Chapter 8
An Efficient System for Blocking Pornography Websites

Tarek M. Mahmoud
Minia University, Egypt

Tarek Abd-El-Hafeez
Minia University, Egypt

Ahmed Omar
Minia University, Egypt

ABSTRACT
The Internet is a powerful source of information. However, some of the information that is available on the Internet cannot be shown to every type of public. For instance, pornography is not desirable to be shown to children; pornography is the most harmful content affecting child safety and causing many destructive side effects. A content filter is one of more pieces of software that work together to prevent users from viewing material found on the Internet. In this chapter, the authors present an efficient content-based software system for detecting and filtering pornography images in Web pages. The proposed system runs online in the background of Internet Explorer (IE) for the purpose of restricting access to pornography Web pages. Skin and face detection techniques are the main components of the proposed system. Because the proposed filter works online, the authors propose two fasting techniques that can be used to speed up the filtering system. The results obtained using the proposed system are compared with four commercial filtering programs. The success rate of the proposed filtering system is better than the considered filtering programs.

INTRODUCTION
Since the mid-1990s, greater Internet accessibility and advances in file-sharing technology spurred a proliferation in child pornography. The possession of child pornography is extremely troubling when you consider that in each image a child is being forced to engage in a sexual act (Sylvia, 2011). Pornography uses a variety of media, ranging from books, magazines, film and video. However, currently, one of the most prevalent means of distributing pornography is the Internet, by simply typing a few keywords into a search engine (e.g., Google) it is extremely easy to search for pornography on the Internet. The number one search term used on search engine sites is “sex”.

DOI: 10.4018/978-1-4666-6030-4.ch008
Users searched for “sex” more than other terms, such as “games, travel, music, jokes, cars, weather, health,” and “jobs” combined (Luke, 2010).

According to ConvententEyes report (Luke, 2010) and Internet Pornography Statistics (Ropekato, 2006):

- The largest group of viewers of Internet porn is children between ages 12 and 17.
- More than 11 million teenagers view Internet pornography on a regular basis.
- One senior executive spent at least 331 days looking at pornography and chatting online with partially clad or nude women; this cost tax payers anywhere from $13,800 to $58,000.
- One worker perused hundreds of pornographic websites during work hours in a three week time frame in June 2008; that employee received a 10-day suspension.
- 12% (4.2 million websites) of the websites on the Internet are pornographic.
- 25% of daily search engine requests are pornography related.
- 35% of all Internet downloads are pornographic.
- 34% of Internet users received unwanted exposure to sexual material.
- Worldwide Pornography Revenues ballooned to $97.06 billion.
- Every second - 28,258 Internet users are viewing pornography.
- Every 39 minutes: a new pornographic video is being created in the United States.

Different researches and efforts have been carried out recently on how to block the pornography Websites among them content-based filtering is the most effective one (Ahmadi, Fotouhi, & Khaleghi, 2011).

Also, many software packages have been developed (Hammami, Chahir, & Chen, 2006) which mainly employ two kinds of approaches for classifying Web pages: static filtering and dynamic filtering. Static filtering is based on blocking a specific Web address via searching it in a reference list of black URLs. Although this method has high speed of processing, but its shortcoming is the requirement for instantly update of the URL list. This updating is a very hard task in the rapidly improving Web. Another problem is the high rate of over-blocking the usual pages such as pages with medical, sports, or arts topics, or blocking a Website because of only one immoral page on it. In dynamic filtering, the classification is performed based on the content analysis. First, the content of the pages is analyzed by using learning models and then the page is classified based on the content features. Static and dynamic filters give the parents different degrees of control over the censorship depending on the program.

The outline of the chapter is as follows: Section 2 gives a brief overview of some filtering techniques. Section 3 gives a brief overview of skin detection techniques. Section 4 describes face detection techniques. In Section 5 the Proposed Filtering System is introduced. Experimental results are presented in section 6. Finally, conclusion and future work are presented in section 7.

RELATED WORK

Internet is an infinite information repository that also contains harmful contents like; pornography, violence, and hate messages. It is very important to obstruct these kinds of contents from underage children not to adversely affect their development. To block adult content, many solutions exist, such as filters that are part of image search engines like those of Google or Yahoo! As any user of these services is aware, they often fail to remove pornography images. The reasons are clear in that “current Internet image search technology is based upon words, rather than image content. Generally, there are two main approaches for pornography filtering software classification: classification based on textual content features, and classifica-