There was only one participant
in Level 2, whereas all others were in Level 1. If the ratio of Level 1 and Level 2 were the same,
the result would have been significantly more balanced. Moreover, the test scenario is limited due
to the scope of this exploratory study (see section 3.3.4) but, nevertheless, it provides a preliminary
overview of usability. Therefore, further research is also needed.

4.4 Replication Package
Given that the replication is one of the fundamentals of the experimental methods, a replication
package is available on a Git repository (Sadaqat, 2019) in order to increase the validity and reliability
of the result. By providing a replication package, it will facilitate others to replicate or to reproduce
this experiment. The replication package includes the file of data which has the dataset URL address
and SUS questionnaire. The second file called by name procedure presents the experiment overview
which explains test environment, the tool used for the experiment, and the test code. This folder also
includes subfolders by test scenario title including performance test and usability test. The third
folder and fourth folder contain performance results and SUS calculation result score, respectively.

Table 4. Response time result

Response time AWS Azure

Median 22470.08 26136.08

90th 35551.31 42912.54

95th 40873.92 48326.62

99th 46243.15 52954.23

Journal of Information Technology Research
Volume 15 • Issue 1

13

5. CoNCLUSIoN

The main findings of this study revealed that AWS and Microsoft Azure platforms provide similar core
capabilities you would expect but there are considerable differences in terms of structure, creations of
services, configuration of function and so on. We came to the conclusion that both Azure and AWS
perform quite similar to some extent. Azure performs better marginally in a certain scenario, whereas
AWS performs better in some situations than Azure. The real difference between the two platforms
lies in usability of these services. In other words, the same functionality is provided in two very
different interfaces. AWS Lambda requires complex network and database configuration including
IAM (identity access management), NAT (Network Address Translation), inbound, outbound rules
for network traffic, and various policies roles. Whereas Azure only requires FQDN to be assigned to
Azure firewall for access, including database and HTTP trigger for function.

According to the usability test session, most participants suggested that they found Azure to be
more user friendly and easy to use. They were able to work on Azure and understand their interface
quicker than AWS. However, both Azure and AWS are professional level platforms aimed towards
users with stronger technical background along with knowledge about the domain of computer science.
The learning curve for both of the platforms is steep and complex for new users. For a non-experience
user, navigating through both Azure and AWS is like walking through a maze even with the platform’s
guidelines and instructions. From a technical perspective, even for a developer from a strong technical
background, configuring everything, from complex network settings to compound database options,
it is sometimes confusing and timely to understand the procedures. However, it is worth noting that
Azure interface and its documentation were easier to understand and navigate through.

We concluded that Azure and AWS can extend their market and capture more customers by making
their interfaces simpler and more user friendly, according to the tests conducted. At the moment,
both platforms’ interfaces seem to be targeted towards technical users, but they should be made more
user friendly for non-experience users as well, by developing a more selection-oriented interface
instead of the current configuration oriented interfaces. There is also a need for automation in most
aspects of the interface such as in network configuration and database setting such as IAM (identity
and access management) in AWS. They should be replaced with pop-up dialogs with functional and
procedural description instead of technical configuration. Currently, this is not something unheard
of as we have some examples such as Wordpress and Wix. However, it is an exploratory study about
usability and more research is needed to understand how usability could be implemented and its real
benefits. Therefore, as a future work would be interesting to perform a focus group in order to gain
more insights of users about the usability.

Given that it is important to facilitate replication of experiments, a replication package is
available on a Git repository (Sadaqat, 2019). It may be used for more exploratory studies and more
knowledge may be gained. For further research, it would be interesting to perform a load and stress
test on AWS Lambda and Azure function. An additional performance of benchmarking based on
financial perspective could be useful. Finally, in any future research, the implementation of more
services such as those for DevOps and internet of things, with the combination of current serverless
services should be conducted.

FUNdING AGeNCy

The publisher has waived the Open Access Processing fee for this article.

Journal of Information Technology Research
Volume 15 • Issue 1

14

ReFeReNCeS

Al-Ali, Z., Goodarzy, S., Hunter, E., Ha, S., Han, R., Keller, E., & Rozner, E. (2018). Making Serverless
Computing More Serverless. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), 456–459.
doi:10.1109/CLOUD.2018.00064

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., . . . Suter, P. (2017). Serverless Computing:
Current Trends and Open Problems. In Research Advances in Cloud Computing (pp. 1–20). doi:10.1007/978-
981-10-5026-8_1

Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An Empirical Evaluation of the System Usability Scale.
International Journal of Human-Computer Interaction, 24(6), 574–594. doi:10.1080/10447310802205776

Bevan, N., Carter, J., Earthy, J., Geis, T., & Harker, S. (2016). New ISO Standards for Usability, Usability
Reports and Usability Measures. Proceedings, Part I, of the 18th International Conference on Human-Computer
Interaction. Theory, Design, Development in Practice, 9731, 268–278. doi:10.1007/978-3-319-39510-4_25

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., & Sears, R. (2010). Benchmarking Cloud
Serving Systems with YCSB. Proceedings of the 1st ACM Symposium on Cloud Computing, 143–154.
doi:10.1145/1807128.1807152

Eivy, A., & Weinman, J. (2017). Be Wary of the Economics of “Serverless” Cloud Computing. IEEE Cloud
Computing, 4(2), 6–12. doi:10.1109/MCC.2017.32

Feng, L., Kudva, P., Silva, D. D., & Hu, J. (2018). Exploring Serverless Computing for Neural Network
Training. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), 334–341. doi:10.1109/
CLOUD.2018.00049

Hardin, T. (2018). 2018 Digital Trend: Serverless Technology [Educational]. Retrieved July 24, 2018, from G2
Crowd website: https://blog.g2crowd.com/blog/trends/digital-platforms/2018-dp/serverless-computing/

Ishakian, V., Muthusamy, V., & Slominski, A. (2018). Serving Deep Learning Models in a Serverless Platform.
2018 IEEE International Conference on Cloud Engineering (IC2E), 257–262. doi:10.1109/IC2E.2018.00052

Jordan, P. W., Thomas, B., McClelland, I. L., & Weerdmeester, B. (2014). Usability Evaluation. In Industry.
CRC Press.

Jun, T. J., Kang, D., Kim, D., & Kim, D. (2018). GPU Enabled Serverless Computing Framework. 2018 26th
Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 533–540.
doi:10.1109/PDP2018.2018.00090

kaggle.com. (2017). Customer Support on Twitter [Dataset]. Retrieved May 8, 2019, from https://kaggle.com/
thoughtvector/customer-support-on-twitter

Kanso, A., & Youssef, A. (2017). Serverless: Beyond the Cloud. Proceedings of the 2nd International Workshop
on Serverless Computing, 6–10. 10.1145/3154847.3154854

Kılınç, N., Sezer, L., & Mishra, L. (2018). Cloud-Based Test Tools: A Brief Comparative View. Cybernetics
and Information Technologies, 18(4), 3–14. https://doi.org/10.2478/cait-2018-0044

Kim, Y., & Lin, J. (2018). Serverless Data Analytics with Flint. 2018 IEEE 11th International Conference on
Cloud Computing (CLOUD), 451–455. 10.1109/CLOUD.2018.00063

Klimovic, A., Wang, Y., Kozyrakis, C., Stuedi, P., Pfefferle, J., & Trivedi, A. (2018). Understanding Ephemeral
Storage for Serverless Analytics. 2018 USENIX Annual Technical Conference (USENIX ATC ’18). Retrieved
from https://www.usenix.org/system/files/conference/atc18/atc18-klimovic-serverless.pdf

Lee, H., Satyam, K., & Fox, G. (2018). Evaluation of Production Serverless Computing Environments. 2018
IEEE 11th International Conference on Cloud Computing (CLOUD), 442–450. 10.1109/CLOUD.2018.00062

McGrath, G., & Brenner, P. R. (2017). Serverless Computing: Design, Implementation, and Performance. 2017
IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), 405–410.
10.1109/ICDCSW.2017.36

http://dx.doi.org/10.1109/CLOUD.2018.00064
http://dx.doi.org/10.1007/978-981-10-5026-8_1
http://dx.doi.org/10.1007/978-981-10-5026-8_1
http://dx.doi.org/10.1080/10447310802205776
http://dx.doi.org/10.1007/978-3-319-39510-4_25
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1109/MCC.2017.32
http://dx.doi.org/10.1109/CLOUD.2018.00049
http://dx.doi.org/10.1109/CLOUD.2018.00049
https://blog.g2crowd.com/blog/trends/digital-platforms/2018-dp/serverless-computing/
http://dx.doi.org/10.1109/IC2E.2018.00052
http://dx.doi.org/10.1109/PDP2018.2018.00090
https://kaggle.com/thoughtvector/customer-support-on-twitter
https://kaggle.com/thoughtvector/customer-support-on-twitter
https://www.usenix.org/system/files/conference/atc18/atc18-klimovic-serverless.pdf

Journal of Information Technology Research
Volume 15 • Issue 1

15

Perera, K. J. P. G., & Perera, I. (2018). TheArchitect: A Serverless-Microservices Based High-level Architecture
Generation Tool. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
204–210. 10.1109/ICIS.2018.8466390

Qu, L., Wang, Y., & Orgun, M. A. (2013). Cloud Service Selection Based on the Aggregation of User Feedback
and Quantitative Performance Assessment. 2013 IEEE International Conference on Services Computing,
152–159. 10.1109/SCC.2013.92

Sadaqat, M. (2019, September 30). Performance test results. Retrieved from Severless Service Performance
Testing website: https://github.com/mubasha/Serverless-service-performace-testing.git

Sadaqat, M., Colomo-Palacios, R., & Emil Skrimstad Knudsen, L. (2018). Serverless computing a multivocal
literature review. Proceedings from the Annual NOKOBIT Conference Held at Svalbard the 18th-20th of September
2018, 26. Retrieved from https://ojs.bibsys.no/index.php/Nokobit/article/view/544

Saha, A., & Jindal, S. (2018). EMARS: Efficient Management and Allocation of Resources in Serverless. 2018
IEEE 11th International Conference on Cloud Computing (CLOUD), 827–830. 10.1109/CLOUD.2018.00113

Sauro, J., & Lewis, J. R. (2011). When Designing Usability Questionnaires, Does It Hurt to Be Positive? Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, 2215–2224. 10.1145/1978942.1979266

Scale, R. (2018). RightScale 2018 State of the Cloud Report [Report]. Retrieved August 18, 2018, from https://
www.rightscale.com/lp/state-of-the-cloud

Stevens, S. (2019, August 5). JMeter—Open Source Functional and Load Testing. Retrieved May 8, 2019, from
http://www.methodsandtools.com/tools/tools.php?jmeter

van Eyk, E., Iosup, A., Abad, C. L., Grohmann, J., & Eismann, S. (2018). A SPEC RG Cloud Group’s Vision
on the Performance Challenges of FaaS Cloud Architectures. Companion of the 2018 ACM/SPEC International
Conference on Performance Engineering, 21–24. 10.1145/3185768.3186308

van Eyk, E., Toader, L., Talluri, S., Versluis, L., Uță, A., & Iosup, A. (2018). Serverless is More: From PaaS to
Present Cloud Computing. IEEE Internet Computing, 22(5), 8–17. doi:10.1109/MIC.2018.053681358

Vázquez, C., Ramki Krishnan, R., & John, E. (2014). Cloud Computing Benchmarking: A Survey. Retrieved
from /paper/Cloud-Computing-Benchmarking-%3A-A-Survey-V%C3%A1zquez-Krishnan/22bcd82109ac22d
9f379fbb55ba2d8912b2efb7f

Völker, C. (2018). Suitability of serverless computing approaches. 10.18419/opus-9711

Wang, F., & Du, W. (2012). A Test Automation Framework Based on WEB. 2012 IEEE/ACIS 11th International
Conference on Computer and Information Science, 683–687. 10.1109/ICIS.2012.21

Wohlin, C. (2007). Empirical Software Engineering: Teaching Methods and Conducting Studies. In V. R. Basili,
D. Rombach, K. Schneider, B. Kitchenham, D. Pfahl, & R. W. Selby (Eds.), Empirical Software Engineering
Issues. Critical Assessment and Future Directions: International Workshop, Dagstuhl Castle, Germany, June
26-30, 2006. Revised Papers (pp. 135–142). 10.1007/978-3-540-71301-2_42

https://github.com/mubasha/Serverless-service-performace-testing.git
https://ojs.bibsys.no/index.php/Nokobit/article/view/544
https://www.rightscale.com/lp/state-of-the-cloud
https://www.rightscale.com/lp/state-of-the-cloud
http://www.methodsandtools.com/tools/tools.php?jmeter
http://dx.doi.org/10.1109/MIC.2018.053681358

Journal of Information Technology Research
Volume 15 • Issue 1

16

APPeNdIX: AddITIoNAL TABLeS

Table 5 shows the system usability score calculation.

Table 5. SUS Calculation

AWS

Experience year(s)
and month(s) Gender Age 1 2 3 4 5 6 7 8 9 10 Score

0 Male 26 4 3 4 5 4 2 5 4 2 5 50,00

0 Male 33 3 4 3 2 4 2 2 4 3 5 45,00

0 Female 36 3 2 4 3 3 3 3 3 3 3 55,00

0 Male 27 4 3 3 3 3 3 4 4 3 5 47,50

0 Male 36 4 3 2 4 3 3 2 3 3 4 42,50

0 Female 33 3 2 4 4 5 3 5 3 4 4 62,50

2 year Male 29 4 3 4 4 4 2 4 3 4 4 60,00

Not mention Male Not
mention 4 3 3 2 4 2 4 4 3 5 55,00

Not mention Male 24 3 4 2 3 2 3 2 4 3 4 35,00

0 Female 23 4 3 3 4 4 1 3 3 2 4 52,50

0 Female 28 3 3 2 4 4 2 3 2 3 4 50,00

50,45

Azure

Experience year(s)
and month(s) Gender Age 1 2 3 4 5 6 7 8 9 10 Score

0 Male 26 4 3 4 4 3 4 2 4 3 5 40,00

3 month Male 33 3 3 4 4 3 2 2 3 2 4 45,00

Not mention Female 36 3 3 4 3 3 2 4 2 2 3 57,50

0 Male 27 4 3 4 3 3 3 4 3 3 5 52,50

0 Male 36 4 3 3 4 4 3 2 3 4 4 50,00

0 Female 33 4 2 4 5 4 3 5 3 4 3 62,50

2 year Male 29 4 3 4 4 4 2 4 3 4 4 60,00

Not mention Male Not
mention 3 4 3 3 3 2 4 4 2 4 45,00

6 month Male 24 4 3 4 3 3 3 3 2 4 3 60,00

0 Female 23 4 3 4 3 4 2 4 3 3 4 60,00

0 Female 28 4 2 4 4 4 1 3 3 3 4 60,00

53,86

Journal of Information Technology Research
Volume 15 • Issue 1

17

Mubashra Sadaqat received her Master’s in Applied Computer Science from Høgskolen i Østfold in Spring 2019.
She took her Bachelor’s in Computer Science from Pakistan in 2016. In July 2019, she was hired as a Data Analyst
at Celsa Armeringsstål AS, Norway. She enjoys reading research papers, exploring the relationships between
numbers and the translation of those figures into stories for others to read and benefit from.

Mary Sánchez-Gordón is an Associate Professor at the Computer Science Department of the Østfold University
College. Formerly, she worked at Universidad Central del Ecuador. Her research interests are software process,
software process improvement, people in software projects. She holds a Ph.D. and Master’s degree in Computer
Science and Technology from Universidad Carlos III de Madrid. She also holds a Master’s degree in Education
and a bachelor’s degree in Computer Science from Universidad Central del Ecuador. She has been working as
Software Engineer, Project Manager, and Software Engineering Consultant in several companies.

Ricardo Colomo-Palacios is Full Professor at the Computer Science Department of the Østfold University College,
Norway. Formerly he worked at Universidad Carlos III de Madrid, Spain. His research interests include applied
research in information systems, software project management, people in software projects, business software,
software and services process improvement and web science. He received his PhD in Computer Science from
the Universidad Politécnica of Madrid (2005). He also holds a MBA from the Instituto de Empresa (2002). He
has been working as Software Engineer, Project Manager and Software Engineering Consultant in several
companies including Spanish IT leader INDRA. He is also an Editorial Board Member and Associate Editor for
several international journals and conferences and Editor in Chief of International Journal of Human Capital and
Information Technology Professionals (Emeritus since August 2018).

