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ABSTRACT

The most viable strategy to establish a dependable indoor positioning system is by employing the 
received signal strength (RSS) based fingerprinting technique, which encompasses both the offline 
and online phases. The offline phase involves constructing a radio map, which can be arduous in 
vast indoor environments. To tackle this, radio map interpolation is often used to interpolate RSS by 
utilizing the RSS recorded at a coarser level of known reference points (RPs). This paper proposes a 
novel RSS-based radio map interpolation to enhance the existing inverse distance weighting (IDW) 
interpolation technique. The method divides the deployment area into zones and optimizes the 
density of known RPs in each zone based on the number of access points (APs) with average RSS 
exceeding the threshold. It allocates higher RP density for the zones with poor AP coverage and 
reduces it for well-covered zones. Results demonstrates that the proposed method achieves substantial 
improvements over the baseline IDW scheme in average positioning error of up to 6.58% at the floor 
level and 3.77% overall.
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INTRODUCTION

The proliferation of location-based services in today’s world, which employ a user’s geographic 
location to supply location-specific data, has led to a greater need for precise and up-to-date indoor 
positioning systems that can support indoor location-based services (Tan et al., 2021). Although the 
GPS is widely employed to enable outdoor wayfinding and positioning, the system is not ideal for use 
in indoor environments because it necessitates an unobstructed view of the link connecting the GPS 
satellites and users (Ezhumalai et al., 2021; J. Wang & Park, 2021). In indoor environments, meeting 
this requirement is challenging because signals are often blocked by the thick walls of buildings, 
resulting in a weakened signal that diminishes the accuracy of indoor positioning data.

Pertaining to the above-mentioned issue, various wireless technologies such as Bluetooth, 
RFID, geomagnetism, proximity sensor, ultra-wideband (UWB), visible light, and Wi-Fi have been 
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extensively studied for their applications to facilitate indoor positioning systems (Ezhumalai et al., 
2021; J. Wang & Park, 2021). Among the available approaches, the fingerprinting method based 
on received signal strength (RSS) is unique because it does not need any additional infrastructure 
other than the commonly placed Wi-Fi access points (APs) or Bluetooth low energy (BLE) beacons, 
along with mobile devices equipped with network interface cards to measure RSS (Ezhumalai et al., 
2021; Khalajmehrabadi et al., 2017a). Fingerprint-based indoor positioning using RSS measurements 
faces limitations due to the complexities of Wi-Fi signal propagation indoors. Multipath interference 
caused by reflections from walls, furniture, and even people disrupt the direct signal path, leading to 
unreliable RSS values and hindering radio map accuracy (Ji et al., 2022). Additionally, environmental 
factors like temperature and humidity can subtly affect signal strength, while human movement during 
measurements and device orientation can introduce further inconsistencies. These limitations can 
create significant discrepancies between the user’s actual location and the estimated position based 
on RSS fingerprints.

The fingerprinting method based on RSS encompasses two main processes: the offline phase 
and the online phase. The offline phase is the process where the RSS measurements are taken from 
nearby APs at various reference points (RPs) throughout the indoor environment of interest to create 
a radio map containing the location-tagged RSS measurements (Shang & Wang, 2022). Specifically, 
Wi-Fi APs bridge wired networks (Ethernet) with Wi-Fi devices using radio frequencies for data 
transmission and reception. Meanwhile, a RP is a specific location within the indoor environment 
where RSS measurements are taken. These measurements capture the unique “fingerprint” of the Wi-Fi 
signal at that particular point. On the other hand, in the online phase, the user’s unknown location 
can be approximated by comparing the RSS values obtained from visible APs near the user’s current 
location with the labeled RSS vectors pre-collected and stored in the radio map, using a localization 
technique such as decision tree, random forest, or k-nearest neighbor (KNN; Ezhumalai et al., 2021; 
J. Wang & Park, 2021).

However, generating the radio map can be a time-consuming and labor-intensive process since it 
requires the RSS measurements to be performed at each RP defined over the entire indoor environment 
(Bi et al., 2018). Taking the real-world scenario, which usually involves a large-scale multi-floor indoor 
environment, would imply that a more significant number of RPs must be defined to cover the whole 
area of interest. Apart from that, to suppress the adverse effect introduced by outliers and noises, it is 
common to calculate and store the average RSS vectors as fingerprints in the radio map by collecting 
multiple measurements at each RP. Additionally, in some cases, multiple directional sampling is 
performed at each RP to account for the influence of human body shielding on RSS measurements.

In view of that, it would indeed be more labor- and time-efficient if the RSS is only measured 
at a coarser granularity than that of the RPs. However, to achieve a more accurate indoor positioning 
result, it would be beneficial to define as many RPs as possible in the indoor environment of interest 
and to collect more RSS fingerprints of those densely established RPs so that a more accurate radio 
map could be created. Thus, interpolation could be used to be more labor- and time-efficient while 
establishing sufficient RPs to construct a better radio map. This approach leverages a strategically 
chosen, sparse set of RPs with meticulously measured RSS fingerprints. These measurements form 
the basis of a preliminary radio map. Subsequently, a dense grid of virtual points (VPs) is defined 
across the indoor space. Interpolation techniques, such as inverse distance weighted (IDW; D. Wang 
et al., 2019) or kriging (Jan et al., 2015), then estimate the RSS fingerprints for each VP based on 
the known RSS values from the RPs. This process effectively creates an interpolated radio map. By 
combining this interpolated map with the initial radio map generated from physical measurements, 
a more detailed representation of the environment is achieved. This potentially reduces radio map 
creation effort while maintaining or even improving positioning accuracy due to the increased spatial 
resolution of the interpolated VPs.

While numerous radio map interpolation techniques exist, the existing literature predominantly 
adopts a uniform distribution of known RPs. However, such uniform density of known RPs across 
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all zones may not be optimal in scenarios where certain zones necessitate a higher density of known 
RPs. For instance, zones located farther away from APs or those experiencing significant RSS 
attenuation due to indoor layout intricacies may suffer from reduced localization performance. To 
address this limitation, this paper proposes an RSS-based optimization technique for an improved 
radio map interpolation. The density of known RPs allocated in each zone is varied according to 
the number of APs in which their average RSS exceeds the threshold RSS. The more the number 
of APs whose average RSS exceeds the threshold RSS set, the lower the density of known RPs that 
will be allocated to that zone, and vice versa. After collecting the RSS data from various APs in an 
indoor environment, the next step is to interpolate the RSS values at VPs using the IDW interpolation 
method. This process results in an interpolated radio map that is combined with the initial radio map 
to create an updated radio map. The updated radio map is then used in conjunction with the KNN 
localization scheme for indoor positioning. In this context, KNN searches a pre-built radio map for 
the k most similar RPs based on their RSS fingerprints. User location is estimated using a weighted 
average (or similar technique) of these KNNs’ positions. In essence, KNN performs a similarity-based 
localization, with closer neighbors having a stronger influence. By increasing the density of known 
RPs in zones with poor AP coverage, the quality of the radio map and, consequently, localization 
performance in those areas can be significantly improved.

For brevity, the contributions of this work can be summarized.

1. 	 A novel RSS-based optimization technique for improved radio map interpolation is proposed 
to enhance the localization performance by adjusting the density of known RPs based on the 
number of APs with an average RSS exceeding the threshold.

2. 	 A rigorous performance evaluation is performed to validate the effectiveness of the proposed 
RSS-based radio map interpolation technique. By using a real-world hybrid Wi-Fi and BLE data 
set collected in a multi-story building, the performance of the proposed scheme is benchmarked 
against the existing IDW approach, which employs uniform distribution of known RPs. To provide 
a comprehensive analysis, the performance of the techniques in consideration are assessed using 
various key performance metrics, such as average positioning error and performance gain, along 
with scrutiny of spatial distribution of positioning errors.

3. 	 A comprehensive analysis is conducted to assess and analyze the performance of both the proposed 
and baseline techniques in indoor environments with different placement and number of APs. 
Furthermore, the discussion encompasses insights into implementation cost, computational 
complexity, and execution time required for both approaches. Notably, our results reveal that 
the proposed method achieves an overall improvement of at least 3.70% in terms of average 
positioning error over the existing approach in various scenarios considered.

Following the introduction are the remaining five sections of this paper: Section 2 provides 
a survey of previous research on radio map interpolation, with Section 3 detailing the IDW 
interpolation algorithm. Section 4 outlines the optimization approach proposed for RSS-based radio 
map interpolation. In Section 5, we present the results of our performance evaluation and discuss the 
findings. Finally, Section 6 provides concluding remarks.

RELATED WORKS

Various interpolation algorithms have been utilized by researchers to reduce the time and labor 
required to construct radio maps. For instance, Kiring et al. (2020) employed the IDW and KNN 
interpolation algorithms in their study, evaluating the interpolation errors by calculating the root 
mean square error between the actual and estimated RSS measurements, both with and without spatial 
correlation, for different sparsity parameters (i.e., the probability of retaining RSS measurements in 
the radio map).
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It seems that a comprehensive study on the performance of various interpolation and extrapolation 
methods was conducted in Talvitie et al. (2015). Specifically, IDW, linear interpolation, minimum 
method extrapolation, mean method extrapolation, gradient method extrapolation, and nearest neighbor 
are evaluated over different percentages of removed RSS fingerprints. The study investigated the 
average RSS estimation error for each method, while varying the percentage of interpolated RSS 
fingerprints. The accuracy of indoor positioning was compared among four different methods: the 
original fingerprint, incomplete fingerprint (without interpolation), interpolated fingerprint, and a 
combined interpolated and extrapolated fingerprint, with respect to their performance.

Bi et al. (2018), on the other hand, proposed a radio map construction via crowdsourcing and 
interpolation. Crowdsourcing was first adopted to collect the RSS fingerprints for a small number 
of RPs using different devices. To take the device heterogeneity issue into account, normalization 
was performed subsequently. The RSS fingerprints for the interpolated points were then calculated 
with the aid of the IDW interpolation algorithm. Apart from that, dimensionality reduction of the 
radio map was also performed using the principal components analysis algorithm to reduce the 
computational complexity.

Moreover, to construct a radio map for the experiment testbed that includes inaccessible areas 
where measurement of RSSs would be hindered, a kriging-based interpolation, which exploited the 
correlation of the spatial distribution of RSS, was presented by Zuo et al. (2018). Due to the existence 
of spatial correlation, which refers to the attributes on a geographic surface that are related to each 
other, the RSS values at one location can be calculated based on the RSS values at several neighboring 
locations with the implicit assumption that closer points have a more substantial influence on each 
other compared to the influence contributed by distant points.

In Zhao et al. (2016), the universal kriging (UK) method was used to interpolate the RSS 
values for the defined interpolation points. Virtual augmentation of the space boundary was also 
performed by establishing additional interpolation points beyond the original space. This is essential 
in overcoming the boundary effect, which usually results in the reduction of the positioning accuracy 
at the boundary. With the RSS fingerprints measured for only 28 known RPs, this technique can 
achieve an average positioning error comparable to that of when the RSS fingerprints are measured 
for 112 known RPs. A performance comparison was made between the IDW, ordinary kriging and 
UK (fitting and spherical models) interpolation methods.

Jan et al. (2015) initially recorded the RSS fingerprints at a limited number of RPs and then 
used the kriging algorithm to interpolate the RSS fingerprints at additional unobserved locations. 
They assessed the impact of varying the number of basic RPs and kriging RPs on the positioning 
error. Additionally, they evaluated the RSS interpolation error by contrasting the interpolated RSS 
fingerprints with the measured RSS fingerprints.

Furthermore, another approach presented in Racko et al. (2017) adopted linear and Delaunay 
interpolations to calculate the RSS fingerprints. Subsequently, the interpolation errors were obtained 
by comparing the interpolated RSS values with the actual RSS fingerprints collected beforehand. A 
performance comparison between the two interpolation techniques was also performed.

In Redondi (2018), a graph-based signal interpolation method for localization was presented. 
In this approach, RSS measurements were regarded as signals that are defined on a graph. In this 
graph, nodes correspond to physical locations, while edges correspond to distances between those 
locations. By utilizing the relationships between known nodes and known/unknown nodes, the method 
captures global information to estimate RSS values at unknown nodes. A comparison with traditional 
interpolation methods, such as IDW, radial basis function, and model-based interpolation, demonstrates 
that the graph-based signal interpolation method performs superiorly in terms of accuracy.

In Suto et al. (2021), a novel approach using image processing techniques was proposed for 
estimating the spatial distribution of RSS data. The methodology utilized in this study involved 
treating radio propagation data as an image and applying a deep learning (DL) framework to transform 
the spatial interpolation problem into a shadowing adjustment problem through the use of path loss 
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regression. A neural network structure was employed to solve the shadowing adjustment problem, using 
a gradual training method to ensure stability. This DL framework outperformed existing image-driven 
DL methods such as generative adversarial network-based models and spatial interpolation with a 
convolutional neural network.

In the crowdsourcing-based radio map construction approach proposed in Ye and Wang (2018), 
some specific grids in the indoor environment may have had too few or even no crowdsourced samples, 
which created a nonuniform spatial distribution issue due to the random and voluntary nature of 
the crowdsourcing approach. To address this problem, a binary polynomial function was utilized to 
interpolate additional RSS fingerprints based on the RSS fingerprints of neighboring grids for the 
grids with insufficient crowdsourced samples. To avoid incorporating distant grids, which could result 
in substantial variations in RSS and compromise the quality of the interpolated radio map, only a 
select number of grid distinct RSS fingerprints were chosen instead of considering all surrounding 
grids. The performance was evaluated for different ratios of deficiency grids and various ratios of 
outliers in the sufficiency grids.

The focus of the method described in Z. Wang et al. (2021) was to create a radio map for indoor 
localization by using an enhanced low-rank matrix completion technique. The method was based 
on the idea that the RSS data matrix in indoor environments has low-rank attributes. It involved 
measuring RSS fingerprints at a limited number of RPs and then using a low-rank matrix completion 
algorithm to fill in the remaining fingerprints in the radio map. To stabilize the solution and suppress 
the noise resulting from the environment and equipment, the Frobenius parameter was integrated into 
the low-rank matrix completion model.

With the least absolute shrinkage and selection operator based interpolation scheme proposed 
by Khalajmehrabadi et al. (2017b), a radio map could be reconstructed by the RSS fingerprints 
interpolation at a finer granularity based on the RSS fingerprints measured at a coarser granularity 
of RPs. Due to the sparse RSS fingerprints, the sparse recovery algorithm could be used for the 
sparse reconstruction of the radio map. An outlier detection scheme was introduced into the radio 
map interpolation procedure to suppress the impact of outliers and ensure that the RSS fingerprints 
of RPs used for interpolation were outlier free. The radio map reconstruction error, which represents 
the absolute difference between the actual and reconstructed radio maps, was also determined for 
different ratios of selected RPs.

The work in Bi et al. (2019) presented an adaptive path-loss model interpolation method. In this 
method, crowdsourcing was first performed to collect the RSS fingerprints at sparse RPs. Subsequently, 
for all visible APs, the path-loss models with optimal parameters estimated using the least squares 
method were formed with the aid of RPs in a small area. These path loss models were then utilized to 
compute the RSS fingerprints of the interpolation points. The performance of the adaptive path-loss 
model interpolation method was compared with that of the IDW and kriging interpolation methods 
for different sampling intervals of the sparse RPs. Nevertheless, this method has a drawback since it 
requires knowledge of the exact locations of the APs.

In Boujnah and Korbel (2016), a localization method that utilizes crowdsourcing, data clustering, 
and multidimensional interpolation was also presented. The method presented partitioned the data 
collected from crowdsourcing into smaller areas based on the cell identifiers of the received signal. 
If the number of partitions exceeded a threshold, k-means or fuzzy c-means clustering was employed 
to group the RSS fingerprints into clusters. The user’s unknown location was then predicted by 
using the interpolation function for each cluster, which is determined by radial basis function with 
a Gaussian kernel.

To overcome the limitations of radio map creation, researchers have explored diverse optimization 
techniques for interpolation, aiming to refine the process from multiple aspects. Tian et al. (2018) 
addressed the challenge of achieving optimal radio map creation by investigating fingerprint 
reporting for WLAN localization accuracy. The authors demonstrated that the fingerprint reporting 
optimization problem is NP-hard (nondeterministic polynomial-time) and proposed a novel algorithm 
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that achieved near-optimal accuracy with sufficient data. The proposed method tackled the issue of 
similar fingerprints for distant and nearby locations, leading to improved overall positioning accuracy. 
Furthermore, the relationship between location accuracy and Wi-Fi signal coverage was explored 
for optimal AP deployment. Their theoretical analysis was validated through experimentation. 
Additionally, the work in Nabati et al. (2020) investigated the use of pattern recognition algorithms 
for optimizing user location. Traditional methods in this field train on separate x and y coordinates, 
neglecting the inherent two-dimensional nature of signal fingerprints. To address this limitation, the 
authors proposed a novel two-dimensional Gaussian process regression (GPR) method that optimized 
accuracy by jointly using x and y information during training with a specialized PRA-based GPR. 
This method achieved significant improvements (>40cm) in accuracy with less data and lower 
computational cost compared to conventional GPR.

Subsequently, a 5G fingerprinting system for indoor positioning achieved significant accuracy 
improvement through optimization. The system employed Kalman filtering to pre-process raw data 
and utilized UK for optimized database creation via spatial interpolation (Huang et al., 2021). KNN 
then pinpointed user location. Experiments demonstrated positioning accuracy improvements of 53% 
and 43% in two test rooms, with a best-case error of 1.44 meters for 80% of samples. Moreover, the 
work in Huo et al. (2021) presented a low-cost, long-life fingerprint localization system for indoor 
rooms using IEEE802.15.4 devices. To address signal fluctuations, the authors proposed a parameter 
optimization method that assigned and optimized multiple fingerprints per room. Huo et al. (2022) 
proposed an improved fingerprint optimization method for FILS15.4, an indoor localization system 
using low-power IEEE802.15.4 devices. The method addressed signal fluctuations by assigning and 
optimizing multiple fingerprints per room, leading to significant accuracy improvements (>97%) 
validated in a real-world testbed.

Although previous research has explored how the quantity of known RPs affects interpolation, 
there has been limited focus on optimizing the density of known RPs. Ezpeleta et al. (2015) employed 
various interpolation methods, including Euclidean distance linear basis, multi-quadratic, thin plate 
spline, and polyharmonic spline functions, to compute the RSS fingerprints for the interpolated 
points in their study. Furthermore, they analyzed the impact of the density and distribution of known 
RPs on indoor localization error. Unlike other studies, they assumed that RF signal quality is better 
for locations closer to the beacons, leading to variation in the density of known RPs. Consequently, 
regions in proximity to the beacons were designated a reduced density of known RPs, whereas those 
further away were allocated a higher density.

RADIO MAP INTERPOLATION

Construction of Initial Radio Map
During the offline phase, the RSS readings from D APs at each of the M predefined RPs are 

measured. Subsequently, the radio map ​χ​ is constructed by storing all the location labeled RSS 
fingerprints and it can be expressed as shown in Equation 1.
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In Equation 1, ​χ  ∈  ​ℝ​​ M×​(Q+D)​​​, ​​l​ m​​  =  ​​[​ ​l​ m,1​​​  ​l​ m,2​​​  ⋯​  ​l​ m,Q​​​]​​​ T​​is the location identifier vector for the 
mt-h RP, Q denotes the total number of location identifiers utilized to define each RP, ​​r​ m​​  =  ​​[​ ​r​ m,1​​​ ​
r​ m,2​​​  ⋯​  ​r​ m,D​​​]​​​ T​​ indicates the RSS fingerprint vector at the m-th RP, ​​r​ m,d​​​ signifies the RSS from AP 
d at the m-th RP, ​m  ∈  ​[1, M]​​and ​d  ∈  ​[1, D]​​. (1) can also be expressed more concisely as shown in 
Equation 2.

​χ  =  ​[​L​  R​]​​� (2)

In Equation 2, ​L  =  ​​[​ ​l​ 1​​​  ​l​ 2​​​  ⋯​  ​l​ M​​ ​]​​​ T​  ∈  ​ℝ​​ M×Q​​ and ​R  =  ​​[​ ​r​ 1​​​  ​r​ 2​​​  ⋯​  ​r​ M​​ ​]​​​ T​  ∈  ​ℝ​​ M×D​​.
Meanwhile, during the online phase, machine learning technique is invoked to predict the position 

of the user by matching the RSS fingerprint measured at the unknown position u​​r​ u​​  =  ​​[​ ​r​ u,1​​​  ​r​ u,2​​​  ⋯​ ​
r​ u,D​​​]​​​ T​​with the RSS fingerprints stored on the radio map. Since the radio map quality plays a critical role 
in governing the positioning performance, it is thus common to enhance the localization performance 
by increasing the density of the RPs. Nevertheless, certain drawbacks, such as the labor-intensive and 
time-consuming RSS fingerprint collection process, are often associated with such an act. Hence, to 
ensure reliable localization while simultaneously being labor and time savvy, it is essential to build 
an improved interpolated radio map with an optimized zone-based density of RPs so that the density 
of RPs is increased effectively at only necessary zones with poor localization performance.

Generation of Virtual Points Through Inverse Distance Weighted Interpolation
IDW interpolation is a deterministic method used for spatial interpolation. The IDW interpolation 

technique estimates the value of an unknown location by determining a weighted average of the known 
values within its proximity. The assigned weights to the known values are dependent on their distance 
from the unknown location, and the calculated weighted average is utilized to approximate the value 
at the unknown location. Applying the IDW interpolation algorithm for the radio map construction 
in indoor positioning, the RSS values from the d-th AP at the u-th VP which is represented by ​​r​ u,d​​​ can 
be evaluated based on the values of RSS of the N nearest known RPs using Equation 3.

​​r​ u,d​​  =  ​ 
​∑ 
i=1

​ 
N

  ​​w​ i​​ ​​ ̃  r ​​ i,d​​​
 _ 

​∑ 
i=1

​ 
N

  ​​w​ i​​​
  ​​� (3)

In Equation 3, u refers to the index of the VPs, i denotes the index of the N nearest known RPs, ​​​ ̃  r ​​ i,d​​​is 
the RSS of the d-th AP at the i-th nearest known RPs that is selected from the d-th column of ​R​, and ​​
w​ i​​​ signifies the interpolation weight which can be expressed as shown in Equation 4.

​​w​ i​​  =  ​  1 _ ​d​ (u,i)​​ ​​​​ 
α​ ​​� (4)

In Equation 4, ​​d​ ​(​​u,i​)​​​​​ represents the Euclidean distance between the u-th VP and the i-th nearest 
known RP. More specifically, the power exponent α, which is a user-determined parameter, dictates 
the rate at which the weight of each known RP decreases as the distance between the virtual point 
and the RP increases. From Equations 3 and 4, it is apparent that a higher α value will cause the 
weights for distant points to decay more rapidly and the nearby RPs to have greater influence on the 
interpolated RSS of the VP.

In the IDW interpolation, each point has a local influence on the predicted value that diminishes 
with distance. To be more specific, IDW interpolation assigns greater weights to points that are closer 
to the interpolated location compared to those that are farther away. Only the N nearest neighbors, 
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which refers to a specified number of points closest to the interpolation location, participate in 
calculating the predicted value of the interpolation location.

PROPOSED TECHNIQUE

In the baseline technique, each floor is split evenly into Z zones such that each zone has the same 
density of known RPs. Apart from that, the known RPs and VPs also follow a uniform distribution 
across all zones.

Nevertheless, such a uniform density of known RPs across all zones might not be optimal for 
situations whereby certain zones would generally require a higher density of known RPs than other 
zones. For instance, consider a situation whereby certain zones are located farther away from the APs, 
and thus the RSS measured for the RPs in those zones might possess a lower quality, and this will 
adversely affect the accuracy of user location prediction at these zones. As such, Ezpeleta et al. (2015) 
proposed a method to vary the density and distribution of the known RPs according to the distance of 
the zones from the beacons. However, they only considered a relatively straightforward single-floor 
testbed in their investigation whereby the beacons are densely gathered around a particular zone, 
whereas the other zones are far apart from the beacons. Nevertheless, in a multi-floor testbed, it is 
possible for a zone to be located far away from APs on the same floor but located near to APs on the 
floor directly above or below it. Thus, to tackle this issue, an optimization technique for RSS-based 
radio map interpolation was proposed to vary the density of the known RPs in each zone instead.

The flowchart for the proposed optimization technique for RSS-based radio map interpolation 
is depicted in Figure 1 below. First, each floor is split evenly into Z zones and G known RPs are 
selected as the delegate known RPs in each zone. Subsequently, for each AP present on the floors 
of the area of interest, the average RSS of these G delegate known RPs measured from that AP is 
calculated and checked to see whether it exceeds the threshold of the RSS t fixed. The average RSS 
of G delegate known RPs in zone z of floor f measured from AP d is denoted as ​​β​ f,z​ 

d ​​, and it can be 
expressed as shown in Equation 5.

​​β​ f,z​ 
d ​  =  ​ 

​∑ 
g=1

​ 
G

  ​RS ​S​ f,z,g​ 
d  ​​
 _ G  ​​� (5)

In Equation 5, ​f  =  1, 2, ⋯  , F​, ​z  =  1, 2, ⋯  , Z​, ​g  =  1, 2, ⋯  , G​, ​d  =  1, 2, ⋯  , D​, and ​RS ​S​ f,z,g​ 
d  ​​ is 

the RSS measured from AP d at delegate known RP g located at zone z of floor f.
If ​​β​ f,z​ 

d ​  >  t​, then the count for the number of APs for zone z in floor f, which is represented as ​​
κ​ f,z​​​ would be incremented by one. The density of known RPs allocated to zone z of floor f can be 
expressed as shown in Equation 6.

​​γ​ f,z​​  =  ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​ 

​δ​ 1​​

​ 

if0  ≤  ​κ​ f,z​​  ≤  ​η​ f,1​​

​   
​δ​ 2​​​ 

if ​η​ f,1​​  <  ​κ​ f,z​​  ≤  ​η​ f,2​​​   ⋮​  ⋮​  

​δ​ S​​

​ 

if ​η​ f,S−1​​  <  ​κ​ f,z​​  ≤  ​η​ f,S​​

​​​� (6)

In Equation 6, ​​δ​ 1​​  >  ​δ​ 2​​  >  ⋯  ​δ​ S−1​​  >  ​δ​ S​​  >  0​, ​0  <  ​η​ f,1​​  <  ​η​ f,2​​  <  ⋯  <  ​η​ f,S−1​​  <  ​η​ f,S​​​, ​​η​ f,s​​​ and S 
indicate the switching threshold and a total number of switching thresholds for each floor, respectively. 
More explicitly, zones with a higher number of APs exceeding the threshold have a lower density 
of known RPs. Conversely, zones with fewer APs above the RSS threshold have a higher density of 
known RPs. The rationale for this strategy is that the zones with fewer APs meeting the threshold 
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typically perform worse than those with more APs above the threshold. By allocating more known 
RPs to these underperforming zones, the localization performance in these zones can be enhanced. 
Nevertheless, the global density of the known RPs for each floor remains constant, as shown in 
Equation 7. To guarantee a fair evaluation of the proposed and baseline techniques, H denotes the 
total number of known RPs for each floor.

​​γ​ f​​  =  ​∑ 
z=1

​ 
Z

  ​​γ​ f,z​​  =  H​​� (7)

Figure 1. Flowchart for the proposed optimized RSS-based radio map interpolation technique
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Next, the interpolated RSS values for the VPs are computed using IDW interpolation. The resulting 
interpolated RSS map is combined with the initial radio map, which includes the RSS values for the 
known RPs, to create an updated radio map. The KNN localization algorithm is then used to predict 
the indoor location of the validation samples based on this updated radio map. KNN is selected for 
location prediction due to its simplicity and ease of implementation. During real-time localization, 
KNN identifies the k-nearest neighboring RPs by computing the Euclidean distance between the RSS 
data collected online and the reference fingerprint in the radio map. The estimated coordinate of the 
unknown target is then calculated using the center of mass of these neighboring points.

RESULTS AND ANALYSIS

Simulation Setup
The hybrid fingerprint data with layout change (HDLC; Nor Hisham et al., 2022)–gathered from 

the ground, first, and second floors of the Faculty of Engineering, Wing B building, at the Multimedia 
University Cyberjaya campus–was utilized in this study to assess the efficacy of the proposed technique 
and compared with that of the baseline technique. The HDLC data set contains a total of 11,520 
samples, whereby 7,680 instances are the training samples while the remaining 3,840 instances are 
the testing samples. Among the 7,680 instances, 1,920 instances are recorded for the ground floor, 
2,880 instances are recorded for the first floor, and the remaining 2,880 instances are recorded for the 
second floor. There is a total of 96 RPs distributed across the ground floor, while there are 144 RPs 
each for the first floor and also the second floor. For each RP, 20 samples were collected to construct 
the training data set, while for each test point (TP), 10 samples were collected to build the testing 
data set. The HDLC data set comprises 62 attributes, including BLE and Wi-Fi fingerprints for 42 
beacons and 17 Wi-Fi routers, respectively, as well as x-coordinates, y-coordinates, and floor number. 
The RSS intensity values are expressed as negative values within the range of -110 dBm to -36 dBm.

Each floor was partitioned evenly into four zones. Rows 0 to 11 represent Zone 1, rows 12 to 
23 represent Zone 2, rows 24 to 35 represent Zone 3, whereas rows 36 to 47 represent Zone 4. To 
assess the effectiveness of the proposed technique, the performance of the proposed RSS based radio 
map interpolation technique was benchmarked against the baseline IDW method, which uniformly 
allocates known RPs across all zones. For the baseline technique, each zone is allocated with 50% 
of the uniformly distributed known RPs while the remaining 50% is defined as the VPs. As for the 
proposed technique, 25% of the points in each zone were selected uniformly as the delegate known 
RPs. Depending on the number of APs in which their average RSS of the G delegate known RPs 
exceeds the threshold RSS t, the zone-based density of the known RPs is higher or lower than 50% and 
the distribution of the known RPs is no longer uniform. Nevertheless, the total number of known RPs 
distributed across four zones of the floor would be kept constant for both the baseline and proposed 
technique. To achieve this, the total percentage increase in the density of known RPs for certain 
zones would imply the total percentage decrease in the density of known RPs that other remaining 
zones on the same floor would need to bear. Consequently, the implementation cost, including labor 
effort and time, required for collecting the known RPs, is identical for both the proposed and baseline 
techniques. Improved localization could be achieved by increasing the number of known RPs, albeit 
at a higher implementation cost.

Figures 2 and 4 depict the density and distribution of known RPs in all four zones for the baseline 
technique in Scenarios 1 and 2, respectively. On the other hand, Figures 3 and 5 show the same for 
the proposed technique in both scenarios. To demonstrate the efficacy of the proposed technique, two 
scenarios were devised. In Scenario 1, some of the APs on the ground floor are silenced, while the 
remaining APs on the first and second floors are left active. Conversely, in Scenario 2, only the APs 
on the 1st floor remain active, while some of the APs on the ground and second floors are silenced. 
The APs kept intact are highlighted in yellow as shown in Figures 2 to 5. Note that the blue cells 
denote the VPs, white cells denote the known RPs, and pink cells denote the delegated known RPs.
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The proposed technique and the baseline technique are compared in regard to the average 
positioning error on a zone-based, floor-based, and overall basis. The average positioning error “a” 
is computed by determining the Euclidean distance between the predicted coordinates ​(​̂  ​x​ i​​​, ​̂  ​y​ i​​​ ) = [(​̂  ​x​ 1​​​
, ​̂  ​y​ 1​​​ ) , (​̂  ​x​ 2​​​, ​̂  ​y​ 2​​​ ) , ..., (​̂  ​x​ M​​​, ​̂  ​y​ M​​​ ) ]​ and the actual coordinates ​(​x​ i​​, ​y​ i​​ ) =​​[(​x​ 1​​, ​y​ 1​​ ) , (​x​ 2​​, ​y​ 2​​ ) , ..., (​x​ M​​, ​y​ M​​ ) ]​ as given in 
(8) where M is the total number of RPs/instances in the radio map, as shown in Equation 8.

​a  =  ​ 
​∑ 
i=1

​ 
M

  ​​√ 
_________________

  ​(​̂  ​x​ i​​​ − ​x​ i​​)​​ 
2​ + ​(​̂  ​y​ i​​​ − ​y​ i​​)​​ 

2​ ​​
  __________________ M  ​​� (8)

Additionally, the performance gain ​​P​ ε​​​ of the proposed system over the baseline scheme in terms 
of average positioning errors is also presented in this work and is computed using Equation 9.

​​P​ ε​​  =  ​ 
​ε​ B​​ − ​ε​ R​​

 _ ​ε​ B​​  ​ × 100%​� (9)

In Equation 9, where ​​ε​ B​​​ and ​​ε​ R​​​ signify the average positioning errors of the baseline and proposed 
techniques, respectively. Further, to provide an in-depth analysis on the localization performance for 

Figure 2. Density and distribution of known RPs for baseline technique in scenario 1: (a) ground floor; (b) first floor; (c) second floor
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each RP, the differences in positioning errors between baseline and proposed techniques for each RP 
can be computed using Equation 10.

​​Δ​ f,i​​  =  ​ε​ f,i​ 
B​ − ​ε​ f,i​ 

R​​� (10)

In Equation 10, where ​​Δ​ f,i​​​ represents the difference in positioning errors between the baseline 
and proposed techniques for i-th RP on floor f,​​ε​ f,i​ 

B​​ and ​​ε​ f,i​ 
R​​ denote the positioning errors of the baseline 

and proposed techniques for i-th RP on floor f, respectively.

Results and Discussions
To assess the effectiveness of the proposed optimized technique for radio map interpolation based 

on RSS, a zone-level analysis was conducted for each floor. Additionally, a floor-level analysis and 
an overall analysis for all three floors were also conducted. For all scenarios, the hyperparameter for 
the IDW algorithm is selected as 10 nearest neighbors (n=10).

According to the proposed optimized RSS-based radio map interpolation technique, the more 
the number of APs in which their average RSS of the G delegated known RPs exceeds the threshold 

Figure 3. Density and distribution of known RPs for proposed technique in scenario 1: (a) ground floor; (b) first floor; (c) second floor
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RSS t set, the lower the density of known RPs that is allocated to that zone. For an AP’s RSS to be 
deemed usable for positioning, it must exceed the noise floor, which is typically around -100 dBm, 
to ensure that the user device is able to distinguish between signal and noise. As such, the threshold 
RSS t is set as -85 dBm throughout the entire simulation as it ensures that the RSSs are sufficiently 
above the noise floor and represents the minimum signal strength required for basic connectivity. 
Thus, Table 1 shows the number of APs with average RSS of the G delegate known RPs that exceeds 
-85 dBm in each zone for Scenarios 1 and 2. Consequently, the new density of known RPs allocated 
to the zones of the floors for Scenarios 1 and 2 is also listed in Table 1.

After determining the density of known RPs assigned to each zone of every floor as presented 
in Table 1 and their distribution illustrated in Figures 3 and 5, the KNN localization algorithm 
with K = 2 is trained for indoor location prediction using the newly created radio map through 
interpolation. Since the sum of known and interpolated RPs in the final radio map is the same for 
both the proposed and baseline techniques, and all techniques employ the same machine learning 
algorithm for positioning, the computational complexity and execution time for location prediction 
are identical across all techniques.

Figure 4. Density and distribution of known RPs for baseline technique in scenario 2: (a) ground floor; (b) first floor; (c) second floor
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Table 2 presents a comparison of the average positioning error and performance gain between 
the baseline technique and the proposed technique for both scenarios.

Moreover, the average positioning error and performance gain for Scenarios 1 and 2 are also 
simulated for the ground, first, and second floors and all three floors. The results are as tabulated 
in Table 3.

From Table 1, it is observed for Scenario 1 that the zones on the ground floor have fewer number 
of APs in which their average RSS of the 25% delegate known RPs exceeds the threshold RSS t set, 
which is -85 dBm as compared to the zones located on the first and second floors. This is because 
all the APs on the first and second floors are left intact while most of the APs on the ground floor 
are muted. Likewise, for Scenario 2, where most of the APs on the ground and second floors are 
muted, the number of APs in which their average RSS of the 25% delegate known RPs exceeds -85 
dBm for zones on the ground and second floors are much lower compared to that of the first floor, 
which has all of its APs kept intact. Hence, according to the proposed optimized RSS-based radio 
map interpolation technique, the density of known RPs assigned to the zones of each floor decreases 
as the number of APs whose average RSS exceeds -85 dBm increases for both scenarios.

Figure 5. Density and distribution of known RPs for proposed technique in scenario 2: (a) ground floor; (b) first floor; (c) second floor
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Meanwhile, Table 2 demonstrates that the majority of zones on each floor exhibit a noticeable 
percentage of improvement in average positioning error for both scenarios. For Scenario 1, the 
average positioning error of those zones with the lowest number of APs whose average RSS exceeds 
-85 dBm improves rather significantly (4.84%, 10.10%, and 6.20% for Zone 4 on the ground floor, 
Zone 1 on the first floor, and Zone 1 on the second floor, respectively) when the proposed technique 
is implemented. A similar trend is also observed for Scenario 2, where the average positioning error 

Table 1. Known RP density settings for each zone of each floor according to the number of APs with average RSS of the 
delegate known RPs exceeding the threshold RSS for both scenarios

Floor Zone Number of APs Known RPs Density (%)

Scenario 1 Scenario 2 Scenario 1 Scenario 2

0 1 3 3 37.5 37.5

2 4 4 25 25

3 1 1 46 46

4 0 0 92 92

1 1 7 7 92 92

2 13 13 25 25

3 11 11 42 42

4 11 11 42 42

2 1 7 1 92 58

2 12 1 25 58

3 11 1 39 58

4 10 4 44 25

Note. AP=access point, RP=reference point

Table 2. Average positioning error and performance gain for each zone of each floor for both scenarios

Floor Zone Average Positioning Error (m) Performance Gain (%)

Scenario 1 Scenario 2

Baseline Proposed Baseline Proposed Scenario 1 Scenario 2

0 1 1.8514 1.9432 1.8395 1.8003 -4.96 2.13

2 1.7129 1.5312 1.7289 1.5362 10.61 11.15

3 1.8747 1.7824 1.9977 1.9907 4.92 0.35

4 3.7891 3.6056 3.9910 3.7091 4.84 7.06

1 1 2.0985 1.8865 2.1607 2.0425 10.10 5.47

2 1.8203 1.8032 1.8570 1.8675 0.94 -0.57

3 2.0674 2.2091 2.1615 2.0779 -6.85 3.87

4 1.8970 1.9095 1.9896 1.8996 -0.66 4.52

2 1 2.1551 2.0215 2.0178 2.0278 6.20 -0.50

2 1.8755 1.8583 1.8502 1.7783 0.92 3.89

3 2.1737 2.1251 2.0536 2.0355 2.24 0.88

4 1.9775 2.0095 2.2177 2.3285 -1.62 -5.00
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improves by 7.06% and 5.47% for Zone 4 on the ground floor and Zone 1 on the first floor, respectively. 
This phenomenon implies that those zones require a higher density of known RPs since they have 
insufficient strong APs for better performance of indoor location prediction as compared to the other 
zones in which the APs are more densely surrounded.

The heatmaps of the positioning errors for the ground, first, and second floors for the baseline 
and the proposed techniques are shown in Figures 6 and 7 for Scenario 1 and Figures 9 and 10 for 
Scenario 2. Meanwhile, Figures 8 and 11 show the heatmaps of the differences in positioning errors of 
the ground, first, and second floors between the baseline and the proposed techniques for Scenarios 1 
and 2, respectively. Note that a positive value obtained for the positioning error implies an improvement 
in the proposed technique, while a negative value, on the other hand, implies a degradation in the 
positioning error with the proposed technique.

From Figure 6 (a), it is observed that for Scenario 1, the baseline technique performs poorly in 
Zone 4 of the ground floor as high positioning errors are concentrated in this area. This is attributed 
to the fact that Zone 4 has the least APs surrounding it compared to the other zones. Thus, Zone 4 
is said to be isolated from all of the APs, and this results in a worse positioning error when baseline 
technique, which employs uniform zone-based density of known RPs, is implemented. Conversely, 
by allocating a higher density of known RPs to Zone 4 based on the number of APs whose average 
RSS of the designated known RPs surpasses the RSS threshold, the positioning errors for locations 
in this zone decrease. This trend could be observed from the heatmap shown in Figure 8 (a), where 
the majority of the locations in Zone 4 result in a positive positioning error difference, as implied 
by the blue gradients. Apart from that, Figure 8, (b) and (c), clearly indicates that the proposed 
technique exhibits superior localization performance compared to the baseline counterpart in term 
of positioning error for most locations within Zone 1 of the first and second floors, with only a few 
locations suffering from a minor degradation. As a result, a positive performance gain is obtained 
for the average positioning error of Zone 1 of the first and second floors.

Likewise, in Scenario 2, similar observations are made in Figure 9, (a) and (c), where the baseline 
technique results in higher positioning errors in Zone 4 on the ground floor and Zone 2 of the second 
floor due to fewer surrounding APs compared to other zones. From Figure 11, (a) and (c), it can be 
confirmed that the implementation of the proposed RSS-based interpolation optimization technique 
results in a positive positioning error difference in most of the locations found in Zone 4 of the 
ground floor and Zone 2 of the second floor. Besides, it is observed from Figure 11 (b) that most of 
the locations found in Zone 1 of the first floor experience an improvement in positioning error when 
comparing the baseline and proposed techniques. Therefore, a positive performance gain is obtained 
for the average positioning error of Zone 1 of the first floor.

Furthermore, the effectiveness of the proposed optimized RSS-based radio map interpolation 
technique is further underscored by the results presented in Table 3, which showcase improvements 
in average positioning errors for each floor, and overall, across all three floors, compared to the 
baseline technique in both scenarios. For Scenario 1, the average positioning errors for the ground, 

Table 3. Average positioning error and performance gain for each floor and as an overall for both scenarios

Floor Average Positioning Error (m) Performance Gain (%)

Scenario 1 Scenario 2

Baseline Proposed Baseline Proposed Scenario 1 Scenario 2

0 2.3381 2.1843 2.3654 2.2168 6.58 6.28

1 2.3326 2.2469 2.3548 2.2650 3.67 3.81

2 2.3632 2.3159 2.3788 2.3343 2.00 1.87

Overall 2.3455 2.2571 2.3665 2.2789 3.77 3.70
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first, and second floors, and overall, improve 6.58%, 3.67%, 2%, and 3.77%, respectively, whereas, 
for Scenario 2, the improvements in average positioning errors are 6.28%, 3.81%, 1.87%, and 3.70% 
for the ground, first, and second floors, and overall, respectively. As expected, the proposed technique 
yields higher performance gains over the baseline method, particularly on floors with zones that have 
fewer active APs.

Figure 12 provides an insight into the 95th percentiles of positioning errors for each zone of each 
floor and overall across all the three floors for both Scenarios 1 and 2. Generally, the 95th percentiles 
of the proposed optimized RSS-based radio map interpolation technique for most zones are lower 
than that of the baseline technique. Certain zones of the floors in both scenarios can produce 95th 
percentiles, up to 13.18% lower than the baseline technique. This observation implies that certain zones 
indeed require a higher density of known RPs assigned to them for a better indoor location prediction. 
Moreover, among the 95th percentiles for the individual floors in Scenario 1, the performance 
recorded on the ground floor results in the 95th percentile of 16.54% lower than the baseline method. 
In Scenario 2, the ground floor also achieves the 95th percentile of 26.07% lower than the baseline. 
Overall, for the three floors in Scenario 1, the 95th percentile of the proposed optimized RSS-based 
radio map interpolation technique is 10.80% lower than that of the baseline technique. Therefore, the 

Figure 6. Heatmap of positioning errors for baseline technique in scenario 1: (a) ground floor; (b) first floor; (c) second floor
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proposed technique that utilizes the RSS strength measured from neighboring APs to determine the 
appropriate zone-based density of the known RPs is shown to be effective.

CONCLUSIONS

This paper proposes a novel approach for optimizing the zone-based density of the known RPs 
by considering the number of APs whose average RSS values exceed the threshold RSS to further 
improve the average positioning error achievable by a uniform zone-based density and distribution 
of known RPs. In multi-floor indoor environments, zones may be distant from APs on the same floor 
but located near to APs on the floor directly above or below. Thus, instead of relying only on the 
distance between the zones and APs to vary the density of the known RPs of the zone, the sufficiency 
of strong APs can be used as a guideline to determine whether there is a need to increase the density 
of the known RPs for each zone.

Notably, our results reveal that the proposed optimized RSS-based radio map interpolation 
approach exhibits significantly superior localization performance compared to the baseline approach 
utilizing uniform zone-based and known RP distribution. In Scenario 1, the proposed technique 
achieves remarkable improvements of 6.58%, 3.67%, and 2%, for the ground floor, first floor, and 
second floor, respectively, resulting in an overall improvement of 3.77% for all three floors. Similarly, 

Figure 7. Heatmap of positioning errors for proposed technique in scenario 1: (a) ground floor; (b) first floor; (c) second floor
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in Scenario 2, the proposed scheme showcases a substantial enhancement of 6.28%, 3.81%, and 1.87%, 
for the ground floor, first floor, and second floor, respectively, leading to an overall improvement of 
3.70% for all three floors. Therefore, the proposed radio map interpolation technique is a practical and 
highly promising solution for providing accurate large-scale indoor positioning in real-world complex 
indoor environments. Since the current work primarily focuses on two-dimensional interpolation for 
multi-floor indoor environments, future research may explore extending the RSS-based interpolation 
technique to encompass three-dimensional indoor environments. Additionally, integrating it with 
multiple interpolation methods could further enhance its localization performance by leveraging 
their respective strengths.
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Figure 9. Heatmap of positioning errors for baseline technique in scenario 2: (a) ground floor; (b) first floor; (c) second floor



21

Journal of Cases on Information Technology
Volume 26 • Issue 1 • January-December 2024

Figure 10. Heatmap of positioning errors for proposed technique in scenario 2: (a) ground floor; (b) first floor; (c) second floor
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Figure 11. Heatmap of differences in positioning errors between baseline and proposed techniques for scenario 2: (a) ground 
floor; (b) first floor; (c) second floor
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Figure 12. 95th percentiles of positioning errors for: (a) zones of ground floor; (b) zones of first floor; (c) zones of second floor; 
(d) each individual floor and as an overall
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