An Unstructured Information Management Architecture Approach to Text Analytics of Cancer Blogs

Viju Raghupathi, Brooklyn College, City University of New York, Brooklyn, New York, USA
Wullianallur Raghupathi, Graduate School of Business, Fordham University, New York City, New York, USA

ABSTRACT

In this research the authors explore the potential of the Unstructured Information Management Architecture (UIMA) platform in text analytics of cancer blogs. The application is developed using the UIMA open source platform. They use the text analytics methods of categorization, clustering, taxonomic classification, and others to identify and analyze the patterns in cancer blog postings. The authors establish a comprehensive UIMA methodology for developing text analytics applications for the analysis of cancer blogs. Additional insights are extracted through the development of categories or keywords contained in the blogs, the development of a taxonomy and the examination of relationships among the categories. The application has the potential for generalizability and implementation with health content in other blogs and social media. It has the potential to provide insight and decision support for cancer management and to facilitate the efficient and relevant search for information on cancer.

Keywords: Cancer Blog, Category, Clustering, Insight, Taxonomy, Text Analytics, Unstructured Information Management Architecture (UIMA)

1. INTRODUCTION

Over the last decade, the healthcare domain has seen an exponential increase in the use of Web 2.0 tools and social media such as blogs, wikis, podcasts, twitter feeds, vlogs (video blogs) and on-line journals that convey health-related information. Such content management applications allow key stakeholders in the health care system - physicians, patients, hospitals, insurance companies, government, and others - to create and disseminate health information via the web (Bradley, 2013; Chen, 2013; McNickle, 2013). Patients, for example, are finding useful health-related information with regard to diagnosis, treatment, and the management of diseases. Physicians also use such tools to search for information in the context of evidence-based medicine and to address patients' concerns and issues (Miller & Pole, 2010). Hospitals and other providers use these tools as “gateways” to the communities.
(Hardy, 2012; Kotenko, 2013; McNickle, 2013). Large repositories of unstructured textual data are emerging and growing rapidly, and health entities are examining the potential of text analytics and other methods to analyze the data and glean patterns and relationships. These are, in turn, used to gain insight for making informed health decisions and improve clinical outcomes (Konkel, 2013).

Health data, such as general patient profiles, clinical data, insurance data, and other medical data, are being created for various purposes, including regulatory compliance, public health policy analysis and research, and diagnosis and treatment (Mulins et al., 2006). Data may include both structured data (e.g., patient histories as records in a database) and unstructured data (e.g., audio/video clips, textual information such as in blogs or physician’s notes) (Spangler & Kreulen, 2007). Text analytics is typically used to identify patterns and trends in the unstructured data (Popowich, 2005). These patterns can shed light on a wide range of issues such as drug reactions, side effects, treatment outcomes, personalized medical treatments and efficacy of drugs. For example, analytics revealed the association between the arthritis drug Vioxx and an increased risk of heart attack/stroke, resulting in the withdrawal of the drug from the market (Versel, 2011). Furthermore, the data can be used for health quality assurance and clinical management queries (Einbinder & Scully, 2002; Scully et al., 1997). Therefore, text analytic applications, although relatively recent in healthcare (Brosette et al., 1998; Downs & Wallace, 2000; Lee et al., 2011), have the potential to improve quality (e.g., reduce medical errors) and reduce the cost of healthcare delivery (e.g., via reduced re-admissions).

In this article we describe our ongoing research project, which uses Unstructured Information Management Architecture (UIMA) for the text analytics of cancer blogs. UIMA defines a framework for implementing systems for the analysis of unstructured data (Kano et al., 2009; Mack et al., 2004). Unlike in structured information where the meaning is expressed by the structure or the format of the data, in unstructured information, the meaning is not explicitly stated, and may need to be inferred. Examples of data that carry unstructured information include natural language text and data from audio or video sources. For example, an audio stream has a well-defined syntax and semantics for rendering the stream on an audio device, but its music score is not directly represented. UIMA offers the capability to analyze unstructured health content at various levels. At the individual level (document-level analysis), one can perform analysis and gain insight about a patient in longitudinal studies. At the group level (collection-level analysis), one can identify patterns in network behavior (e.g., assessing the influence within the social group), in a particular disease group, the community of participants in an HMO or hospital setting, or even in the global community of patients (ethnic stratification). The results of these analyses may be generalizable to other blogs and web content.

Health blogs in particular are rich with information for decision-making. Even though web crawlers and blog analysis software generate statistics related to blogs (such as the number of blogs or top ten blogs) they are not advanced or useful computationally to help with the analysis and understanding of the social networks that evolve in healthcare and medical blogs. Thus there is a critical need for sophisticated tools to fill this gap. Furthermore, to our knowledge, there are not many studies or applications in the text analytics of cancer blogs. This study attempts to fill this gap by analyzing cancer blogs.

The rest of the article is organized as follows: first, we give a background of the research by describing the domain of cancer blogs, and then the UIMA and its methodology; second, we describe our specific research objectives; third, we give an overview of our research framework; fourth, we outline our research methodology of the text analytics of cancer blogs. In this process, we also describe our results; fifth, we address the scope and limitations of our study; and finally, we offer conclusions and future research directions.
16 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage:

www.igi-global.com/article/an-unstructured-information-management-architecture-approach-to-text-analytics-of-cancer-blogs/116494?camid=4v1


www.igi-global.com/e-resources/library-recommendation/?id=2

Related Content

Information as Change Agent or Barrier in Health Care Reform?
Alan C. Gillies and John Howard (2013). Healthcare Information Technology Innovation and Sustainability: Frontiers and Adoption (pp. 1-17).
www.igi-global.com/chapter/information-change-agent-barrier-health/73811?camid=4v1a

A Community-Based Participatory Research Model and Web Application for Studying Health Professional Shortage Areas in the United States
www.igi-global.com/article/a-community-based-participatory-research-model-and-web-application-for-studying-health-professional-shortage-areas-in-the-united-states/93041?camid=4v1a
Standards Related to Interoperability in EHR & HS
www.igi-global.com/chapter/standards-related-to-interoperability-in-ehr--hs/106573?camid=4v1a

Pedometer Cell Phone Applications and Future Trends in Measuring Physical Activity
Anna Åkerberg, Maria Lindén and Mia Folke (2013). Information Systems and Technologies for Enhancing Health and Social Care (pp. 324-339).
www.igi-global.com/chapter/pedometer-cell-phone-applications-future/75637?camid=4v1a