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ABSTRACT

Existing pharmaceutical information extraction research often focus on standalone entity or 
relationship identification tasks over drug instructions. There is a lack of a holistic solution for drug 
knowledge extraction. Moreover, current methods perform poorly in extracting fine-grained interaction 
relations from drug instructions. To solve these problems, this paper proposes an information extraction 
framework for drug instructions. The framework proposes deep learning models with fine-tuned 
pre-training models for entity recognition and relation extraction. In addition, it incorporates an 
novel entity pair calibration process to promote the performance for fine-grained relation extraction. 
The framework experiments on more than 60k Chinese drug description sentences from 4000 drug 
instructions. Empirical results show that the framework can successfully identify drug related entities 
(F1 3 0.95) and their relations (F1 3 0.83) from the realistic dataset, and the entity pair calibration 
plays an important role (~5% F1 score improvement) in extracting fine-grained relations.

KEyWoRDS
Chinese Drug Instruction, Entity Pair Calibration, Fine-Grained, Information Extraction, Pre-Training Model

https://orcid.org/0000-0002-2396-1360
https://orcid.org/0000-0002-2396-1360


International Journal on Semantic Web and Information Systems
Volume 18 • Issue 1

2

INTRoDUCTIoN

Drug instructions contain a wealth of drug knowledge, which can be extracted for decision support 
in clinical diagnosis, prescriptions, and healthcare management. However, mining drug instruction 
knowledge is a challenging task. Textual descriptions in drug instructions usually take the form 
of long, complicated sentences, which are difficult to be processed by man or machine. Existing 
information extraction methods have been used for drug and disease entity recognition (Lin, & Xie, 
2020; Sun et al., 2021; Zhu et al., 2021), drug-disease relationship extraction (Bose, et al., 2021; 
Fatehifar, & Karshenas, 2021; Mingliang, Jijun, & Fei, 2021), etc. Recently, pre-training models have 
become prominent in Natural Language Processing (NLP) tasks due to its generalization capability 
(Vaswani et al., 2017). However, many existing methods still consider the knowledge extraction task 
as a pipeline process that consists of Named Entity Recognition (NER) and Relation Extraction (RE) 
tasks. These pipeline methods are prone to error propagation since not all entities generated from NER 
are valid for RE (Pawar, Palshikar, & Bhattacharyya, 2017). In drug instructions, it is very common 
to have multiple entities and relations in a single sentence, without proper entity pair checking, the 
performance of fine-grained relation extraction will be significantly affected by the invalid entity 
pairs (Gao, Zhou, & Gu, 2021). Siriwon Taewijit, & Thanaruk Theeramunkong (2021) proposed 
an approach to learn meaningful patterns by hyperbolic embedding and then extract adverse drug 
reactions from electronic medical records. As a result, manual effort is required to prepare entity pairs. 
In other cases, joint methods are proposed to extract entities and relations in a single process (Wei 
et al., 2020), however, these methods struggle with many-to-many relations that involve overlapping 
entities (Tiktinsky et al., 2022).

To overcome the limitations in the current approaches, this paper proposes a novel pipeline drug 
information extraction framework using an entity pair calibration module based on pre-training models. 
It starts by automatically gathering the textual descriptions from public drug instruction data sources. 
Then, it uses deep learning models to identify four categories of entities: drugs, diseases, body parts, 
and symptoms. After the entity name recognition, it gathers the sentences with multiple relevant entities 
and applies the entity pair calibration (EPC) process. The goal of EPC is to distinguish between the 
main entity (the primary drug which the instruction is intended for, e.g., the first drug mention in 
Table 1) and the secondary entities (the other entities mentioned in the sentence of the instruction, 
potentially associated with the primary drug entity, e.g., the second, third and fourth drug mentions 
in Table 1). This step can reduce the noise for further drug relation extraction and facilitate accurate 
extraction of fine-grained relations. Finally, it extracts fine-grained relations from those entity pairs.

The main contribution of this paper is two-fold:

1.  A pre-training-based drug information extraction framework with a novel entity pair 
calibration process is proposed to extract drug-related entities and fine-grained relations 
from drug instructions.

2.  To evaluate, an empirical study is carried out over a realistic dataset that contains over 60,000 
sentences from 4,000 drug instructions.

The remainder of the paper is organized as follows. First, the related works in the field of drug 
information extraction is discussed. Second, the overall framework proposed in this paper is presented, 
including functionalities of each module and the design of the deep learning models used in the 

Table 1. Sample drug instruction text with multiple entities and relations

Compound paracetamol should not be used together with chloramphenicol, barbiturates (such as 
phenobarbital), etc.
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modules. Third, the details of entity pair calibration process are elaborated on. The empirical study 
and result analysis is then presented, and then the conclusion and a discussion of future directions.

RELATED WoRKS

Pipeline Methods
Named Entity Recognition (NER) is a well-established topic in NLP. Fang et al. (2002) proposed a 
method of named entity recognition based on rules, but this method relies heavily on predefined rules 
and is prone to error causing incomplete/wrong rule sets. Neural network models, such as BiLSTM 
(Miwa, & Bansal, 2016) have proven efficient in NER and RE tasks. Zhou et al.(2016) proposed 
Attention-Based Bidirectional Long Short-Term Memory Networks(AttBLSTM) to capture the most 
important semantic information in a sentence. Gong Lejun (2020) used a drug entity extraction method 
based on GRU and CNN for detecting adverse drug reactions (ADRs) and achieved 75% overall 
accuracy in the DDIE 2013 corpus (Herrero-Zazo et al., 2013). Beliga, Meštrović, and Martinčić-Ipšić 
(2016) proposed a novel Selectivity-Based Keyword Extraction (SBKE) method, which extracted 
keywords from the source text represented as a network. Wang Yongchao (2021) proposed an entity 
extraction method based on a pointer network, but the pointer-based entity annotation method does 
not provide for nested names.

Deep learning methods are also widely used in relation extraction Zeng et al. (2014) introduced 
convolutional neural networks to the relationship extraction task. However, CNNs cannot capture 
long-term semantic information in sentences. In Shen et al. (2015), an unsupervised hybrid framework 
called REACTOR was proposed to identify various types of relations among entities appearing 
automatically in enterprise data. Li and Ke (2018) found that recurrent neural networks (RNN) are 
good at capturing the contextual information of sentences and can reflect the higher order relationships 
of sentences, but RNNs cannot efficiently capture features across large time spans. Ningthoujam et al. 
(2019), demonstrates that Long and Short Term Memory networks (LSTM) have a better extraction 
performance on relation extraction. In Jagan, Parthasarathi, and Geetha (2019), a bootstrapping 
approach was proposed to extract generic relations that exist between different components of a 
sentence. Zhang, Du, Jia, and Li (2021) used a combination of BiLSTM and CNN for medical entity 
relationship extraction. Srinivasan and L D, (2019) proposed a twofold convolutional neural network 
approach with a new activation function, which generalizes faster with higher accuracy. Lv et al. 
(2020) proposed a distant supervised relation extraction model (DiSAN-2CNN), in which a multi-
dimension self-attention mechanism is utilized to encode the features of the words together with the 
entire sentence. Siriwon Taewijit, & Thanaruk Theeramunkong (2021) found that DL can be very 
helpful for diagnosing neurological disorders by its symptoms, because DL can be used to identify 
patterns for each disorder for identification.

Joint Methods
To avoid error propagation in pipeline methods, Bekoulis et al. (2018) transformed entity relationship 
extraction into a multi-headed selection problem. In order to solve the problem of overlapping relations, 
Li et al. (2019) proposed to treat the task of joint entity-relationship extraction as a multi-round 
question-and-answer type problem, but the model is more suitable for machine reading comprehension. 
Wei et al. (2020) proposes to model relationships as functions that map head entities to tail entities, 
rather than treating them as labels on pairs of entities.

Most joint entity-relationship extractions are still supervised learning approaches that require 
a large amount of high-quality training set (Lv et al., 2020). Recent research tried to deal with the 
problem of having a relatively small training sample size. Wang & Hebert (2016) demonstrated that 
using model regression networks have good generalization capabilities from small sample sizes, but it 
still requires prior category learning. Bao et al. (2019) have successfully classified English sentences 
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using the global distributional features of words over a small sample size, however this approach 
is language-specific and is difficult to transfer between languages. The MTB model proposed by 
Google (Soares et al., 2019) uses a metric learning approach and achieves good results on top of the 
small sample dataset.

Pre-Training Models
Recently, attention mechanisms have proven efficient in NLP tasks. Vaswani et al., (2017) 
first proposed an attention-based transformer model, which can be decoupled from the 
traditional neural network structures such as CNN and RNN. This enables the use of 
transformers as a generic module across different NLP tasks. The bidirectional encoder 
representation from transformers (BERT) (Devlin et al., 2018) is developed based on 
the transformers, which pre-trains sentences by mask language model (MLM) and next 
sentence prediction (NSP). In order to extract to the fullest extent, the lexical, syntactic 
and semantic information from training corpora, Sun et al. (2020) propose a continual pre-
training framework named ERNIE 2.0 which builds and learns incrementally pre-training 
tasks through constant multi-task learning.

Several efforts have been made to improve BERT. R-BERT (Wu & He, 2019) injects entity 
type information into the pre-trained model and can obtain high quality relation extraction results, 
proving the importance of entity information enhancement in relation extraction. Roberta (Y. Liu 
et al., 2019) proposes to use a dynamic mask instead of a static mask and can further improve the 
performance of the model.

The original BERT model is designed for English corpus. For Chinese corpus, the 
word-based “Mask” will lose some semantics. The BERT(wwm) (Cui et al., 2021) model 
uses a whole word mask and is more effective for Chinese text. To identify the whole word, 
a word segmentation tool is used to segment the text, and then the whole word segment is 
marked and masked, with the help of several other optimizations. The experimental results 
on the public data set CMRC 2018 showed that BERT(wwm) outperformed the original 
BERT. In this paper, the authors use BERT(wwm) as a basic model for the drug information 
extraction framework.

Summary of Current Approaches
A comparison of current research strands in text-based knowledge extraction, (including NER 
and RE), are shown in Table 2. Rule-based models can achieve good accuracy, but the recall is 
typically limited due to the requirements of manual rule definitions. Pipeline methods can achieve 
relatively good results in NER and coarse-grained RE, but suffer from error propagation and 
hence cannot accurately extract fine-grained relations. Joint entity and relation extraction can 
avoid error propagation, but requires a large amount of training sets, and it struggles in extracting 
multiple relations with overlapping entities. Pre-training models can be used to enhance both 
pipeline and joint models, and can be used in multiple NLP tasks. In the authors’ approach, they 
proposed a pre-training-based pipeline model with a novel entity pair calibration process, which 
eliminates errors caused by incorrect entity pairs.

DRUG INFoRMATIoN EXTRACTIoN FRAMEWoRK

The drug information extraction framework proposed in this paper uses pre-training models as a key 
method to label sentences as well as entities and relations in sentences. In the following, the authors 
first present the definition of the problem. Then, they discuss the architecture of the framework and 
introduce the functions of its modules. Finally, they elaborate on the design choices of the pre-training-
based neural models used in the framework.
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Problem Definition

Given the sentence S t t t
n

=
1 2
, ,...  as a sequence of tokens, a knowledge extraction framework F:S

→T creates triples from the sentence, where T is a set of triples. ∀ ∈ =t T t s p o, , ,  where s E,� ∈ , 

E is the set of tokens t t S
i j
,...{ } ⊆  referring to entities in the sentence, p R∈  refers to the relations 

among entities. A named entity cognition task T S E
ner
: →  labels tokens from the sentence with 

entity types, a relation extraction task T E E T
re
: × →  labels entity pairs with relation types, hence 

creating the set of triples. Therefore, resulting in the pipeline extraction framework F T T
P ner re
: �

An observation that was made from drug instructions is that a single sentence can have multiple 
entities and relations, as shown in Table 1. However, not all of the entities have relations. Hence, the 
cardinality of the input of T

re
 (i.e., E E× ) is significantly higher that its output (i.e., T ). This 

introduces a lot of noise in relation extraction and could lead to an imbalance in the samples and 
lower the extraction precision.

Another observation that was made is that some drug relations always appear over two different 
entity roles, e.g., drug-drug interactions always apply between the primary drug and the secondary 
drugs in the sentence. Sometimes the relation only appears in the same entity role, e.g., there is a 
hypernym relation between the third and fourth drug mentions in Table 1, and the hypernym relation 
mostly appears in same entity roles. A natural idea is to use this information and add an entity pair 
calibration task T E E E

epc p s
: ( )→ , where E

p
 and E

s
 refer to primary and secondary entities, 

respectively, and the relation extraction task is modified into learning specific relations according to 
the entity roles received. This way, the EPC enabled pipeline extraction framework F T T T

p epc ner epc re_
: � �  

will receive much less noise during relation extraction, and its overall information extraction 
performance can be enhanced.

Architectural Design
The proposed framework has four main modules: data collection and cleaning, named entity 
recognition, entity pair calibration, and entity relation extraction, as depicted in Figure 1. The 

Table 2. Summary of current approaches

Category Sample Approaches Strength Weakness

Rule-based (Fang, & Sheng, 2002) Good accuracy, easy 
implementation.

Poor recall due to manual rule 
definition requirement

Pipeline (Zhang et al., 2021) Good performance in NER 
and coarse-grained RE.

Poor performance in fine-grained 
RE due to noisy entity pairs, need 
to train models separately.

Joint Models
(Wei et al., 2020), 
(Soares et al., 2019), 
(Zheng et al., 2021)

Good performance in NER 
and RE, models trained at 
once

Not suitable for overlapping/n-ary 
relations, needs large training sets.

Pre-Training Models

R-BERT (Wu & He, 
2019), Roberta (Liu et 
al., 2019), BERT-CLS 
(Devlin et al., 2018)

Can be used to enhance 
pipeline and joint models, 
can be used in different tasks

Language specific, needs large 
corpus, needs fine-tuning.

Pipeline with EPC Our Approach

Uses pre-training over 
pipeline methods with a 
novel entity pair calibration, 
reduces noise in RE

Overhead for entity pair calibration 
training, beneficial only in multi-
entity and relation extraction.
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data collection is an automatic process that gathers drug instructions and organizes them into 
semi-structured text inputs. The entity recognition and entity pair calibration are semi-supervised 
learning modules that identifies valid entity pairs for the relation extraction module, which is a 
supervised learning module. The NER and RE modules are similar to existing pipeline methods 
(e.g., Zhang et al., 2021), with the improvement of using the BERT-wwm (Cui et al., 2021) as 
the pre-training model, whereas the EPC module is a novel module proposed in this paper that 
intermediates NER and RE.

Figure 1. Overall framework of information extraction for drug instructions
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Data Collection and Cleaning
The data collection module automatically collects drug instructions, disease diagnosis, treatment 
guidelines, and other medical text data from public sources on the Internet. The authors carry out this 
operation regularly with a careful selection of authoritative data sources in order to provide rich and 
reliable data sources for drug information extraction. The structure of the collected and cleaned data 
is stored as spreadsheets, all textual descriptions of a drug instruction is retained and categorized into 
columns using the section titles that appear in the instructions, e.g., product name, primary chemical 
component, producer, drug reaction, drug interaction, etc.

Named Entity Recognition
The Named Entity Recognition (NER) module is mainly responsible for identifying four kinds of 
named entities from the text, which are “drugs,” “diseases,” “symptoms” and “body parts,” thus 
preparing datasets for further relationship extraction. This module uses an entity name dictionary as a 
starting point and applies a BERT(wwm)-BiLSTM-CRF deep learning model to learn new names. The 
entire procedure consists of three steps: First, the original sentences in the instruction are converted to 
the format required by the training dataset for the named entity recognition algorithm model. Second, 
the sentences are processed with the longest string matching method with the limited dictionary names 
collected manually in the early stage. The longest string matching method can effectively avoid the 
wrong annotation of nested entity names in the dictionary. Third, the deep learning model is trained 
by the dataset to generalize entity names; generalized entity names are added to the dictionary, so that 
the training data set of the model can be updated regularly, thus achieving a self-improvement solution.

Entity Pair Calibration
When drug and disease entities have been extracted from sentences, the authors can select sentences 
with n (n> = 2) entities to further investigate entity relations. Since the authors are trying to learn 
binary relations, those n entities may produce C n,2( )  entity pairs. However, not all of those entity 
pairs are legitimate for relation extractions, e.g., the same drug/disease may have different names, 
occurring at different locations in the same sentence, or there may be a type-of/sub-class-of relation 
between them. In these cases, the entities pairs cannot enter the drug/disease interaction extraction 
module without causing noise. To reduce noisy data caused by wrong entity pairs, the Entity Pair 
Calibration (EPC) module is used to verify the primary entity (the main drug described by the drug 
instruction, i.e., the intended object for the instruction) and the secondary entity (the other drugs/
diseases described in the sentence). In this paper, the authors use a modified word embedding method 
to splice the entity names with the original sentences and “Mask” entity names in the sentences. 
Finally, the masked text is fed into a BERT(wwm)-BiGRU-ATT model to train the entity pair 
calibration module so that it can identify the categories of entities in the text and remove entity pairs 
with unintended type-of/sub-class-of relations.

Relationship Extraction
The Relationship Extraction (RE) module extracts the relationship between the entity pair and its text 
information from the entity pair calibration module, which is mainly realized by the BERT(wwm)-
BiGRU-ATT model. The authors distinguish between two main relations: drug-disease or drug-drug 
relation, based on the type of the secondary entity in the entity pairs.

The relationship between “drugs” and “diseases” can be further divided into positive and negative 
correlations; “Positive correlation” means that the drug can treat or alleviate the disease; “negative 
correlation” means that the drug can cause or aggravate the disease. The relationships between drugs 
are firstly divided into exist-interaction and non-interaction (Sometimes a sentence states that there 
is no known interaction between two drugs.); then for the sentences describing drug pairs that do 



International Journal on Semantic Web and Information Systems
Volume 18 • Issue 1

8

have interactions, the authors further extract three types of relationships, including the interaction 
mechanism, clinical guidance, and interaction results. Each drug-drug interaction relationship type 
can be categorized into more fine-grained labels. For example, “clinical guidance” can be further 
divided into use with caution (UC), prohibition of joint use (PU), joint use as per prescription (PP), 
joint use over different time spans (TS), different bottle injections (BI), etc. The “interaction results” 
are further divided into decreased efficacy (ED), improved efficacy (EI), increased adverse reactions 
(RI), improved efficacy and increased adverse reactions (EIRI), decreased efficacy and increased 
adverse reactions (EDRI), etc. Ultimately, fine-grained knowledge of drug interaction and drug usage 
can be established through automatic mining of text data in drug instructions. The extraction process 
is exemplified in Figure 2.

Pre-Training Based Neural Models
The NER, EPC, and RE modules are equipped with different deep learning models. All modules 
employ a variant of the BERT model as the pre-training model. The NER module combines the pre-
training model with BiLSTM and CRF. The EPC and RE modules combine the pre-training model 
with a BiGRU and an attention mechanism. In this section, the specific configurations of deep learning 
models used in relevant modules are introduced.

Figure 2. Examples of information extraction from drug instructions (translated from Chinese drug instruction)
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BERT(wwm) for Pre-Training
Current study suggests that pre-training models can significantly improve the downstream tasks 
(Devlin et al., 2018). Also, additional information can be supplied to pre-training models for better 
semantic representation (Wu & He, 2019). In this paper, pre-training models are used to capture the 
semantics of entity roles. The BERT(wwm) pre-training model was selected as the first layer encoder. 
The BERT(wwm) is a variant of BERT, with improvements on the masking method for Chinese text, 
that is, masking the entire word in Chinese instead of a single character, so as to keep the word and 
phrase level semantics in Chinese, as shown in Table 3.

From the text semantics after “Mask,” we can see that the text semantics after “WWM” is more 
complete, and the experimental effect of the final BERT(wwm) on the open dataset CMRC 2018 is 
also better than that of BERT, so BERT(wwm) was chosen as the pre-training model.

The BERT(wwm) model is built based on BERT transformers, which is a two-way language 
model of transformers. A transformer is a method different from the traditional neural network, which 
completely relies on a self-attention mechanism to calculate the vector representation of input and 
output. First, three vectors are created for each word embedding vector of the encoder, which are 
query vector, key vector, and value vector. These vectors are the weight matrix w obtained by combining 
the word vector with the three training vectors W

Q
, W

K
, W

V
. The matrix is the parameter to be 

learned, and then the output is obtained by calculating the formula:

Z Attention Q K V softmax
QK

d
V

T

k

= ( ) =











, ,  (1)

In formula (1): each line of Q, K, and V represent the query vector, key vector, and value vector; 
D is the length of the key vector, divided by dk1/2 to get a more stable gradient in the process of back 
propagation. The structure of the BERT(wwm) model is shown in Figure 3.

BERT(wwm)-BiLSTM-CRF for NER
The BERT(wwm)-BiLSTM-CRF model is the deep learning model of the NER module. The purpose 
of this model is to recognize the names of drugs, diseases, symptoms, and body parts from the medical 
text, so as to provide data for the subsequent relationship extraction task. The BERT(wwm) pre-
training model trains an intermediate word vector for the encoder, which better integrates the syntax 
and semantics of the context of the word. Then the intermediate word vector is used as the input of 
the downstream BiLSTM model. BiLSTM is a bidirectional recurrent neural network, which can 
better capture the dependency of context semantics in text. The prediction score of each tag is labeled 
by the training output sequence of the BiLSTM network, which will be used as the input of the CRF 

Table 3. The whole word mask example (translated from Chinese)

Categories Examples

text When sirolimus and voriconazole are used together, the blood drug level increases 
drastically, thus these should not be used jointly.

MASK When sirolimus and voriconazole are used together, the blood drug level [MASK] increases 
drastically, thus [MASK] should be used jointly.

WWM When sirolimus and voriconazole are used together, the blood drug level [MASK] drastically, 
thus [MASK] should be used jointly.
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layer. The CRF layer can obtain the constraint rules of sequence labeling data from the training data, 
thus greatly reducing the probability of illegal sequence labels being predicted.

The overall model architecture is shown in Figure 4. In this figure, the input text is first transformed 
into a dynamic semantic vector by BERT(wwm). The vector is trained by the BiLSTM network and 
the constraint rules of the CRF layer, and the label corresponding to each word is finally output. 
“B-DRUG” represents the beginning of an entity, “I-DRUG” represents the middle and end of an 
entity, and “O” represents the part that is not an entity.

BERT(wwm)-BiGRU-ATT for EPC and RE
The BERT(wwm)-BiGRU-ATT model is used in the EPC and RE modules. Different word embedding 
can be used for different tasks. In this model, BERT(wwm) is still used as the upstream encoder 
to encode the text as the intermediate word vector, and the downstream uses a bidirectional GRU 
network and attention mechanism to train the upstream word vector. The GRU network is a variant of 
the LSTM network, which can solve the problems of long-term dependence and gradient dispersion. 
Compared with the LSTM network, the GRU network has higher computational efficiency and 
occupies less memory. Therefore, considering the heavy workload of EPC and RE task of computation, 
the bidirectional GRU network is used. The entire model is accompanied by a final attention layer, 
as shown in Figure 5.

A self-attention mechanism is used in Figure 5. For a text input, the model can generate different 
attention scores on different words, so that the model can pay more attention to certain words and 
improve the overall performance of the model. More specifically, given a sentence representation where 
s= X X X

n1 2
, …{ } , and Xn represents a word embedding, the model first randomly initializes the three 

Figure 3. BERT(wwm) model architecture
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vectors Q , K , V  for each word, representing the query, key and value vectors. Then, it trains three 
weight matrices W

Q
, W

K
, W

V
 and adjusts the word vectors using q X W

n n Q
= * , k X W

n n K
= * , 

v X W
n n V
= * . Then, the preliminary word score is given by f q k

i

n

i1 1
1

=
=
∑* , and the final score is 

given by F v Softmax f
j

n

j j
= ( )

=
∑
1

* . This score determines the importance of other parts of the input 

sentence when encoding the word at the position. As shown in the example in Figure 6.

Figure 4. BERT(wwm)-BiLSTM-CRF model architecture

Figure 5. BERT(wwm)-BiGRU-ATT model architecture
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For the human brain, the two words “升高” (increase) and “不可” (cannot) in such a text 
determines the relation between the two entities. Similarly, through attention calculations, these two 
words are assigned with a greater attention score, thus the appearance of these words can give hints 
to the model for identifying relevant relations between entities.

ENTITy PAIR CALIBRATIoN

As described in Problem Definition, there are often multiple expressions of the same entity name in 
a drug instruction, and there are inclusion relationships (for example, one entity is a component of 
another entity), sub-class, and type-of relationships among different entities. There should be no 
drug-drug interaction between such entity pairs. When this kind of entity pair is directly used as the 
input of the subsequent relation extraction task, it will cause a lot of noise. The objective of T

epc
 is 

to identify entity roles and use this information to reduce noise for T
re

.
For example, in the two texts in Figure 7, the first text involves three entity names: quinolones, 

theophylline, and balofloxacin tablets. Among the three entity names, quinolones is a drug type for 
balofloxacin tablets. Similarly, in the second text, vitamin-A is a component of multivitamin chewable 
tablets. In both cases, the entity pairs are incorrect, i.e., noise for relation extraction. A naive approach 
will simply extract all entities from text and apply a Cartesian product to produce all entity pairs, 
which will result in very noisy input for the RE module.

A natural improvement will be using a filter based on a priori knowledge after the Cartesian 
product to eliminate illegal entity pairs, such as those in Table 4. However, this approach imposes 
a strong assumption that an accurate and complete knowledge base that describes the type-of, 
component-of, and subclass-of relations between drugs, exists. In practice, such a priori knowledge 
may be incomplete or even non-existence.

In order to avoid using such wrong entity pairs, this paper proposes to check the entity pair after 
the named entity recognition task and before the entity relationship extraction, so as to determine 
whether the entity pair is valid. The basic task of entity pair verification is to label each entity name 
extracted by the named entity recognition task into the primary entity or the secondary entity using a 
deep learning based algorithm. The primary entity set contains only the drug entity that the instruction 

Figure 6. Text example of an attention mechanism (translated from Chinese)

Figure 7. Examples of entity type-of and component-of relations in drug instructions (translated from Chinese)
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is intended for, or its type, super-class, or drug-composition. The secondary entity contains only the 
entity associated with the primary entity in the instruction. This way, one can produce correct entity 
pairs for relation extraction.

To successfully recognize the entity category from the text, this research uses the “WWM” 
mechanism similar to the BERT(wwm) model. Here, the primary /secondary entities are masked (with 
m ‘#’ symbols, where m is the length of the masked entity) when training the algorithm to identify 
them. Meanwhile, to connect the information in the entity name, the same splicing method is used 
in BERT and linked to the entity name (with a ‘$’ symbol) in front of the masked sentence. This not 
only ensures a lossless text embedding, but also obtains flexibility in the embedding method. Table 
5 depicts an example of EPC training data.

Table 6 details the procedure of the EPC module. It first transforms the named entity set ENs 
and the relevant sentence text with a word embedding function trans_en_ text(). The result of this 
function is the encoded text: text_new. The label of the entity can be generated when text_ new is 
fed into the neural network model, and the category of the entity can be determined according to the 
label. Finally, all the primary and secondary entities are processed by function: Cartesian_product(), 
generating the output entity pairs: EN_ tuple.

EXPERIMENT AND RESULT ANALySIS

In order to evaluate the approach chosen, the modules in this framework were experimented over 
realistic datasets1. In this section, we first present the experiment dataset and configuration, then, we 
demonstrate our experiment results and analysis.

Table 4. Traditional rule-based entity pair extraction

Input: set of entities: ENs 
Output: set of entity pairs: EN_tuple

begin 
  ENre1, ENre2, EN_tuple = [], [],[]
  for (EN in ENs): 
  if EN in compositions: 
     ENre1.append(EN)
  else: 
     ENre2.append(EN)
EN_tuple = Cartesian_product(ENre1, ENre2)
EN_tuple = FilterWithAprioriKB(EN_tuple) 
return EN_tuple 
end

Table 5. Example of the training data for entity pair checking algorithm (translated from Chinese text)

Label Text (masked)

Primary Entity
quinolones$The combination of ########### and theophylline may increase the level of 
theophylline in serum, so the dose of theophylline should be reduced when balofloxacin 
tablets are combined with theophylline

Primary Entity
balofloxacin tablets$The combination of quinolones and theophylline may increase the level 
of theophylline in serum, so the dose of theophylline should be reduced when ############ 
are combined with theophylline

Secondary Entity
theophylline$The combination of quinolones and ######## may increase the level of 
######## in serum, so the dose of theophylline should be reduced when balofloxacin tablets 
are combined with theophylline
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Dataset and Parameter Settings
The experimental data of this paper mainly comes from authoritative data sources on the Internet. 
Starting from a medical entity dictionary, the medical domain sequence annotation dataset with three 
million Chinese characters for named entity recognition is constructed, which is used to train and 
verify the NER module. There are four types of entity names: drug name, disease name, body part 
name, and symptom name, as shown in Table 7.

For the EPC RE module, 60,000 Chinese sentences were prepared from more than 4,000 drug 
instructions. EPC labels entities with two categories: primary or secondary. RE labels relations among 
entities with 12 fine-grained drug-drug and drug-disease relations (as introduced in the third section). 
The proportion for training and test dataset is 4:1.

In terms of parameter setting, this paper uses the base version of the Chinese BERT(wwm) 
pre-training model, and the network structure consists of 12-layer, 768-hidden, 12-heads, and 110 
million parameters. The maximum sentence length set by the named entity recognition part is 128. 
The number of sentences processed each time is 64. The learning rate is 5 * 10-5. The number of 
LSTM network nodes is set to 128. Dropout is set to 0.5 to prevent overfitting, and the training times 
are three. The maximum sentence length of the entity pair calibration and relation extraction part is 
80. The number of sentences processed each time is 16. The learning rate was 0.001. The number 
of GRU network nodes is set to 128. Dropout is set to 0.2 to prevent overfitting, and the training 
times are 10. The words embedded in the BiGRU-ATT model adopt the character vector obtained 
by word2vec training. The number of characters in the table is 16116 and the vector dimension is set 
to 100. All the other parameters are initialized randomly.

Table 6. Entity pair calibration extraction using pre-training

Input: set of entities: ENs, text containing entities: text
Output: set of entity pairs: EN_tuple

begin
ENnn1, ENnn2, EN_tuple = [], [],[]
for (EN in ENs):
text_new = trans_en_text(EN, text)
label = NN(text_new)
if label == en_master:
ENnn1.append(EN)
else:
ENnn2.append(EN)
EN_tuple = Cartesian_product(ENnn1, ENnn2)
return EN_tuple
end

Table 7. Entity name categories and examples

Entity categories Examples

DRUG oxazepam, atorvastatin, tadalafil

DISEASE diabetes, AIDS, nasopharyngeal cancer

BODY tongue, stomach, spleen

SYMPTOM wheezing, fatigue, ventosity
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Result Analysis
Named Entity Recognition (NER)
The performance of the algorithm model in this paper is mainly evaluated by P (precision), R 
(recall), and F1. The comparative experiment of the named entity recognition algorithm model in 
the information extraction framework is shown in Figure 8.

As can be seen from Figure 8, pre-training models significantly improve the performance of NER. 
In addition, the BERT(wwm)-BiLSTM-CRF model generally performs the best in the recognition 
of drug, symptom, and body names, except for disease names. In the prediction results of the entity 
recognition model, the BERT(wwm)-BiLSTM-CRF model can also successfully recognize the names 
that are not matched by dictionary matching, as shown in Table 8.

In the graph, the first column is the text data labeled by sequence, the second column is the 
label labeled by the dictionary, and the third column is the label predicted by the model. It can be 
seen that the BERT(wwm)-BiLSTM-CRF model is more successful in identifying the drug name 
“双氯芬酸钠” (Diclofenac Sodium), which does not appear in the manual summary dictionary. 
The model realizes the generalization of the name recognition, which can further supplement the 
names in the dictionary.

Figure 8. F1 score for named entity recognition algorithm model

Table 8. BERT(wwm)-BiLSTM-CRF model predicts result

Token Diclofenac sodium used in the treatment of osteoarthritis

Dictionary-based 
matching O O O O O O O B-DISEASES

BERTwwm-
BiLSTM-CRF B-DRUG I-DRUG O O O O O B-DISEASES
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Entity Pair Calibration (EPC)
The experimental results of the entity pair calibrator are shown in Table 9, where En1 represents the 
primary entity, and EN2 represents the secondary entity.

It can be seen from the results in Table 6 that the experimental performance of DPCNN (Johnson, 
& Zhang, 2017) without pre-training neural network, is quite good. Additionally, it can be seen that 
without increasing too much computing cost, better experimental results are achieved by increasing 
the depth of the network, but there is still a performance gap compared to the model used in this 
paper. The results show that the F1 values of the main entity and the sub-entity recognition effect 
of the BERT(wwm)-BiGRU-ATT model are all above 0.98, which can successfully distinguish the 
entity categories in the text.

Relation Extraction (RE)
The experimental results of RE module w.r.t. coarse-grained relations are shown in Figures 9 through 
12. Nine different models were tested:

1.  Conventional deep learning approach (BiGRU-ATT).
2.  Deep learning with pre-training model (BERT-BiGRU-ATT).
3.  On top of 2), add an entity pair filter with a priori knowledge matching (BERT-BiGRU-ATT(RE)).
4.  On top of 2), adding the EPC module as described in Section ”Entity Pair Calibration” (BERT-

BiGRU-ATT (EPC)).
5.  R-BERT as in (Wu & He 2019).
6.  Roberta as in (Liu et al., 2019).
7.  BERT-CLS as in (Devlin et al., 2018).
8.  CasRel, as in (Wei et al., 2020).
9.  PRGC as in (Zheng et al., 2021).

Models #1 and #2 are conventional DL models. Model #3 adds an entity calibration with 
predefined rules. model #4 is the approach proposed in this paper. Models #5 to #7 are SOTA pre-
training models. Models #8 and #9 are SOTA joint models.

As can be seen from Figures 9 through 12, pre-training-based pipeline models (Models #3 
through #7) as well as joint models (Models #8 and #9) outperform conventional deep learning 
models (Models #1 and #2). More interestingly, although adding the EPC module performs the best 
as was expected; using a priori knowledge to eliminate wrong entity pairs performs similarly to not 
using filters. This demonstrates that the use of a priori knowledge heavily depends on the quality 
and completeness of the knowledge.

Table 9. Experimental results of entity pair calibration (EPC) algorithm model

Model Entity Categories Precision Recall F1

DPCNN EN 1 
EN 2

0.9256 
0.9694

0.9387 
0.9626

0.9321 
0.9660

BiLSTM-ATT EN 1 
EN 2

0.8935 
0.9552

0.9104 
0.9463

0.9019 
0.9507

BERT-BiGRU-ATT EN 1 
EN 2

0.9717 
0.9920

0.9836 
0.9862

0.9776 
0.9891

BERT(wwm)-BiGRU-ATT EN 1 
EN 2

0.9719
0.9960

0.9918
0.9862

0.9817
0.9911
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In addition, the authors’ framework slightly outperformed R-BERT (Model #5) in 3 out of 4 
coarse relations, and was better than Models #6 through #9 in all four coarse-grained relations.

Figures 13 and 14 show the experiment results for two more fine-grained RE tasks w.r.t., the 
“clinical guidance,” and “interaction result,” using the same nine models.

Results from Figures 13 and 14 suggest that the performance of fine-grained relation extraction 
is improved significantly by EPC. More specifically, for the relation of “use with caution (UC),” the 

Figure 9. F1 score for positive and negative correlation extraction between drugs and diseases

Figure 10. F1 score for extracting the existence of drug-drug interaction

Figure 11. F1 score for extracting the existence of “clinical guidance” in drug-drug interaction
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F1 value is increased by 8.04%, and for the relation of “adverse reaction increase (RI),” the F1 value 
is increased by 9.44%. Compared to the coarse-grain relation extraction result (3.2% F1 improvement 
on average) in Figures 9 through 12, one can see that the EPC module offers a bigger contribution 
(4.9% F1 improvement on average), while extracting more fine-grained and complex relations.

In addition, when dealing with fine-grained relations, the authors’ framework is slightly 
outperformed by R-BERT, and the performance is on par with PRGC (+0.5% F1), but is still better 
than Models #6 through #8. More specifically, the authors’ framework was outperformed by R-BERT 
in 8 out of 10 fine-grained relations, but their framework was better than Roberta, BERT-CLS, and 

Figure 12. F1 score for extracting the existence of “interaction result” in drug-drug interaction

Figure 13. F1 score for fine-grained “clinical guidance” relation extraction

Figure 14. F1 score for fine-grained “interaction result” relation extraction
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CasRel in 9 out of 10 fine-grained relations, and they were better than PRGC in 6 out of 10 relations. 
A more comprehensive comparison on the average performance is depicted in Table 10.

The results from Table 10 demonstrates that the authors’ model is 0.08% better than R-BERT 
(SOTA 2020) over coarse-grained relations, and is 2.2% worse than R-BERT over fine-grained 
relations. The results shows that R-BERT gains a lot of useful information from entity type annotation, 
and is indeed better than using the entity role information, especially in fine-grained relations. The 
main reason for this is that fine-grained relation extraction relies more on the semantic type of entities 
rather than on their syntactic roles. However, the authors’ argue that entity type enhancement requires 
a priori knowledge and requires more manual labeling effort, where labeling the entity roles is much 
easier and does not rely on complete and accurate domain taxonomy.

It is also observable from Table 10 that PRGC, R-BERT and CasRel have the top three smallest 
performance drop when dealing with fine-grained relations (-3.0%, -3.4% and -4.6%), and the authors’ 
approach ranked fourth with a -5.3% performance drop. These results indicate that: 1) both entity type 
enhancements and joint models are naturally more stable and, 2) without introducing much labeling 
effort (for annotating entity types or entity-relation correlations), the authors’ approach is also quite 
resilient over fine-grained relation extractions.

CoNCLUSIoN

Extracting fine-grained drug knowledge from professional drug instructions is a complicated task for 
both humans and machines. In order to address this problem, the authors’ proposed an end-to-end 
information extraction framework based on pre-training and deep learning models. The structure of the 
framework follows a basic design of pipeline information extraction methodology that includes data 
gathering, named entity recognition, and relation extraction, on top of which, the authors’ designed 
a novel procedure called Entity Pair Calibration (EPC) and placed it between NER and RE tasks to 
reduce the input noise for drug-drug interaction extraction.

The framework was empirically evaluated over more than 60,000 sentences from Chinese drug 
instructions, covering 4,000 different drugs. Experiment results demonstrate that the proposed 
framework can achieve >=0.95 F1 score in NER and >=0.83 in RE tasks. Moreover, the proposed 
EPC module can significantly improve the performance for fine-grained relation extraction (F1 score 
improvement up to 9.44%; 5% on average). Compared to using entity type information (e.g., R-BERT), 
enhancing the pre-training models with entity roles can achieve similar performance without relying 
on a priori knowledge and complicated labeling. Using this framework, the authors have successfully 
built a drug interaction knowledge base with over 1,300,000 RDF triples, describing more than 180,000 
drug-drug and drug-disease relations. It is worth mentioning that although the authors designed and 
evaluated the framework for Chinese drug instructions, it can be easily adapted for other languages 
by changing the pre-training model into BERT or other language-specific models. In addition, the 
fundamental idea of EPC can be reused for other languages.

The future work may be carried out in three aspects. First, the pre-training model BERT(wwm) 
used in this paper can be optimized with grammatical structure and semantic information (Liu et al., 

Table 10. Overall F1 performance over coarse- and fine-grained relations

BiGRU-
ATT

BERT-
BiGRU-

ATT

BERT(wwm)-
BiGRU-

ATT(RE)

BERT(wwm)-
BiGRU-

ATT(EPC)
R-BERT Roberta CLS CasRel PRGC

Coarse-grained 0.881 0.937 0.940 0.972 0.964 0.934 0.930 0.935 0.942

Fine-grained 0.774 0.839 0.869 0.918 0.930 0.879 0.830 0.889 0.913

Δ -0.107 -0.098 -0.071 -0.053 -0.034 -0.055 -0.100 -0.046 -0.030
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2019; Sun et al., 2020). Second, the architecture of the framework is configurable but not dynamically 
adaptable. The authors could improve on this aspect by monitoring the result and dynamically switching 
to better models. In addition, adding confrontation training (Goodfellow, Shlens, & Szegedy, 2014) 
in the word embedding stage of the model can improve the robustness of the model. Finally, there 
is an inherent problem in this domain, which is the imbalance of samples in drug-drug interactions. 
This problem is not easily solvable using pure learning-based approaches. However, the authors 
could explore using a hybrid approach of knowledge and learning-based approaches to address this 
issue (Li, Xu, & Lu, 2018).
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