Chapter VIII

Development of a Web-Based Intelligent Spatial Decision Support System (WEBISDSS): A Case Study with Snow Removal Operations

Ramanathan Sugumaran, University of Northern Iowa, USA
Shriram Ilavajhala, University of Maryland, USA
Vijayan Sugumaran, Oakland University, USA

Abstract

A SDSS combines database storage technologies, geographic information systems (GIS), and decision modeling into tools which can be used to address a wide variety of decision support areas (Eklund, Kirkby, & Pollitt, 1996). Recently, various emerging technologies in computer hardware and software such as speedy microprocessors, gigabit network connections, fast Internet mapping servers along with Web-based technologies like eXtensible Markup Language (XML), Web services, and so forth, provide promising opportunities to take the traditional spatial decision support systems one step further to provide easy-to-use, round-the-clock access to...
spatial data and decision support over the Web. Traditional DSS and Web-based spatial DSS can be further improved by integrating expert knowledge and utilizing intelligent software components (such as expert systems and intelligent agents) to emulate the human intelligence and decision-making. These kinds of decision support systems are classified as intelligent decision support systems. The objective of this chapter is to discuss the development of an intelligent Web-based spatial decision support system and demonstrate it with a case study for planning snow removal operations.

Introduction

Spatial Decision Support Systems

The past decade witnessed an explosive growth of spatial data and various applications that utilize spatial data. Geographic information systems (GIS) have been developed to facilitate storing, retrieving, editing, analyzing, and displaying spatial information. The increasing complexity of spatial data and a need for better modeling requires decision support systems that can handle spatial data. This led to the idea of spatial decision support systems (SDSS). Since the early 1980s, SDSS have been used in several applications that provide spatial functionalities such as routing, allocation modeling, and so forth.

Most of the existing SDSS do not employ any intelligent software components to enhance decision support. Only a very few researchers have explored the possibility of integrating intelligent software components with an SDSS for applications like multi-criteria decision analysis, routing, and weather-based decision-making. Most of the literature reviewed for Intelligent GIS systems deals with architectural as well as implementation issues of GIS-based decision support systems and integrating them with agents. The use of software agents for GIS-based systems is well documented (Odell, Parunak, Fleischer, & Brueckner, 2003; Sengupta, Bennett, & Armstrong, 2000; Shahriari & Tao, 2002; Tsou, 2002). Most of these systems are not Web-based, and they lack the advantages of Web-based systems like ease-of-use, cross platform functionality, low maintenance costs, centralized data storage, and so forth.

Also, recent advances in Web technologies like rich site summary (RSS), XML feeds, and asynchronous JavaScript and XML (AJAX) can help us design a seamless interface by providing real-time access to data over the World Wide Web. Therefore, integrating the process of decision-making with an intelligent component and Web-based technologies proves to be very beneficial. When integrated with encoded human intelligence, the spatial decision support systems can rival a human expert in a particular domain (e.g., snow removal, traffic management, logistics, etc.).
Related Content

Harnessing Nigeria’s Investment in Satellite Technology for Sustainable Agriculture and Food Security
www.igi-global.com/article/harnessing-nigeria-investment-satellite-technology/62048?camid=4v1a

Spatio-Temporal Object Modeling
Bo Huang and Magesh Chandramouli (2009). Handbook of Research on Geoinformatics (pp. 137-143).
www.igi-global.com/chapter/spatio-temporal-object-modeling/20397?camid=4v1a

Functional Suitability of BIM Tools in Pre-Construction, Construction and Post-Construction Phases of a Building Project