INTRODUCTION

Educational goals have generally shifted from knowing everything in a specific domain to knowing how to deal with complex problems. Reasoning and information-processing skills have become more important than the sheer amount of information memorized. In medical education, the same evolution has occurred. Diagnostic reasoning processes get more strongly emphasized. Whereas previously knowing all symptoms and diseases was stressed, reasoning skills have now become educationally more important. They must enable professionals to distinguish between differential diagnoses and to recognize patterns of illnesses (e.g., Myers & Dorsey, 1994).

BACKGROUND

Authentic or realistic tasks have been advocated to foster the acquisition of complex problem-solving processes (Jacobson & Spiro, 1995; Jonassen, 1997). In medical education, this has led to the use of expert systems. Such systems were initially developed to assist practitioners in their practice (NEOMYcin, in Cormie, 1988; PATHMASTER in Frohlich, Miller & Morrow, 1990; LIED in Console, Molino, Ripa di Meana & Torasso, 1992) and simulate real situations. These systems were expected to provoke or develop students’ diagnostic reasoning processes. However, the implementation of such expert systems in regular educational settings has not been successful. Instead of developing reasoning processes, these systems assume them to be available. They focus on quickly getting to a solution rather than reflecting on possible alternatives. Consequently, it was concluded that students need more guidance in the development of diagnostic reasoning skills (Console et al., 1992, Cromie, 1988; Friedman, France & Drossman, 1991), and that instructional support was lacking.

KABISA is one of the computer programs purposely designed to help students in the development of their diagnostic reasoning skills (Van den Ende, Blot, Kesten, Van Gompel & Van den Enden, 1997). It is a dedicated computer-based training program for acquiring and optimizing diagnostic reasoning skills in tropical medicine.

DESCRIPTION OF THE PROGRAM

KABISA confronts the user with cases, or ‘virtual patients’. The virtual patient is initially presented by three ‘characteristics’ randomly selected by the program. After the presentation of the patient (three characteristics), students can ask for additional characteristics gathered through anamnesis, physical examination, laboratory and imaging. If students click on a particu-
lar characteristic, such as a physical examination test, they receive feedback. Students are informed about the presence of a certain disease characteristic, or whether a test is positive or negative. If students ask a ‘non-considered’ characteristic; that is, a characteristic that is not relevant or useful in relation to the virtual patient, they are informed of this and asked whether they want to reveal the diagnosis they were thinking about. When they do so, students receive an overview of the characteristics that were explained by their selection and which ones are not, as well as the place of the selected diagnosis on a list that ranks diagnoses according to their probability given the characteristics at hand. If students do not want to show the diagnosis they were thinking about they can just continue asking for characteristics. A session is ended with students giving a final diagnosis. KABISA informs them about the correctness. If the diagnosis is correct, students are congratulated. If the diagnosis is not correct, students may be informed that it is a very plausible diagnosis but that they do not have enough evidence, or they may get a ranking of their diagnosis and an overview of the disease characteristics that can and cannot be explained by their answer. Additionally, different non-embedded support devices – that is, tools are made available to support learners. These tools allow students to look for information about certain symptoms or diseases, to compare different diagnoses or to see how much a certain characteristic contributes to the certainty for a specific diagnosis. Students decide when and how they use these devices (for a more detailed description, see Clarebout, Elen, Lowyck, Van den Ende & Van den Enden, 2004).

This path represented the ideal paths students should go through to optimally benefit from KABISA (following the “normative approach” of Elstein & Rabinowitz, 1993), including when to use a specific tool. Only 5 out of 44 students followed this path.

A second issue relates to the use of the tools. KABISA offers different tools to support students. These tools can help students in their problem-solving process. Results suggest that students consult some help functions more than others. However, overall they do not consult them frequently, and if they use them, they do not use them adequately. Students also tend to not use the feedback that can be obtained when asking for a ‘non-considered’ characteristic.

Although this environment can be described as an open learning environment, it seems that students do not perceive it as a learning environment. Thinking aloud protocols reveal that students think they are cheating or failing when consulting a tool. Giving the limited use of the tools, their impact on the learning process cannot be but limited.

However, in spite of the observation that in only a small number of consultations the criterion path was followed, students do find the right diagnosis in 80% of the consultations. It seems that by trial and error students can also obtain the right diagnosis.

The results of this evaluation suggest that KABISA is currently not used by students to foster their diagnostic reasoning skills. Rather, it enables them to train readily available skills. The results are an example of a well-designed learning environment used by learners as a performance environment. With the use of more open and online learning environments, this raises the issue of how to realize that students see such environments as learning environments with learning opportunities, rather than a performance environment.

In the design and development of KABISA, a lot of time and effort was spent in developing the tools. However, results show that students do not (adequately) use these tools. Other authors have found similar results with other programs (e.g., see Crooks, Klein, Jones & Dwyer, 1996; Land, 2000). This raises questions about the amount of learner control in open learning environments. Should the environment be made less open and provide embedded support devices instead of tools, so that students cannot but use these devices? Or should students receive some additional advice towards the use of these tools? In the first case, support might
Related Content

Fostering Successful Learning Communities to Meet the Diverse Needs of University Students by Creating Brain Based Online Learning Environments
[www.igi-global.com/article/fostering-successful-learning-communities-meet/37516?camid=4v1a](www.igi-global.com/article/fostering-successful-learning-communities-meet/37516?camid=4v1a)

Recognition of Learner’s Personality Traits through Digital Annotations in Distance Learning

An XML-Based Approach to Multimedia Software Engineering for Distance Learning
[www.igi-global.com/article/xml-based-approach-multimedia-software/1603?camid=4v1a](www.igi-global.com/article/xml-based-approach-multimedia-software/1603?camid=4v1a)

Distance-Learning for Advanced Military Education: Using Wargame Simulation Course as an Example
[www.igi-global.com/chapter/distance-learning-advanced-military-education/40524?camid=4v1a](www.igi-global.com/chapter/distance-learning-advanced-military-education/40524?camid=4v1a)