
DOI: 10.4018/IJDWM.303673

International Journal of Data Warehousing and Mining
Volume 18 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Hierarchical Hybrid Neural Networks 
With Multi-Head Attention for 
Document Classification
Weihao Huang, School of Electronics and Information Engineering, School of Physics and Telecommunication 
Engineering, South China Normal University, China

Jiaojiao Chen, School of Electronics and Information Engineering, South China Normal University, China

Qianhua Cai, School of Electronics and Information Engineering, South China Normal University, China*

Xuejie Liu, School of Electronics and Information Engineering, South China Normal University, China

Yudong Zhang, School of Informatics, University of Leicester, UK

 https://orcid.org/0000-0002-4870-1493

Xiaohui Hu, School of Electronics and Information Engineering, South China Normal University, China

ABSTRACT

Document classification is a research topic aiming to predict the overall text sentiment polarity with the 
advent of deep neural networks. Various deep learning algorithms have been employed in the current 
studies to improve classification performance. To this end, this paper proposes a hierarchical hybrid 
neural network with multi-head attention (HHNN-MHA) model on the task of document classification. 
The proposed model contains two layers to deal with the word-sentence level and sentence-document 
level classification respectively. In the first layer, CNN is integrated into Bi-GRU and a multi-head 
attention mechanism is employed in order to exploit local and global features. Then, both Bi-GRU 
and attention mechanism are applied to document processing and classification in the second layer. 
Experiments on four datasets demonstrate the effectiveness of the proposed method. Compared to 
the state-of-the-art methods, the model achieves competitive results in document classification in 
terms of experimental performance.
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INTRoDUCTIoN

There has been research interest towards the improvements in textual information processing in the 
past decade (Ali et al., 2017). Accompanying the evolution of computer technology, the volume of 
text data available online has had strong growth in recent years. As an important branch in the field 
of natural language processing (NLP), document classification aims to determine the sentiment 

https://orcid.org/0000-0002-4870-1493


International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

2

polarity of a document, which plays a pivot role in a variety of tasks, including spam email filtering 
(Liu & Wang, 2010), topic extraction (Sarioglu, 2014), sentiment analysis (Hu et al., 2015), social 
public opinion mining (Guan et al., 2009) and more. In most cases, the discussed documents are 
ranked with different scores or stars representing the corresponding sentiment, while a higher score 
generally indicates more positive sentiment. With an accurate comprehension of the sentiment results 
and a deep understanding of the given document, the performance of document classification can 
be improved accordingly.

Advances in deep learning algorithms give rise to new opportunities to promote the efficacy of 
NLP tasks significantly. State-of-the-art document classification approaches are typically dominated 
by two distinguishing neural networks: the convolutional neural network (CNN), and the recurrent 
neural network (RNN). Recent publications report the superiority of the RNN in dealing with 
sequential inputs of various lengths. That is, the RNN models are capable of not only modeling the 
long-term dependencies (Habimana et al., 2020), but can also capture the semantics within contextual 
information (Du et al., 2019). More specifically, the two most well-known RNNs, namely long short-
term memory (LSTM) and gated recurrent unit (GRU), are employed as a key module for tackling 
such issues in miscellaneous NLP methods (Li et al., 2019). On the other hand, the CNN is more 
effective in extracting the sentiment-related features from word sequences in comparison with the 
RNN (Du et al., 2019). The main reason is that the CNN can make full use of the textual data to 
collect the feature vectors with minimum parameters. In such a manner, the local importance from 
salient parts is thus captured (Zhao et al., 2021).

In order to improve document classification accuracy, the absence of sentiment information 
within long-distance texts needs to be considered comprehensively. To address this issue, the attention 
mechanism is employed, which supplements and enhances the long-distance sentiment information 
delivering in either the CNN or the RNN models. To be more specific, the attention mechanisms 
identify the significance in exploiting the hidden states and computing the class distributions, based 
on how to determine the attentive weights of different words (Liang et al., 2017). In this way, the 
models that integrate the attention mechanism into the RNN/CNN are able to model the textual data 
regardless of the distances. While restricted to the architecture of deep-learning algorithms, the 
attention mechanism still shows its distinctiveness by precisely capturing the sentiment of a specific 
part from the document. In fact, an attention model proposed by Google, namely Transformer, is 
implemented based solely on the attention mechanisms, without using the neural network structure 
(Vaswani et al., 2017). This work allows for multi-attention layers running in parallel, and outperforms 
all previously reported ensembles, which sets the foundation of the multi-head attention network.

Among existing document classification methods, two major concerns remain challenging. One 
concern is that most models, in spite of incorporating the hierarchical structure, fail to resolve the 
distinctions between sentences and the document. Another concern is that the relationship between 
words, which also makes a contribution to the document classification, attracts less attention. In 
light of the above discussion, an ideal document classification model should precisely identify the 
sentiment by exploiting all sources of textual information. Inspired by Vaswani et al. (2017) and 
Yang et al. (2016), the objective of this work is to propose a hierarchical hybrid neural network with 
a multi-head attention (HHNN-MHA) model for document classification. Aiming to identify the 
significances of different words and different sentences, two distinguishing attention mechanisms 
are employed on each level for modeling (Huang et al., 2021). Furthermore, a convolution module is 
integrated into Bi-GRU via a learnable gating mechanism, while a gated linear unit (GLU) is taken 
to obtain both local and global features. In line with the multi-head attention network, the relations 
of different components are determined based merely on the input document. The contributions of 
this paper are threefold, which are summarized as follows:

1.  According to the hierarchical structure within the document, a hybrid attention network is 
dedicatedly designed to deal with the hierarchical characteristics.
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2.  An improved Bi-GRU is carried out with the integration of the CNN module, which aims to 
capture the local relationship among words.

3.  To improve the model generalization and compute the similarity between words directly, the 
multi-head self-attention mechanism is employed for semantic encoding. In this way, more 
informative semantic features can be extracted and the classification accuracy can be improved.

ReLATeD WoRK

Document Classification Methods
Previous works on document classification highlighted the remarkable achievements of the CNN- and 
the RNN-based methods. In the domain of NLP, the employment of the CNN greatly facilitates the 
processing of multiple tasks (Collobert & Weston, 2008). For the purpose of document classification, 
Kim et al. (2014) devised a method, namely TextCNN, based on the reversed convolutional layer, 
which brings about a simpler structure and less computation. Likewise, Kalchbrenner et al. (2014) 
proposed a dynamic convolutional neural network (DCNN) to effectively deal with the interaction 
among different words. Johnson and Zhang (2017) established a deep pyramid convolutional neural 
network by studying and deepening word-level CNNs. Moreover, hierarchical neural networks attract 
a great deal of interest due to their ability to tackle different levels of textual information. Zheng et al. 
(2019) proposed a hierarchical neural network derived from TextCNN, which is known as TextHCNN. 
In TextHCNN, the document representation is generated via the feature map convolution from sentence 
level, while the sentence representation is generated by using the CNN within the word level.

By contrast, the utilization of the RNN specializes in the modeling of long-term dependency 
sequences (Habimana et al., 2020). Concretely, the RNN is able to work on input data of different 
lengths, based on where to capture the context information and identify long-distance sentiment (Du 
et al., 2019). Compared to the classical RNN, the widely-applied RNN models, LSTM and GRU, are 
originally proposed to enhance long-term memory delivery. One can observe that Wang et al. (2015) 
employed LSTM to deal with the data from social media for sentiment analysis. Besides, there is an 
ongoing trend to integrate The RNN and The CNN for mutual supplementary and enhancement. For 
example, Wang et al. (2016) presented a jointed CNN and RNN architecture, which exploits both 
local features and long-distance dependencies for sentiment analysis. In addition, Guggilla et al. 
(2016) proposed LSTM- and CNN-based deep neural networks and obtained impressive outcomes 
in argumentative claim classification.

Multi-Head Attention Mechanism
The attention mechanism is typically an integral part to characterize the component dependencies 
with attentive weights in deep-learning methods (Vaswani et al., 2017). To the best of the authors’ 
knowledge, the integration of the attention mechanism into the RNN/CNN is currently the most 
common approach to identify the significance in sequential data processing. Gao et al. (2018) 
proposed a two-layer attention network based on classic CNN, with the goal of capturing the 
importance of different words and sentences. Similarly, Liu et al. (2020) fused the attention 
mechanism into the ELMo (Embedding from Language Models) neural network to obtain 
comprehensive semantic information.

Since the attention mechanism has the potential to be enormously beneficial to draw the relation, 
the Transformer model, which relies entirely on an attention mechanism by eschewing recurrence or 
convolution, is thereby built up (Vaswani et al., 2017). With such a simple network architecture, the 
transformer is trained significantly faster and exceeds the performance of state-of-the-art methods. 
Notably, the multi-head attention presented in Transformer is further applied to other NLP tasks. 
The working principle of the multi-head attention mechanism is presented in Figure 1 and Figure 2, 
and is described as follows.
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Scaled-dot-product attention is proposed by Vaswani et al. (2017), and performs well on machine 
translation. It is defined as Equation 1:

Attention Q K V softmax
QK

d
V

T

k

( , , )=











 (1)

where Q  denotes query, K  denotes key, and V  denotes value, d
k

 is scale factor to avoid the large results.

Figure 1. Scaled-dot-product attention

Figure 2. The multi-head attention mechanism
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The multi-head attention mechanism (MHA) (Vaswani et al., 2017) comprises zoom dot 
multiplying attention combined with a parameter matrix, which can process information in different 
representation subspaces from different locations in parallel. First, the queries, keys, and values are 
mapped through the parameter matrix, and then the parallel operation of the attention function is 
performed. Since the values of q  and k  change constantly, the parameters of different heads are 
detached. As such, these results are concatenated as the final outcome value (Xiao et al., 2020). The 
specific calculation is defined as follows:

MultiHead Q K V Concat head head

where head Attentio
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where WQ , WK , and WV  are the appropriate parameters learned by the authors’ model training process.

THe APPRoACH

In this section, the general framework of the model based on a hierarchical hybrid neural network 
with a multi-head attention mechanism is described. As shown in Figure 3, the proposed model 
consists of a word encoder, a word-level attention layer, a sentence encoder, and a sentence-level 
attention layer, in which a multi-head self-attention mechanism and a convolutional module are used 
at word-level attention.

Word encoder

Suppose that there are L  sentences in a document, the authors need to define the ith  sentence contains 
T
i
 words and w

it
 with t T∈ [ ],0  representing the words in the ith  sentence. First, the authors 

vectorized the words by embedding the matrix W
e
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to connect the information from both directions for words, a Bi-GRU unit related to the sequence 
contextual information was obtained. This Bi-GRU contained the forward GRU 
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where h
it

 is the output of Bi-GRU, containing both 
�
h
it

 and 
�
h
it

, with context information included.
The CNN algorithms originate from biological vision principles, and local features of the input 

can be extracted by different tools (e.g., multi-networks, convolution, and down sampling). In addition, 
without losing context information, using the output of Bi-GRU as the input of the CNN can maintain 
context and local relevance.

The model of this paper further enhances the sequential context representation with a convolutional 
module, shown in Figure 4 (Cai et al., 2019). Given an input hidden state sequence H , three 
convolutional operations are utilized to obtain three output vectors D

k=1 , D
k=3 , and D

k=5 , where 
K  is the convolutional kernel size.

The authors perform the optimization operation by concatenating the three outputs to extract 
different n-gram features with better learning ability:
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Figure 3. General framework of the model based on the hierarchical hybrid neural

Figure 4. Schematic diagram of the local convolution module with gated linear unit
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A learnable threshold mechanism is set, instead of using the result of the convolution operation 
as the convolution module’s output, which is able to better filter the sequential context based on 
local importance. Additionally, the gated linear unit (GLU) uses a function to control the information 
selection of the features. The authors introduce a similar architecture (Figure 4) to select how much 
sequential context information should be retained, as follows:

R W D b W H b
d d h h

= + +σ( ) ( )�  (5)

where H  is a series of hidden states H h h
l

= ⋅ ⋅ ⋅{ }, ,
1

 of the source text mapped by a bidirectional 
GRU. Specifically:

H BiGRU x R
it

l dhit= ∈
×

( )  (6)

where x
it

 is the embedding representation of the document and d
hit

 is the output dimension.

Word Attention
The attention mechanism was proposed in the use of encoder-decoder structures for neural machine translation 
(NMT) (Bahdanau et al., 2014). The attention mechanism is currently very common in deep learning models, 
but it is not limited to the encoder-decoder hierarchy. It is worth mentioning that the attention mechanism can 
be applied only on the encoder to solve tasks such as text classification or representation learning.

The multi-head self-attention mechanism (MHSA) is a special case of MHA, where Q , K , and 
V  of the self-attentive layer all come from the output of the previous encoder layer, i.e., the input 
Q K V= = . To be specific, the outcome from the CNN-BiGRU is taken as a fixed value and sent 
to the self-attention network. By computing the similarity between Q  and K , the attention coefficient 
is obtained via normalization. Consequently, sentence representation is computed by using the 
weighted summation of the attention weight and the input vector. The authors use the multi-head 
self-attention mechanism for semantic encoding, because the core of self-attentive is to augment the 
semantic representation of the target word with other words in the text, so that the information of the 
context can be better utilized and the semantics of the sentence can be preserved. The specific 
calculation is shown in Equation 7:

MHSA MultiHead X X X= ( ), ,  (7)

In this paper, words are semantically encoded by MHSA, s s s s R
i l

d ls=
1 2
, , ,…{ } ∈ × , and d

s
 

denotes the dimension of MHSA. The formula is then calculated as follows:

s MultiHead R R R
i
= ( ), ,  (8)

Sentence encoder

Given the sentence vector s
i
, the document vector, in a similar way, is obtained to the word encoding. 

The sentences using bidirectional GRU are encoded as follows:
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where h
i
 is the output of Bi-GRU for sentence encoding, by concatenating the sentence forward state 

and backward state to obtain information about sentence i .

Sentence Attention
Considering that different sentences in a document contribute differently to the document, and that 
the importance level is not fixed but determined by the contextual environment, an attention mechanism 
is introduced at the sentence level with a sentence-level context vector u

s
 to learn this importance:

u W h b
i s i s
= +tanh( )  (10)
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where d  is the document vector that summarizes all the information of the sentences in the document. 
u
s

 is the sentence-level context vector that is randomly initialized during training and then learned 
to be updated.

Finally, the authors transfer the document representation to the softmax classifier and obtain the 
probability distribution of sentiment polarity as follow:

y softmax Wd b= +( )  (13)

The model in this paper uses the sum of categorical cross-entropy as the loss function, defined 
in Equation 14:

L y y
i
j

i
j

ji

= − +∑∑ log ˆ λ θ
2

 (14)

where i  is the subscript of the i th-  sample and j  is the subscript of the j th- sentiment category; 
y  is the true distribution of sentence sentiment polarity and ŷ  is the predicted distribution of sentence 

sentiment polarity. λ θ
2

 is the L2 regular term and θ  is the parameter set of the model. The Adam 
algorithm (Kingma & Ba, 2014) is used to train the proposed model.
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eXPeRIMeNT

Datasets and experiment Parameters
The authors’ model (HHNN-MHA) is evaluated for document-level sentiment classification on 
publicly available datasets, including Yelp 2013, Yelp 2014, Yelp 2015, and Amazon Food reviews. 
Details of each dataset are presented in Table 1. The authors split the documents into sentences and 
labeled each sentence, and used 80% of the data for training. Detailed statistical information of these 
datasets is shown in Table 1. Yelp reviews are from the Yelp dataset challenge (Tang et al., 2015) in 
2013, 2014, and 2015. The ratings are divided into five levels from 1 to 5 (higher is better). These 
review ratings with manual tags are considered as the gold standard sentiment tags. Thus, it is not 
necessary to manually annotate the sentiment tags of the documents. Amazon Food reviews (McAuley 
& Leskovec, 2013) were obtained from reviews of food on Amazon.com. Similar to Yelp reviews, 
the ratings are range from 1 to 5.

In this paper, the word2vec pre-trained models from Glove (Pennington et al., 2014) are used to 
initialize the documents in the experiments, whose word vector dimension is chosen as d = 50. All 
words that are not in the word vector dictionary are initialized as zero vectors, while the biases are 
all set to zero. Meanwhile, the model in this paper is implemented using the deep learning framework 
Pytorch 0.4, and Adam is used as the optimizer of the model. The corresponding learning rate is set to 
0.001; the batch size is set to 64 (Yelp 2013, Yelp 2014) or 256 (Yelp 2015, Amazon Food reviews); 
the dropout is set to 0.5. Testing accuracy is used as the evaluation criterion in this experiment.

Baseline Methods
In this section, the authors present the comparative models for document-level sentiment classification 
to evaluate the working performance of the proposed model in this paper, as described below:

• BiLSTM (Hochreiter & Schmidhuber, 1997): The LSTM is a variant of the RNN. In order 
to overcome the directionality of the RNN, this method uses the bidirectional Long Short-Term 
Memory framework BiLSTM to control the selection of information by introducing a memory unit.

• BiGRU (Cho et al., 2014): This is another RNN variant with a simpler structure. This method 
encodes and decodes documents using a bidirectional gated recurrent unit framework.

• BiGRU-Attention: An attention model is added to BiGRU to assign different weights to different 
words in the document, and then a vector representation of the document is obtained by weighting 
the word vectors with these different weights.

• TextCNN (Kim, 2014): This is a standard convolutional neural network for sentiment 
classification, proposed by Kim et al.

• TextHCNN (Zheng et al., 2019): TextHCNN is a hierarchical neural network derived from 
TextCNN. Separate convolutional operations are performed.

Table 1. Statistics of the dataset: aw/d and mw/d denote the average and maximum number of words in each document, 
respectively, and as/d and ms/d denote the average and maximum number of sentences in each document

Datasets Classes Data Size aw/d mw/d as/d ms/d

Yelp 2013 5 63181 178 1476 8.9 151

Yelp 2014 5 63743 182 1599 9.2 155

Yelp 2015 5 1569264 151.9 1199 8.97 151

Amazon Food 5 239400 42.028 5668 2.959 222
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• HAN (Yang et al., 2016): This is a hierarchical attention network with a word encoding layer 
and a sentence encoding layer that uses attention mechanisms to obtain sentence and document 
representations at the word level and the sentence level, respectively.

• Bi-layers multi-head attention network: This is a modification of the HHNN-MHA model, 
which uses a multi-headed attention mechanism at the word level and sentence level.

The experimental results of HHNN-MHA and other comparative models are shown in Table 2. 
These models are split into two parts. The first part is a non-layered network, which mainly includes 
some classic neural networks. The second part lists the hierarchical neural networks, i.e., TextHCNN, 
HAN, two-layer multi-headed attention networks, and the model of this paper, HHNN-MHA. The 
authors re-implemented the other comparative models on their dataset for the document-level sentiment 
classification task.

ReSULT AND ANALySIS

From Table 2, it can be seen that BiGRU-Attention is much more accurate than BiGRU (from 3.43% 
to 5.05%) on the Yelp2013 and Yelp2014 datasets due to the addition of the attention mechanism. The 
two models are essentially equal in Yelp2015 and performed slightly weaker in Amazon Food, probably 
because the attention mechanism could obtain more practical information and improve accuracy 
when dealing with a broader range of categories. TextCNN does not perform as well as LSTM and 
GRU in all datasets, probably because the RNN has more advantages than the CNN structure when 
processing long-distance text. On the other hand, GRU outperforms LSTM on the Yelp2015 dataset 
and the Amazon-Food dataset, probably because these two datasets have more words compared to 
other datasets (see Table 1). Thus, when the documents are too long, LSTM is not powerful enough 
to capture the long dependencies of the documents better.

It can be observed that the hierarchical network TextHCNN shows higher accuracy compared 
to TextCNN, with varying degrees of improvement on most datasets. Furthermore, the hierarchical 
networks, i.e. TextHCNN, HAN, Bi-layers-MHA, and HHNN-MHA show higher accuracy on each 
dataset than the non-hierarchical networks, indicating that hierarchical structures outperforms the 
non-hierarchical networks in terms of document classification. Besides, compared to HAN and 
Bilayers-MHA, which use the same method at word and sentence levels, HHNN-MHA achieves the 

Table 2. Average accuracy of different datasets

Models
Accuracy on Test Set

Yelp2013 Yelp2014 Yelp2015 Amazon Food

Non-hierarchical Models

BiLSTM 54.11 54.67 55.59 47.14

BiGRU 50.99 54.02 57.6 48.15

BiGRU+attention 56.04 57.45 57.23 45.76

TextCNN 40.62 41.76 44.28 43

Hierarchical Models

TextHCNN 40.97 41.51 44.7 43.43

HAN 58.83 58.35 63.46 54.96

Bi-layers MHA 57.89 58.15 61.51 50.01

HHNN-MHA 59.36 58.36 63.61 53.28
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best results on all three datasets, with an average accuracy rate of 0.34% and 1.76% higher, respectively. 
This demonstrates the rationality of designing different attention mechanisms for the word-level and 
sentence-level in the authors’ model. The accuracy of the HAN model on the Amazon Food is slightly 
higher than that of HHNN-MHA. A possible explanation is that more specialized words exist in this 
category, which are more straightforward to identifying instead of analyzing the structure and the 
relation of the given document.

HHNN-MHA achieves better results on most datasets. This comes from several superiorities. 
First, the authors used a hierarchical structure to model long texts, making full use of the structural 
knowledge of the documents. Second, considering the long-distance dependency between sentences 
and the local features within sentences, the outputs of the CNN and BiGRU are fused to obtain sentence 
representations through a gating mechanism. Third, different attention mechanisms are applied to the 
word encoding level and sentence encoding level, and a multi-head attention mechanism is introduced 
at the word level to extract more symbolic semantic representations.

SeNSITIVITy ANALySIS

Ablation Study
To investigate the effects of the multi-head attention mechanism and the CNN on their model, the 
authors set up four controlled experiments for ablation studies based on the HHNN-MHA:

• -MHA -CNN: The multi-head attention and the CNN from the model are removed. In this case, 
the authors’ model structure becomes a BiGRU-Attention model.

• -MHA +CNN: The multi-head attention mechanism is removed from the model while the 
CNN is kept. In this case, the authors use the output of the fused CNN and BiGRU of the gating 
mechanism in the first layer as the sentence representation vector.

• +MHA -CNN: The CNN is removed from the model and the multi-head attention is retained. 
In this case, the output of BiGRU is transferred directly to the multi-head attention mechanism.

• +MHA +CNN: All components are preserved.

The results are shown in Table 3. It can found that a significant drop in model accuracy from 
0.91% to 7.52% after removing the CNN and multi-head attention mechanism. However, the model 
still outperforms most non-hierarchical models and a hierarchical model TextHCNN.

Adding CNN to the model improves the accuracy by 1.53%, 0.51%, 5.27%, and 6.53% on 
Yelp2013, Yelp2014, Yelp2015, and Amazon Food, respectively. This is because the CNNs 
can capture local features from sentence representations. Similarly, it can be noted that the 
model’s accuracy is also improved considerably by adding a multi-head attention mechanism, 
and by adding all components, the model outperforms all hierarchical models except HAN on 
the Amazon Food dataset.

Table 3. Ablation studies of HHNN-MHA on document classification

Models
Accuracy on Test Set

Yelp2013 Yelp2014 Yelp2015 Amazon Food

-MHA -CNN 56.04 57.45 57.23 45.76

-MHA +CNN 57.57 57.96 62.5 52.13

+MHA -CNN 58.41 58.34 63.04 52.72

+MHA +CNN 59.33 58.36 63.61 53.28
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Visualization of Attention Mechanism
Through the authors’ experiments, it is found that the attention mechanism can improve the 
performance of the model. Therefore, the authors visualize the attention of words to find 
out which words contribute more to the sentiment information of the sentence. As shown in 
Figure 5, darker colored words imply greater attention weights. For example, in the sentence 
“We had excellent food with large portions,” the word “excellent” is darker than the other 
words, proving that it contributes more sentiment information in this sentence. In this way, 
the outcome of the document can be predicted.

CoNCLUSIoN

In this paper, the authors proposed a hierarchical hybrid neural network HHNN-MHA model based on 
a multi-head attention mechanism to address the problems in existing document classification studies. 
Such as, the RNNs do not focus sufficiently on local features and may lose sentiment information 
words at a distance when modeling long-dependent sentences, as well as the inability to perform 
parallel processing of input data. In the first layer, the authors used CNN-BiGRU and a multi-head 
attention mechanism for encoding and then fed the sentence vector to BiGRU in the second layer. For 
the purpose of sentence processing, a different attention mechanism was used in the second layer to 
obtain the final document representation.

The experimental results on four datasets, Yelp2013, Yelp2014, Yelp2015, and Amazon Food, show 
that the HHNN-MHA model proposed in this paper significantly improves the results compared to the 
deep learning-based model, with an accuracy of 59.33%, 58.36%, 63.61%, and 53.28%, respectively.

Although the current model achieves a satisfying performance, there is still much research work 
that needs to be done in the future. First, the model can be further tuned to ensure performance, and 
its complex structure is still a problem, which leads to slower convergence. Second, how to improve 
the multi-head attention mechanism with a large number of parameters to avoid premature over fitting 
on small datasets will also be the focus of further research.
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