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ABSTRACT

This study introduces a novel Ito diffusion model for operations management, addressing the 
challenge of maintaining resilience in supply chains and production networks against unpredictable 
disruptions. The model incorporates a general catastrophe process with a low occurrence rate, using 
stochastic methods to represent disruption magnitudes as gamma distribution variables. It provides 
an analytical framework detailing the process's mean, variance, and sample path. Applying this model 
across various operational scenarios demonstrates its practical significance. By examining the impacts 
of disruptions on operational efficiency, the model offers insights into disruption dynamics, crucial 
for resilience planning and risk mitigation. The findings enhance logistics networks' resilience and 
efficiency, aiding decision-makers in navigating disruptions. This research presents a practical tool 
for decision-making in operations management and sets the stage for future research with complex 
variables and emerging technologies to enhance predictive strength in a dynamic environment.
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INTRODUCTION

Operations management systems, such as supply chains and production networks, exhibit complex 
and dynamic characteristics, making them vulnerable to disruptions from both natural events (e.g., 
floods, earthquakes, severe weather, and pandemics) and human-induced events (e.g., cyberattacks, 
transportation accidents, and labor strikes). Consequently, such disruptions can profoundly impact 
the performance of operations management systems, leading to financial losses, escalating costs, and 
diminishing customer satisfaction. For instance, Verschuur et al. (2021) found that the COVID-19 
pandemic caused a 7–9% decline in global maritime trade in 2020, resulting in hundreds of billions 
of dollars in losses. As such, operations managers must proactively forecast the consequences of 
disruptions and formulate effective mitigation strategies. However, this requires a comprehensive 
understanding of the complexity and unpredictable dynamics of these disruptions. To address this 
challenge, this study proposes a stochastic resilience model based on the Itô diffusion process.

Stochastic modeling is a powerful technique that is well-recognized for its ability to reveal the 
hidden dynamics of complex systems, including operations management. By explicitly incorporating 
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randomness into operations models, stochastic modeling can provide insights into the potential impact 
of disruptions and help decision-makers develop more effective resilience strategies. Nonetheless, 
most stochastic models used in operations management are limited to discrete-time models, such 
as Markov chains, queuing models, and inventory models. While these discrete-time models serve 
certain purposes, they stumble in capturing the continuous-time dynamics of disruptions. Notably, 
they fail to encapsulate the abrupt and drastic alterations in disruption magnitudes—a pivotal facet 
of real-world disruptions.

This study introduces an innovative continuous-time stochastic resilience model for operations 
management based on the Itô diffusion process with gamma catastrophe processes. The model is 
designed to capture the inherent randomness of disruptions, as well as the potential for sudden and 
drastic changes. The model can be used to simulate the impact of different types of disruptions on 
operations management systems and to evaluate the effectiveness of different resilience strategies. 
However, the implementation of such continuous-time stochastic models in operations management is 
still in its infancy. Consequently, our exploration into this approach represents a significant contribution 
to the field of operations management, potentially opening the door to enhanced effectiveness of 
operational strategies and supply chain resilience. Moreover, our study extends beyond theoretical 
implications. It has the potential to influence policymaking by providing a more accurate understanding 
of the dynamics of disruptions, particularly in situations characterized by sudden and drastic changes.

By explaining the potential benefits, challenges, and underlying complexities of this novel model, 
we strive to encourage its wider adoption and stimulate further exploration and refinement in the 
field of operations management. Ultimately, we aim to inspire new operations management models 
that more accurately represent the complexities and dynamism of operations systems.

LITERATURE REVIEW

In the complex domain of operations management, the resilience of critical systems like supply 
chains and production networks in the face of disruptions has emerged as a paramount area of concern. 
The foundational work by Sheffi (2005), alongside more recent work by Ivanov et al. (2019), has 
effectively underscored the susceptibility of these systems to a range of natural and human-induced 
disruptions. In exploring the dynamics of such disruptions, the study by Al-Husain and Al-Eideh 
(2022) made a significant contribution by proposing a stochastic diffusion logistic growth price 
model, providing deeper insights into the behavior of economic systems under uncertainty, which can 
be parallelly applied to understanding disruptions in operations management. Further contributing 
to this exploration, Zainal and Al-Eideh (2020) determined the solution of an Itô diffusion price 
model subject to the general disaster process, applying their results to the uniform disaster process, 
which closely aligns with and inspires the development of our continuous-time stochastic model. 
These disasters, ranging from natural to man-made, pose significant challenges to the robustness of 
operations management systems and often result in substantial financial repercussions.

Contemporary challenges have further highlighted the importance of understanding this 
vulnerability. For instance, the study by Verschuur et al.(2021) sheds light on the significant impact 
of the COVID-19 pandemic, documenting a notable 7–9% decline in global maritime trade and 
consequent financial losses in the hundreds of billions of dollars. The occurrence of such catastrophes, 
often analyzed as stochastic phenomena, has been explored by researchers like Harrison and Pliska 
(1981) and Aase (1984), who provided insights into processes with continuous sample paths, enhancing 
our understanding of disruptions in operations management.

Along this line of thought, the applications of stochastic models in handling disruptions are 
illustrated by the work of Ozbay and Ozguven (2007) and Alem et al. (2016) in the context of disaster 
response and logistics planning. Tapolcai et al. (2018) further contributed by employing stochastic 
modeling to estimate network risks associated with geographically correlated link failures, underlining 
the versatility of these models in assessing and managing operational risks. The practical applications 
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of these models, as demonstrated by Shehadeh and Tucker (2022) in disaster response planning and by 
Daneshvar et al. (2023) in humanitarian post-disaster supply-chain planning, underline the relevance 
of stochastic models in operational strategies, especially during crises.

In addition, the research by Hosseini and Ivanov (2021) introduces an advanced analytical 
approach to modeling supply chain disruptions during the pandemic, offering insights into the 
complexities and financial implications of maintaining supply chain continuity in such unprecedented 
times. Similarly, Barman et al.(2021) examined the disruptions and recovery strategies within the 
food supply chain during the COVID-19 pandemic, highlighting the criticality of adaptive responses 
in this sector to maintain stability and ensure food security.

The necessity for operations managers to formulate effective mitigation strategies in the face 
of such disruptions is paramount. Tang (2006) discussed that traditional strategies involve robust 
supply chain design and risk management approaches. Expanding on this basis, Gao et al. (2019) 
advanced the field by revisiting and refining the concept of the risk exposure index, providing a 
more nuanced approach to quantifying and mitigating disruption risks in supply chains. Their work 
adds a critical dimension to understanding risk management techniques, especially in the context of 
complex and dynamic supply chain environments. Hohenstein et al. (2015) further elaborated upon 
these risk management techniques by examining various methods, focusing on the supply chain’s 
ability to prepare for, respond to, and recover from unexpected risk events. However, these strategies 
often require a deeper understanding of the unpredictable dynamics of disruptions, a domain where 
stochastic modeling plays a crucial role. While discrete-time stochastic models, such as Markov chains, 
queuing models, and inventory models, have been extensively used in operations management, as 
Hillier and Lieberman (2001) detailed, their effectiveness in capturing the continuous-time dynamics 
of disruptions remains limited. Snyder et al. (2016) highlighted this limitation, noting the inability 
of these models to encapsulate the abrupt and drastic alterations in disruption magnitudes, which are 
characteristic of real-world events.

To address these limitations, this paper introduces an innovative continuous-time stochastic 
resilience model based on the Itô diffusion process with gamma catastrophe processes, a concept 
that finds its roots in the foundational work of Oksendal (2013). This model, designed to capture 
the inherent randomness of disruptions and their potential for sudden, drastic changes, represents 
a significant departure from the traditional discrete-time models. The potential of continuous-time 
stochastic models in operations management is still relatively unexplored, as suggested by Perera 
and Sethi (2023), who provide a comprehensive review of continuous-time models in inventory 
management. However, implementing such models in practical settings presents its own challenges. 
This is illustrated by Sarma et al. (2020), who explored resource redistribution and optimal allocation 
in disaster response within humanitarian logistics. Their study demonstrates the implementation of 
advanced mathematical models in a specific and complex operational context.

The proposed model not only contributes to the theoretical advancements in the field but also 
has significant practical implications. This model could influence policy-making and operational 
strategies by providing a more accurate understanding of the dynamics of disruptions, especially in 
situations marked by sudden changes. This aligns with the future directions suggested by Pournader 
et al. (2020), who emphasized the evolving nature of operations management and the increasing 
relevance of advanced modeling techniques. By exploring the potential benefits, challenges, and 
intricacies of this novel model, this research aims to stimulate its wider adoption and encourage 
further exploration in the field, ultimately contributing to developing more resilient and efficient 
operations management systems.

METHOD

In this section, we present the methodology by introducing the exact solution of an Itô diffusion 
model subjected to a catastrophe process. We will derive key statistical properties of this process, 
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including its moments, mean, and variance. These findings will then be directly applied to the gamma 
catastrophe process, which will be elaborated upon in the following subsection.

Consider an Itô diffusion model, denoted as   X  t    at time  t , which represents the dynamics of 
operations management systems under the influence of disruption. These disruptions have magnitudes 
that follow a general distribution function    H  x   (   ∙  )    , with the assumption that the rate of disruptions, 
denoted by  α , is small. We define  α  such that  0 < α < 1 . For discrete times  t = 1, 2, 3, … ,  in 
each time interval, the system can either transition from state  x  to a new state determined by   H  x   , with 
probability  α  representing the occurrence of a disruption, or continue in its current state  x  (with no 
disruption) with probability  1 − α .

Thus, the transition probability density function for the state of the operations management 
system,    p    ̂  t     (  x, y )     is given by:

   p    ̂  t     (  x, y )   = αd  H  x   (  y )   +  (1 − α)   p  d  
t   (  x, y )     (1)

In this equation,   d  H  x   (  y )    , where  0 < y < x , represents the probability density function of the 
general disruption process, and    p  d  

t   (  x, y )     is the transition density function of the Itô diffusion model 
without disruptions. The behavior of the system under normal conditions (without disruptions) is 
determined by the Itô stochastic differential equation:

  d  X  t   =  X  t   [b (t) dt + g (t) d  B  t  ] for t ∈  [  0, T ]     (2)

Here,   X  0   = x , and   { B  t  }   is a standard Brownian motion. Both the drift coefficient   b (  t )     and the 
diffusion coefficient   g (  t )     are continuous functions of time  t , and both are proportional to the state   X  t    
of the system at time  t .

Now, let’s assume the moments    M  n   (  t )    , where  n = 1, 2, 3, … ,  of the Itô diffusion process, which 
models the dynamics of operations management systems under a general catastrophe process    H  x   (  y )    , 
such that    M  n   (t)  = 𝔼 [    X  t  

n  ]     for  t ≥ 1 . This leads to the relationship:

   M  n   (t)  = α  M  n  
g  (t)  +  (  1 − α )    M  n  

d  (  t )     (3)

In this context,    M  n  
g  (  t )     represents the nth moments of the general catastrophe size distribution 

such that:

  M  n  
g  (t)  = ∫  y   n  d  H  x   (y)  =  μ  n    x   n   (4)

Additionally,    M  n  
d  (  t )     the nth moments of the operations management system’s process, as per the 

solution of the Itô stochastic differential equation from Equation 1, characterized as follows:

    
d  X  t   _  X  t  

   = b (  t )  dt + g (  t )  d  B  t    ,   X  0   = x   (5)

Following some mathematical manipulations, the solution of the Itô differential equation for the 
state   X  t    of the operation management system can be shown to be:

  X  t   = xexp [ ∫ 
0
  
t
   (b (  s )  ds −   1 _ 2   g (  s   )     2  ds)   +  ∫ 

0
  
t
  g (  s )  d  B  s   ]   (6)
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Consequently, the nth moment of the diffusion process without catastrophes,    M  n  
d  (  t )    , is given by 

the expected value of   X  t  
n  :

   M  n  
d  (  t )   = 𝔼 [    X  t  

n  ]   =  x   n  exp  [   ∫ 
0
  
t
   (nb (  s )   −   n _ 2   (n − 1) g (  s   )     2 )   ds ]     (7)

By direct substitution into Equation 3, we can derive the moments    M  n   (  t )   ; n = 1,2,3,…,   for 
the Itô diffusion model representing operations management systems under a general catastrophe 
process. The moments are given as follows:

   M  n   (  t )   = α  μ  n    x   n  +  (  1 − α )    x   n   exp [    ∫ 
0
  
t
   (nb (  s )   −   n _ 2   (n − 1) g (  s   )     2 )  ds ]     (8)

The moments    M  n   (  t )   = 𝔼 (    X  t  
n  )     can be calculated explicitly; specifically, the first and second 

moments are determined by:

   M  1   (  t )   = α  μ  1   x +  (  1 − α )  xexp  [   ∫ 
0
  
t
  b (s)   ds ]     (9)

and

   M  2   (  t )   = α  μ  2    x   2  +  (  1 − α )    x   2  exp  [   ∫ 
0
  
t
   (2b (  s )   − g (  s   )     2 )   ds ]     (10)

Consequently, the mean and the variance of the Itô diffusion model   X  t   , representing the state of 
operations management systems under the general catastrophe process, are given by:

  𝔼 (    X  t   )   = α  μ  1   x +  (  1 − α )  x exp [    ∫ 
0
  
t
  b (s)  ds ]     (11)

and

  Var (    X  t   )   =  M  2   (  t )   −   ( M  1   (  t )  )    2    (12)

where    M  1   (  t )     and    M  2   (  t )     are defined in Equations 9 and 10, respectively. These findings are 
commonly employed in statistical inference problems.

Mean and Variance with Constant Infinitesimal 
Parameters and gamma Catastrophe Process

In this section, we explore the moments    M  n   (  t )  , n = 1, 2, 3,…,   of an Itô diffusion process. This 
process is applied to operations management systems and features constant infinitesimal parameters   
b (  t )   = b   and   g (  t )   = a  . It is subject to a catastrophe process    H  x   (  y )     that follows a gamma distribution 
with parameters   (m, λ)  , such that  m > 0 , and  λ > 0 .

The gamma catastrophe process is employed due to its ability to capture the variability and 
skewness inherent in operational disruptions in the real world, thereby providing increased flexibility 
and realism in modeling such behaviors. As a result, the gamma process facilitates customized risk 
profiling by accurately simulating various disruption scenarios, including frequent occurrences 
with low impact and infrequent ones with high impact. By taking this approach, our model ensures 
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that it reflects the complex dynamics of operational interruptions and allows for a more detailed 
understanding and strategic management of these occurrences. The gamma distribution is defined as:

   H  x   

⎛

 ⎜ 

⎝

  y 

⎞

 ⎟ 

⎠

   =  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

  

0, y < 0

    ∫ 
0
  
y

    λ  e   −λw    (λw)    m−1  _ Γ (m)    dw , 0 ≤ y < x   

1, y ≥ 0

      (13)

Using Equation 4, we can determine the moments of the operations management system under 
gamma catastrophes. This yields:

   M  n  
g  (  t )   =    λ   n  Γ (m + n)  _ Γ (n)     x   n    (14)

Furthermore, using Equation 7 and considering the constant drift and diffusion parameters   b (  
t )   = b   and   g (  t )   = a,   respectively, we obtain the moments of the operations management system in 
the absence of disruptions:

   M  n  
d  (  t )   =  x   n  exp [nb −   n _ 2   (  n − 1 )    a   2 ] t   (15)

Equation 14 reflects the impact of the gamma catastrophe process on the system’s state, while 
Equation 15 represents the moments of the system’s state in a stable operational environment without 
disruptions.

Therefore, by directly substituting into Equation 8, we obtain the moments    M  n   (  t )   ; n = 1,2,3,…,   
for the Itô diffusion model with constant infinitesimal parameters and a gamma catastrophe process, 
as it applies to operations management systems. The moments are formulated as follows:

   M  n   (  t )   = α    λ   n  Γ (m + n)  _ Γ (n)     x   n  +  (  1 − α )    x   n  exp [nb −   n _ 2   (  n − 1 )    a   2 ] t   (16)

Notably, the first and second moments of this process can be easily derived from Equation 16. 
Specifically, they are:

   M  1   (  t )   = αmλx +  (  1 − α )  xexp (bt)    (17)

and

   M  2   (  t )   = αm  λ   2   x   2  +  (  1 − α )    x   2  exp (2b −  a   2 ) t   (18)

Subsequently, the mean and the variance of the Itô diffusion model   X  t    at time t, considering 
catastrophes with magnitudes following a gamma distribution function   H  x   (⋅)  , are given by:

  𝔼 (    X  t   )   = αmλx +  (  1 − α )  xexp (bt)    (19)

and

  Var (    X  t   )   = αm  λ   2  (1 − αm)   x   2    +  (  1 − α )    x   2  [2αmλexp (bt)  + exp (2bt)  (  1 − α − exp (    a   2  t )  ]    (20)
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These results are typically utilized in statistical inference problems.

NUMERICAL EXAMPLE

In the numerical example presented, we investigate a logistic network dedicated to the distribution 
of goods, exploring multiple scenarios to demonstrate the network’s response to varying operational 
conditions. The central objective is to achieve optimal operational efficiency, characterized by the 
network’s capability to deliver goods punctually and in the required state consistently. Operational 
efficiency is quantitatively evaluated on a scale up to 100%, symbolizing the network’s ability 
to achieve on-time and in-full (OTIF) delivery. The logistics network operates under various 
potential disruptions, including natural disasters, supplier strikes, and significant market shifts. To 
comprehensively analyze the impact of these disruptions, we employ the Itô diffusion model   X  t   , 
examining its response under different sets of parameters. Each set of parameters is tailored to represent 
distinct operational scenarios, ranging from high resilience and frequent but low-impact disruptions 
to severe but infrequent disruptions. These scenarios illustrate a logistics network’s diverse challenges 
and how varying operational strategies and external conditions can influence its efficiency over time.

Before delving into the application of the Itô diffusion model, it is essential to thoroughly 
understand its underlying parameters, which are detailed as follows:

• Initial operational efficiency (  X  0   ): The logistics network is assumed to start with an efficiency 
level of 80%, signifying a proficient but not flawless system with room for improvement.

• Impact of disruptions ( a ): This diffusion coefficient reflects the degree of volatility or 
unpredictability in operational efficiency due to disruptions, potentially leading to considerable 
delays or losses in the network’s operations. A higher value of  a  indicates greater volatility, 
indicating a more significant impact from disruptions on the network’s operations.

• Rate of improvement in efficiency ( b ): The drift coefficient represents the average rate of 
improvement or growth in operations efficiency. This indicator shows how the system is expected 
to enhance operational efficiency over time under normal conditions.

• Probability of significant disruptions ( 𝛂 ): This is the catastrophe rate, which indicates the 
chance of a disruptive event affecting the logistics network each year. A large value of  α  indicates 
a high chance of disruption, while a small value indicates a minimal probability of disruption.

• Parameters of disruption severity ( m and 𝛌 ): These parameters are part of the gamma distribution 
model and describe the frequency and severity of disruptions. The shape parameter of the gamma 
distribution  m  influences the skewness of the disruption frequency. A higher value of  m  would 
suggest a more right-skewed distribution, indicating that while most years experience few or no 
disruptions, there is a long tail where a few years could experience many disruptions. The rate 
parameter of the gamma distribution  λ  defines the frequency of disruptions over time. A higher  
λ  rate would require the logistics network to be well-prepared for multiple disruptions in quick 
succession, albeit infrequently.

These parameters collectively configure the Itô diffusion model with a gamma catastrophe process, 
enabling the simulation of operational efficiency dynamics within the logistics network. This model 
accurately captures fluctuations over time due to both consistent operational improvements and the 
varying impact of occasional disruptions.

Scenario 1: High Resilience to Disruptions
Parameters:  a = 0.05, b = 0.03, α = 0.03, m = 2, λ = 1 
To illustrate the robustness of a logistics network in handling disruptions effectively, Scenario 

1 presents a case of high resilience. In this scenario, the network is configured with parameters 
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that reflect its strong capability to absorb and recover from operational disturbances with minimal 
disruption to overall efficiency. Low values of  α  and  a  indicate that disruptions are both infrequent 
and have a minimal impact, respectively. The value of  b  suggests a robust improvement in operational 
efficiency. The values of  m  and  λ  indicate disruptions that are not frequent and relatively moderate 
in their impact.

The logistics network in this scenario, as shown in Figure 1, is thus modeled to demonstrate 
high resilience. The subsequent analysis will show how these settings enable the network to maintain 
and even improve its operational efficiency despite potential disruptions, thereby showcasing the 
effectiveness of strategic planning and robust operational management in logistics.

Figure 1 shows efficiency without disruptions in red and efficiency with disruptions in blue, 
predominantly displaying the red line, as both lines closely overlap throughout the graph. This overlap 
is indicative of the logistics network’s remarkable resilience to disruptions. With an initial efficiency of 
80%, the graph demonstrates a steady upward trend over the years. The minimal divergence between the 
two lines underscores the network’s robust capacity to mitigate the effects of disruptions, as reflected 
by the lower values of  a  (impact of disruptions) and  α  (probability of significant disruptions). This 
scenario clearly illustrates the network’s ability to sustain and enhance operational efficiency despite 
potential external challenges due to its effective management strategies and ongoing improvements.

Scenario 2: Frequent but Low-Impact Disruptions
Parameters:  a = 0.1, b = 0.02, α = 0.2, m = 4, λ = 3 
This scenario delves into the dynamics of a logistics network operating under frequent but 

relatively low-impact disruptions. The configured parameters are chosen to reflect a network that, 
while regularly encountering operational challenges, can manage these disturbances without significant 
detriment to its overall efficiency. The relatively high value of  α  suggests that the network experiences 
disruptions more frequently, yet the moderate value of  a  signifies that each disruption’s impact is 
controlled and not overly disruptive. The values of  b  represent a steady but measured improvement 
in operational efficiency over time, contributing to the network’s resilience, while  m  and  λ  denote a 
higher frequency of disruptions, but with less severe consequences.

Figure 1. Operational efficiency forecast in a logistics network over 15 years in scenario 1
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As illustrated in Figure 2, the logistics network under these conditions is designed to exhibit 
resilience in a more dynamic and challenging environment. The analysis of this scenario will 
demonstrate the network’s capability to manage and adapt to frequent disruptions, highlighting the 
importance of agile and flexible operational strategies in maintaining efficiency in a rapidly changing 
logistical environment.

This scenario underscores the logistics network’s agility and adaptability in a dynamic operational 
environment. It highlights the importance of proactive disruption management and flexible operational 
strategies for maintaining efficiency in the face of frequent challenges. The analysis of Scenario 2 
thus demonstrates the value of strategic planning and operational agility in logistics, particularly in 
environments characterized by frequent but manageable disruptions.

Scenario 3: Severe but Infrequent Disruptions
Parameters:  a = 0.3, b = 0.01, α = 0.05, m = 1, λ = 0.05 
Scenario 3 delves into a logistics network’s resilience in the face of severe but infrequent 

disruptions. It depicts a typically stable network that, nonetheless, encounters significant operational 
challenges occasionally. The scenario is characterized by a high impact value of  a = 0.3 , suggesting 
that disruptions, although rare, profoundly affect the network’s efficiency. This substantial impact is 
further compounded by the infrequency of these events, as indicated by a low probability value of  
α = 0.05 . Additionally, a modest efficiency improvement rate, represented by  b = 0.01 , reflects 
the network’s cautious strategy focused on stabilization and recovery, possibly stemming from the 
need to manage these significant disruptions effectively. The parameters  m = 1  and  λ = 0.05  in 
the gamma distribution model emphasize the nature of these disruptions as being substantial yet not 
frequently occurring. This cautious approach is evident in the network’s operational performance, 
where efficiency dips noticeably during disruptive events, highlighting the network’s focus on 
managing and recovering from these significant yet rare challenges.

Figure 3 offers a visual representation of the operational efficiency in a logistics network scenario, 
marked by a steady increase in efficiency over time. The graph reveals a relatively stable efficiency 
curve, represented by both the red line (without disruptions) and the blue line (with disruptions). 

Figure 2. Operational efficiency forecast in a logistics network over 15 years in scenario 2
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However, the blue line occasionally dips below the red, illustrating the impact of severe disruptions. 
While not drastic, these declines are more pronounced compared to previous scenarios, underscoring 
the substantial effects of these disruptions on the network’s performance. Despite these challenges, the 
overall gradual improvement trend signifies the network’s resilience and ongoing efforts to enhance 
efficiency. This scenario underscores the importance of robust contingency planning and resilience in 
logistics management, particularly in environments prone to significant yet unpredictable disruptions.

This scenario underscores the importance of comprehensive risk management and resilience 
planning in logistics operations. It illustrates how a network, while capable of steady improvement, 
must also account for the possibility of significant disruptions that can temporarily hinder operational 
efficiency. Scenario 3 thus provides valuable insights into managing logistics operations in 
environments where disruptions, though infrequent, can have substantial operational impacts. It 
highlights the need for a balanced approach to efficiency improvement and contingency planning to 
mitigate the effects of potential disruptions.

Scenario 4: High Growth With Moderate Disruptions
Parameters:  a = 0.15, b = 0.04, α = 0.1, m = 3, λ = 2 
Scenario 4 is designed to explore the dynamic of a logistics network experiencing moderate 

disruptions within a context of high growth. This scenario represents a network that faces challenges but 
is characterized by an aggressive approach toward improving operational efficiency. The set parameters 
reflect a balanced environment where disruptions are moderately impactful and somewhat frequent. 
The diffusion coefficient value ( a = 0.15 ) indicates that while disruptions impact the network, they 
are not overwhelmingly detrimental. The higher drift coefficient value ( b = 0.04 ) indicates a strong 
commitment to improvement and growth, potentially through innovative strategies or substantial 
investment in operational enhancements. The probability of disruptions value ( α = 0.1 ) signifies 
a moderate risk of encountering challenges. The values of  m  and  λ  within the gamma distribution 
model imply disruptions that occur with a moderate frequency and intensity.

Figure 4 visualizes these dynamics, showing both lines on an upward trajectory, with the blue line 
representing efficiency with disruptions and slightly trailing the red line. This graphically illustrates the 

Figure 3. Operational efficiency forecast in a logistics network over 15 years in scenario 3
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network’s capability to achieve significant growth while managing the effects of moderate disruptions. 
Periodic dips in the blue line are evident but do not drastically hinder the overall positive trend. This 
represents the network’s resilience and adaptability in maintaining high-performance levels despite 
periodic challenges.

Scenario 4 highlights the importance of a balanced approach in logistics management, where 
growth and improvement are pursued aggressively but not at the expense of risk management and 
disruption preparedness. It illustrates the network’s resilience and adaptability in maintaining 
high-performance levels despite facing periodic challenges.

This analysis demonstrates the effectiveness of strategic operational planning in a logistics 
network, especially in scenarios where moderate disruptions are a recurrent feature. The network’s 
ability to sustain growth while effectively managing these disruptions is a testament to its robust 
operational strategies and resilience planning.

Scenario 5: Unstable Environment With High Volatility
Parameters:  a = 0.25, b = 0.01, α = 0.15, m = 2, λ = 4 
Scenario 5 is tailored to investigate the resilience of a logistics network operating in an 

environment marked by high volatility and instability. This scenario depicts a network confronting 
persistent and severe disruptions, which pose significant challenges to its operational efficiency. 
The parameters for this scenario, including a high diffusion coefficient value ( a = 0.25 ), indicate 
that disruptions substantially impact the network’s efficiency, leading to considerable operational 
variability. The drift coefficient value ( b = 0.01 ) suggests a cautious approach towards improvement 
and growth, likely a response to the network’s need to manage frequent and intense disruptions. A high 
probability of significant disruptions value ( α = 0.15 ) further characterizes the network operating 
in a challenging and unpredictable environment. Additionally, the gamma distribution parameters ( 
m = 2  and  λ = 4 ) underscore the frequency and severity of the disruptions, adding to the network’s 
operational complexities.

As illustrated in Figure 5, the network’s operational efficiency is experiencing marked fluctuations. 
The red efficiency without disruptions line shows a steady, albeit slow, upward trend, reflecting 

Figure 4. Operational efficiency forecast in a logistical network over 15 years in scenario 4
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the network’s cautious improvement strategy. In contrast, the blue efficiency with disruptions line 
experiences more significant fluctuations due to the high impact and frequency of disruptions. The 
scenario shows a gradual increase in efficiency over time, starting with a baseline of 80%. However, 
the efficiency with interruptions line shows significant declines due to frequent and severe disruptions, 
indicating that sustaining consistent operational performance is challenging.

Scenario 5 emphasizes the significance of logistics networks with advanced risk management 
and operating methods that can adapt to dynamic circumstances encountered in highly changeable 
environments. The analysis highlights the importance of resilience and adaptive planning to maintain 
continuous operations during major challenges. Thus, Scenario 5 provides valuable insights into 
managing logistics operations in highly uncertain circumstances. This highlights the need for 
proactive planning and adaptability to effectively manage and mitigate the consequences of frequent 
and severe disruptions.

DISCUSSION

This research explored the application of the Itô diffusion model with a gamma catastrophe process 
in analyzing the operational efficiency of logistics networks under various disruption scenarios. By 
integrating real-world disruptive events into a structured mathematical framework, the study offers a 
novel perspective on managing logistics uncertainties. The model’s flexibility in adapting to different 
operational contexts and its ability to incorporate stochastic elements make it an invaluable logistics 
management tool. Each scenario presented distinct parameters to mimic real-world conditions, 
ranging from high resilience and frequent low-impact disruptions to environments characterized by 
high volatility and severe disruptions.

One of the model’s key strengths lies in its capacity to equip managers with predictive insights for 
planning around diverse disruption scenarios, thus facilitating more informed strategic and operational 
decisions. This is especially relevant in the current global economic environment, where disruptions in 
the supply chain have become more frequent and have greater effects. The model offers a quantitative 
basis for developing robust risk mitigation and contingency plans, guiding resource allocation for 

Figure 5. Operational efficiency forecast in a logistical network over 15 years in scenario 5
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enhanced resilience and efficiency. As a result, the insights provided by the model can enhance the 
agility of logistics networks by providing a strategic diversification of supply sources. These aspects 
are crucial for policymaking, particularly in bolstering supply chain stability and resilience.

The model’s adaptability to different scenarios underscores its broad applicability across various 
logistics and supply chain management sectors. While the model provides valuable insights, it operates 
under certain assumptions that may not fully capture all real-world complexities. These assumptions 
include consistent rates of operational improvements and disruption impacts, which in reality, may 
vary in more dynamic market environments. Additionally, factors such as the potential variability in 
disruption severity and frequency, influenced by external economic and geopolitical factors, are not 
fully accounted for. These limitations highlight the importance of interpreting the model’s findings 
with caution and point toward areas for future enhancement. Developing the model to incorporate 
these dynamic factors would offer a more comprehensive view of supply chain resilience, aligning 
more closely with the fluctuating nature of global markets.

CONCLUSIONS AND FUTURE RESEARCH

This study has successfully demonstrated the application and versatility of the Itô diffusion model 
with a gamma catastrophe process in evaluating the operational efficiency of logistics networks under 
diverse disruption scenarios. The model’s ability to integrate stochastic elements and adapt to various 
operational contexts provides a comprehensive framework for understanding the impacts of different 
disruption types on logistics efficiency. The five scenarios explored in this research encompassed 
a spectrum of disruption characteristics, from high resilience to high volatility, offering valuable 
insights into how logistics networks can navigate and manage different operational challenges. The 
findings from these scenarios highlight the critical role of strategic planning, risk management, and 
adaptability in logistics operations.

Key takeaways include the importance of balancing growth objectives with risk mitigation, 
developing robust contingency plans to handle severe disruptions, and the need for flexible operational 
strategies to manage frequent, low-impact disruptions. The study also underscores the potential of the 
Itô diffusion model as a predictive tool, aiding logistics managers in decision-making and strategic 
planning. Future research directions could expand the model’s application to include more variables, 
such as varying demand patterns and supply chain network structures as well as incorporating real-time 
data analytics for more dynamic response capabilities. The integration of emerging technologies like 
artificial intelligence and the Internet of things could also provide even more nuanced insights and 
enhance the model’s predictive capabilities, particularly in automating response mechanisms and 
optimizing resource allocation.

The Itô diffusion model marks a significant advancement in operations management, particularly 
in understanding and managing operational efficiency amid disruptions. Its implications extend 
beyond traditional logistics management, offering potential applications in broader fields like disaster 
response and global supply chain coordination. The insights provided are instrumental for logistics 
managers and policymakers, laying a solid foundation for future research to refine and expand the 
model’s applicability in increasingly complex and technologically advanced operational environments.
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