Arsenic Removal from Drinking Water Using Carbon Nanotubes

Kauser Jahan
Rowan University, USA

Kenneth Sears
Rowan University, USA

Jaimie Reiff
Rowan University, USA

Sarah Dores
Rowan University, USA

Paulina Kruszewski
Rowan University, USA

Shawn Williams
Rowan University, USA

INTRODUCTION

High concentrations of arsenic are found naturally in groundwater worldwide and pose a potential health hazard to humans from long-term exposure. Arsenic exposure can come from drinking water, contaminated irrigated crops, and food preparation with contaminated water. The organic form of arsenic is less harmful than the inorganic form. The inorganic form of arsenic is present in groundwater and highly toxic, therefore hazardous to humans. Long-term exposure to arsenic in water can cause numerous health problems, primarily skin, bladder, and lung cancer. Additional studies have also indicated that the ingestion of arsenic may lead to internal malignancies, such as cancers of the kidney, bladder, liver, lung, and other organs (Naghizadeh et al., 2012). For these reasons the United States Environmental Protection Agency (EPA) and the World Health Organization (WHO) have set the drinking water standard to 10 parts per billion or 10 μg/L (Ma et al., 2013; Velickovic et al., 2011). Certain countries such as India, Bangladesh, Vietnam, and the southwestern United States are afflicted with high levels of arsenic in their groundwater much larger than this set standard, and are therefore in need of an efficient treatment process for arsenic removal (Vadahanambi et al., 2013).

BACKGROUND

Studies have found Carbon Nanotubes (CNTs) can effectively remove arsenic levels to a tolerable for humans (Ntim & Mitra, 2012). CNTs form nanoscale pores from the entanglement of hundreds of tubes that are held together by Van der Waal forces. CNTs “provide large external surface areas that can immobilize contaminants including bacteria and viruses” (Upadhyayula et al., 2009). They are known for their strength, as well as their unique electrical and thermal properties. The structure and function of CNTs allows for this high adsorption of contaminants. They can be formed with either single or multi-wall properties.

Single-wall CNTs are one sheet of graphene, whereas multi-wall CNTs are multiple layers of gra-
Carbon Nanotubes as Adsorbents for Heavy Metals

The novel properties of CNTs have made them useful in a range of applications in nanotechnology, electronics and water treatment. Multi-wall carbon nanotubes (MWCNTs) have been used in a number of studies to remove metal ions, such as lead, copper, cadmium, silver, and nickel (El-Sheikh, 2008). Lead removal from water with CNTs can be highly effective depending on the pH level. Similarity chromium can be removed with CNTs from water at a pH higher than 4 or 5 (Atieh et al., 2010). The increased pH of the water improves the adsorption capabilities of the CNTs. At acidic pH, free metal ions exist in solution, while surface functional groups present are in the protonated form. Contrarily, at basic pH, metals are precipitated as their hydroxides, while functional groups on the adsorbent surface exist in the deprotonated form. Hence, with the increase of pH, the removal of chromium increases and as the degree of protonation of the surface decreases, the adsorption capacity increases (Atieh et al., 2010). As-produced CNTs have some level of adsorbent properties for nickel. In a study by Kandah and Meunier (2006) it was determined that as-produced CNTs have an adsorption of 18.01 mg/g, which was lower than commercial activated carbon or activated carbon made from peanut shells. They hypothesized the reduced adsorption was due to the as-produced CNTs being inert and not possessing a surface charge. This is...
Related Content

Science, Ethics, and Weapons Research
www.igi-global.com/chapter/science-ethics-and-weapons-research/184031?camid=4v1a

Survey on Privacy Preserving Association Rule Data Mining
www.igi-global.com/article/survey-on-privacy-preserving-association-rule-data-mining/178163?camid=4v1a

A Hybrid Approach to Diagnosis of Hepatic Tumors in Computed Tomography Images
www.igi-global.com/article/a-hybrid-approach-to-diagnosis-of-hepatic-tumors-in-computed-tomography-images/116045?camid=4v1a

Case Study Findings from Human Interaction with Web E-Services: Qualitative Data Analysis
www.igi-global.com/chapter/case-study-findings-human-interaction/65327?camid=4v1a