Neural Networks and HOS for Power Quality Evaluation

Juan J. González De la Rosa
Universities of Cádiz-Córdoba, Spain

Carlos G. Puntonet
University of Granada, Spain

A. Moreno-Muñoz
Universities of Cádiz-Córdoba, Spain

INTRODUCTION

Power quality (PQ) event detection and classification is gaining importance due to worldwide use of delicate electronic devices. Things like lightning, large switching loads, non-linear load stresses, inadequate or incorrect wiring and grounding or accidents involving electric lines, can create problems to sensitive equipment, if it is designed to operate within narrow voltage limits, or if it does not incorporate the capability of filtering fluctuations in the electrical supply (Gerek et. al., 2006; Moreno et. al., 2006).

The solution for a PQ problem implies the acquisition and monitoring of long data records from the energy distribution system, along with an automated detection and classification strategy which allows identify the cause of these voltage anomalies. Signal processing tools have been widely used for this purpose, and are mainly based in spectral analysis and wavelet transforms. These second-order methods, the most familiar to the scientific community, are based on the independence of the spectral components and evolution of the spectrum in the time domain. Other tools are threshold-based algorithms, linear classifiers and Bayesian networks. The goal of the signal processing analysis is to get a feature vector from the data record under study, which constitute the input to the computational intelligence modulus, which has the task of classification. Some recent works bring a different strategy, based in higher-order statistics (HOS), in dealing with the analysis of transients within PQ analysis (Gerek et. al., 2006; Moreno et. al., 2006) and other fields of Science (De la Rosa et. al., 2004, 2005, 2007).

Without perturbation, the 50-Hz of the voltage waveform exhibits a Gaussian behaviour. Deviations from Gaussianity can be detected and characterized via HOS. Non-Gaussian processes need third and fourth order statistical characterization in order to be recognized. In order words, second-order moments and cumulants could be not capable of differentiate non-Gaussian events. The situation described matches the problem of differentiating between a transient of long duration named fault (within a signal period), and a short duration transient (25 per cent of a cycle). This one could also bring the 50-Hz voltage to zero instantly and, generally affects the sinusoid dramatically. By the contrary, the long-duration transient could be considered as a modulating signal (the 50-Hz signal is the carrier). These transients are intrinsically non-stationary, so it is necessary a battery of observations (sample registers) to obtain a reliable characterization.

The main contribution of this work consists of the application of higher-order central cumulants to characterize PQ events, along with the use of a competitive layer as the classification tool. Results reveal that two different clusters, associated to both types of transients, can be recognized in the 2D graph. The successful results convey the idea that the physical underlying processes associated to the analyzed transients, generate different types of deviations from the typical effects that the noise cause in the 50-Hz sinusoid voltage waveform.

The paper is organized as follows: Section on higher-order cumulants summarizes the main equations of the cumulants used in the paper. Then, we recall the competitive layer’s foundations, along with the Kohonen learning rule. The experience is described then, and the conclusions are drawn.
Neural Networks and HOS for Power Quality Evaluation

HIGHER-ORDER CUMULANTS

High-order statistics, known as cumulants, are used to infer new properties about the data of non-Gaussian processes (Mendel, 1991; Nikias & Mendel, 2003). The relationship among the cumulants of r stochastic signals, \(\{x_j\}_{j=1}^m \), and their moments of order \(p, p \leq r \), can be calculated by using the Leonov-Shiryaev formula (Nandi, 1999; Nikias & Mendel, 2003). For an rth-order stationary random process \(\{x(t)\} \), the rth-order cumulant is defined as the joint rth-order cumulant of the random variables \(x(t), x(t+\tau_1), \ldots, x(t+\tau_r) \),

\[
C_{r,x}(\tau_1, \tau_2, \ldots, \tau_r) = \text{Cum}[x(t) x(t+\tau_1) \ldots x(t+\tau_r)].
\]

Considering \(\tau_1 = \tau_2 = \tau_3 = 0 \) in Eq. (1), we have some particular cases:

\[
\begin{align*}
\tau_2, x &= E[x(t)^2] = C_{2,x}(0), \quad (2a) \\
\tau_3, x &= E[x(t)^3] = C_{3,x}(0,0), \quad (2b) \\
\tau_4, x &= E[x(t)^4] - 3\tau_2, x^2 = C_{4,x}(0,0,0) \quad (2c)
\end{align*}
\]

Eqs. (2) are measurements of the variance, skewness and kurtosis of the statistical distribution, in terms of the cumulants at zero lags. We will use and refer to normalized quantities because they exhibit different-in-magnitude voltage levels. Secondly, the classification stage is based on the application of the competitive layer to the feature vectors. We use a two-neuron competitive layer, which receives two-dimensional input feature vectors during the network training.

The aim is to differentiate between two classes of PQ events, named long-duration and short-duration. The experiment comprises two stages. The feature extraction stage is based on the computation of cumulants. Each vector’s coordinate corresponds to the local maximum and minimum of the 4th-order central cumulant. Secondly, the classification stage is based on the application of the competitive layer to the feature vectors. We use a two-neuron competitive layer, which receives two-dimensional input feature vectors during the network training.

EXPERIMENTAL RESULTS

The neurons in a competitive layer distribute themselves to recognize frequently presented input vectors. The competitive transfer function accepts a net input vector \(p \) for a layer (each neuron competes to respond to \(p \) and returns outputs of 0 for all neurons except for the winner, which is associated with the most positive element of the net input. For zero bias, the neuron whose weight vector is closest to the input vector has the least negative net input and, therefore, wins the competition to output a 1.

The winning neuron will move closer to the input, after this has been presented. The weights of the winning neuron are adjusted with the \textit{Kohonen} learning rule. If for example the \(i \)-th-neuron wins, the elements of the \(i \)-th-row of the input weight matrix (\(\text{IW} \)) are adjusted as shown in Eq. (3):

\[
\text{IW}_{i,j}^1(q) = \text{IW}_{i,j}^1(q-1) + \alpha [p(q) - \text{IW}_{i,j}^1(q-1)]
\]

where \(p \) is the input vector, \(q \) is the time instant, and \(\alpha \) is the learning rate. The \textit{Kohonen} rule allows the weights of a neuron to learn an input vector, so it is useful in recognition applications. The winning neuron is more likely to win the competition the next time a similar vector is presented. As more and more inputs are presented, each neuron in the layer closest to a group of input vectors soon adjusts its weight vector toward those inputs. Eventually, if there are enough neurons, every cluster of similar input vectors will have a neuron that outputs “1” when a vector in the cluster is presented.