INTRODUCTION AND BACKGROUND: A NEED FOR DEEPER AWARENESS

Increasingly, information systems development has been recognized as a sociotechnical endeavor. We have seen calls in professional literature and at MIS conferences that IT workers must develop soft skills and emotional literacy and that they must learn to “grow their whole selves”, to quote Extreme Programming initiator, Kent Beck. Many stories abound of system development efforts where the system was built right, but it was not the right system; that is, it did not satisfy the real needs of the users. As well, we see increasing reports of burnout among IT professionals, as the business and organizational environments look for an increasingly impactful role from newly developed systems. To quote Edward Yourdon (2002), “Burnout is still a topic that most senior managers would rather not confront, but it has become so prevalent and severe that some IT organizations have become almost completely dysfunctional” (cover page). The IT profession, no doubt, has been undergoing continual change in its orientation, methodologies, and technological tool sets. To deal with this constant change and increased expectations from IT, it has been proposed that the profession adopt an interdisciplinary, holistic approach to professional development, similar to that of an Olympic athlete who would consult the areas of physiology, psychology, nutrition, kinesiology, and so forth to enable optimum performance.

A powerful ally in the IT professional’s quest for inner balance and resilience is multidimensional psychological awareness. IT work is done mostly with one’s mind, one’s psyche, and thus, a deeper awareness and understanding of one’s own inner psychological dynamisms and those of one’s co-workers is advisable. System developers can release previously pent-up, unavailable psychic energies for a more effective and less stressful work effort. Possible areas of psychological functioning that would warrant specific, concerted attention from the IT profession at this point in its evolution are personality typing systems, cognitive, creativity, and learning styles and also the reality of the “deepest inner self” (core or spirit).

Until now, focus on psychological factors in IT has been growing, albeit rather slowly. Groups of IT workers may have been introduced to a psychological perspective at a one-day seminar with no extensive, planned follow-up. A few organizations have taken their interests further and involved IT team members in exercises and assessments of the effect of their newly developed interests on their work performance and satisfaction. However, it may indeed be true that now the time has come for a concentrated effort in the IT profession to involve psychological factors in a more widespread, concerted, and thorough manner. The recent book, Managing Psychological Factors in Information Systems Work: An Orientation to Emotional Intelligence by Kaluzniacky (2004), provides a vision for such a possibility and issues a call to action. Psychological aspects promoted are the Myers-Briggs (MBTI) and Enneagram personality types; Kirton’s Adaptor/Innovator cognitive styles, creativity styles as measured, for example, by the Creative Styles Inventory; four learning styles as defined by Kolb (1984); the deepest inner self as outlined by the PRH (1997); and Hoffman (1988) personal growth programs, and promoted by contemporary authors such as Borysenko (1990), Bedrij (1977), Dyer (1995), McGraw (2001), and Weizenbaum (1976). The book promotes professional acceptance and application individually and collectively and suggests specific areas for both academic research and development of materials (e.g., a full-scale methodology for psychological factors in IT) to facilitate such an acceptance within the IT profession.

A more concerted involvement of psychological factor awareness in specific aspects of IT work could give rise to Psych-factors Communities of
Psychologically Aware IT Workers

Practice. Such communities, physical and virtual, would communicate and collaborate on specifically applying areas of psychological awareness to certain IT tasks. A centralized Web site, such as the one for Kaluzniacky’s book (currently at http://itwellness.ncf.ca), can act as a catalyst for such a potentially impactful movement. Awareness of specific psychological mechanisms, the emotions they generate in different situations, and the effect of such emotions on the psychic energy of the IT worker would give rise to the emotionally intelligent IT worker.

The following is a basic orientation to several significant psychological factors that could have a positive impact on IT work. Then the feasibility of IT Psych-factors communities of practice is promoted.

PERSONALITY FACTORS

Personality can be defined as “a complex set of relatively stable behavioral and emotional characteristics” of a person (Hohmann, 1997, p. 35). The Myers-Briggs Personality Type (Keirsey & Bates, 1978) approach to classifying personalities has been widely accepted and applied in a diversity of fields such as social work, counseling, career planning, and management. It assesses four different dimensions of a person:

1. **Introversion/extraversion:** relates to how a person is oriented, where he/she focuses more easily, within oneself or on other people and the surrounding environment. This dimension is coded I or E, respectively.

2. **Intuition/sensing:** relates to two different ways of perceiving, of taking in information. An intuitive person focuses on new possibilities, hidden meanings, and perceived patterns. A sensing person focuses on the real, tangible, and factual aspects. Thus, a sensing person can be described as being more practical, whereas an intuitive is more imaginary. This dimension is coded N for Intuitive and S for Sensing.

3. **Thinking/feeling:** relates to how a person comes to conclusions, how a person normally prefers to make judgments. A thinking person employs logical analysis, using objective and impersonal criteria to make decisions. A feeling person, on the other hand, uses person-centered values and motives to make decisions. This dimension is coded T for Thinking and F for Feeling.

4. **Judging/perceiving:** relates to two essential attitudes of dealing with one’s environment. A judging person prefers to make judgments, or comes to conclusions about what one encounters in one’s outer environment. A perceiving person prefers to notice one’s outer environment while not coming to conclusions or judgments about it. This dimension is coded J for Judging and P for Perceiving.

It can be hypothesized (Ferdinandi, 1994) that different personality factors would contribute in specific ways to different IS development tasks. Regarding the first Myers-Briggs dimension, tasks such as detailed data modeling, coding, quality assurance testing, and network design can lend themselves quite well to preferred introversion. However, extraverts can feel especially at home in requirements determination, joint application development, presentation to users/senior management, user training, and help desk activities, for example.

As for the second, sensing/intuition dimension, much of actual technology is practical, and activities such as system installation, detailed telecommunications design, physical data modeling, as well as programming, testing, activity scheduling, and detailed documentation would appeal to and energize the sensing person. Activities such as system planning, high-level business and data modeling, object modeling, and political positioning would be much more in the realm of intuitive types. Thus, there is considerable opportunity for both sensors and intuitives to find IT work appealing.

Third, considerable IS development activity, no doubt, involves the thinking function, whether practical thinking (as in telecommunication design or testing) or conceptual thinking (object modeling, system planning). Often, the thinking must be structured and yield specific deliverables that can execute on specific machines. But, how can feeling types find a home in IT work? Since they place considerable focus on harmony, feelers can be par-
Related Content

A Comparative Analysis of E-Collaboration Research Funding in the European Union and the United States
www.igi-global.com/chapter/comparative-analysis-collaboration-research-funding/30874?camid=4v1a

www.igi-global.com/chapter/global-manufacturing-virtual-network-gmvn/26064?camid=4v1a

Evaluating Computer Games for the Professional Development of Teachers: The Case of Atlantis Remixed
www.igi-global.com/article/evaluating-computer-games-for-the-professional-development-of-teachers/188481?camid=4v1a

Motion Cueing Algorithms: A Review: Algorithms, Evaluation and Tuning
www.igi-global.com/article/motion-cueing-algorithms-a-review/169937?camid=4v1a