Chapter 10
Applications of Independent Component Analysis in Cognitive Radio Sensor Networks

Zahooruddin
COMSATS Institute of Information Technology 47040, Pakistan

Ayaz Ahmad
COMSATS Institute of Information Technology 47040, Pakistan

Muhammad Iqbal
COMSATS Institute of Information Technology 47040, Pakistan

Faroq Alam
COMSATS Institute of Information Technology 47040, Pakistan

Sadiq Ahmad
COMSATS Institute of Information Technology 47040, Pakistan

ABSTRACT
Independent component analysis is extensively used for blind source separation of different signals in various engineering disciplines. It has its applications in several areas of communication, multiple input multiple output, orthogonal frequency division multiplexing, wireless sensor networks, and cognitive radio networks. In this chapter, the authors discuss the general theory of independent component analysis, wireless sensor networks, cognitive radio networks, and cognitive radio sensor networks. The main focus of the chapter is the application of independent component analysis in cognitive radio networks, wireless sensor networks, and cognitive radio sensor networks. The issues and challenges of these emerging technologies are discussed while applying independent component analysis. Cognitive radio sensor network is a promising technology to efficiently resolve the issues of spectrum usage in sensor networks. The authors are the first to discuss the applications of independent component analysis in cognitive radio sensor networks. At the end of this chapter, they discuss some future research problems regarding the applications of independent component analysis in cognitive radio sensor networks.

DOI: 10.4018/978-1-4666-6212-4.ch010
1. INTRODUCTION

Blind source separation is a signal processing technique used for un-mixing of the recorded mixed data from any physical process (Hyvarinen, Karhunen, & Oja, 2001). Independent component analysis (Zadeh, & Shirazi, 2009) is a technique used for blind source separation and features extraction from the recorded multidimensional statistical data (Hyvarinen, & Oja, 2000). The advantages of independent component analysis algorithms include its simple mathematical models, less computational complexity and applicability in real scenario, because the observed data from any physical process is always the combination of underplaying physical processes (Doebelin, 2004). Examples are, electrocardiogram (ECG) signals sensed through different electrodes, speech signals recorded through microphones, communication signals received through different antennas. The collected signals in ECG, speech processing, or communication systems will be mixtures of different signals. The objective in such a system is to get the underlying original signals from the mixed data, without having information about the channel characteristics and the sources.

Independent component analysis has a lot of applications in communication (Zarzoso, & Nandi, 2004), speech processing (Gillet, & Richard, 2008; Zahooruddin & Alam, 2010), biomedical signal processing (Castells, Igual, Rieto, Sanchez, & Millet, 2003; Langley, Rieto, Stridh, Millet, Sornmo & Murray, 2003), vibration analysis (Li, Yan, Tian, Yuan, Peng & Li, 2012) and machinery fault diagnoses (Pöyhönen, Jover & Hyötyniemi, 2003). These applications are summarized in Figure 1. The applications in wireless communication include wireless sensor networks, cognitive radio networks, code division multiple access, multiple input multiple output systems, and orthogonal frequency division multiplexing, which are shown in Figure 2. It is mainly used for the suppression of inter symbol interference; inter channel interference, and co-channel interference, automatic modulation classification, spectrum sensing, and blind channel estimation. In this chapter the applications of independent component analysis are studied in wireless networks like wireless sensor networks, cognitive radio networks, and cognitive radio sensor networks. To the best of our knowledge independent component analysis is yet not used in cognitive radio sensor networks.

Wireless sensor networks are used for monitoring of physical environment or to detect different events in the sensing field. A large number of sensor nodes are deployed in the field to sense any physical phenomena or to track an object and transmit the sensed or observed data through wireless channels. A sensor node consists of sensor, communication system, storage and processing system. These nodes have very small size and efficient processing and communication units (Karp, & Kung, 2000). Most of the research articles concentrate on the tracking of a single target in the field and also assume that there is no inter signal interference, caused by signals from other sensor nodes. In reference (Zhu, & Vikram, 2008), and (Wang, Qi, & Beck, 2005) the authors presented multi target tracking approaches based on independent component analysis.

Wireless technology is growing rapidly with the passage of time. This technological growth provides many societal and individual benefits. It is becoming a necessary part of our life. It has a lot of applications in sensor networks, home automation, smart grids, biomedical, and embedded wireless systems. The rapid proliferation of wireless applications requires more radio spectrum. The known spectrum bands have been allocated to some applications, although these bands are not busy all the time. This discussion motivated the search for a new radio technology called cognitive radio network, which can fulfill the future demand of spectrum requirement and application performance. Cognitive radios are the requirement of the day. They are fully programmable wireless
Related Content

A Performance Evaluation of the Coverage Configuration Protocol and its Applicability to Precision Agriculture

FDTD Simulation of the GPR Signal for Preventing the Risk of Accidents due to Pavement Damages

Subscription Policy Control Framework for IMS-Based Networks
[www.igi-global.com/chapter/subscription-policy-control-framework-ims/54010?camid=4v1a](www.igi-global.com/chapter/subscription-policy-control-framework-ims/54010?camid=4v1a)

Development of a Complex Geospatial/RF Design Model in Support of Service Volume Engineering Design
[www.igi-global.com/article/development-complex-geospatial-design-model/52985?camid=4v1a](www.igi-global.com/article/development-complex-geospatial-design-model/52985?camid=4v1a)