Chapter 10

Benchmarking Regulators: A Data Envelopment Analysis of Italian Water Authorities’ Performance

Clementina Bruno
University of Piemonte Orientale, Italy & HERMES Research Centre, Italy

Fabrizio Erbetta
University of Piemonte Orientale, Italy & HERMES Research Centre, Italy

ABSTRACT

In this chapter, Data Envelopment Analysis is employed in a particular perspective, as the authors conduct an evaluation of the efficiency performance of regulatory agencies. The Italian water sector regulation, as it was organized until 2010, with high fragmentation of the regulatory activity (92 regulators over the country), is particularly suitable for benchmarking analysis. The ratio of this approach relies on the fact that regulators, as other public entities, are resource-consuming operators whose cost ultimately burdens the consumers. Therefore, it is relevant to test whether they operate efficiently. The authors run several DEA-based models, including different sets of variables and assuming different orientation. From the empirical analysis, a relevant “pure” technical inefficiency (VRS) emerges. A secondary but not negligible role is also played by the scale effect, with some interesting considerations related to the optimal OTAs size.

INTRODUCTION

The Italian water sector has undergone major modifications since the implementation of the reform promoted with the law no. 36/1994 (Galli’s Act, henceforth), which had the target to reduce the fragmentation of the water supply and sewerage services in the Country (provided in the ‘90s by more than 9000 firms and municipalities) and to improve the quality of the service (e.g. by reducing the number and duration of interruptions and the water losses along the network, and by increasing the number of sewerage connections). To facilitate the achievement of such targets, the country has been divided into 92 “Optimal Territorial Areas” (OTAs, or ATO in Italian). In each one, a single integrated firm should...
have been in charge of providing the water and sewerage services, thus being able to achieve larger ef-

ciency by exploiting economies of scale and scope. To prevent potential abuses of the firm (clearly a 

monopolist) on the consumers, in each area a regulatory authority (Optimal Territorial Area Authority, 

or OTAA) was established, with tasks mainly related to long run economic planning and control activi-

ties. Such a system, with industrial providers and regulatory bodies, was evidently inspired by the British 

one, but with a peculiarity: the one-to-one relationship between controller and controlled firm. Such a 

rare (or unique) case in regulation leaded to a total number of 92 regulatory authorities in the country, 

operating without any central coordination.

Recently Italian OTAAs have been abolished by law (no. 42/2010), leaving to the Regions the re-

sponsibility of reorganizing the system and re-attributing the regulatory tasks previously performed by 

the OTAAs. Later, a subsequent Government decree (no.201/2011, converted in the law no.214/2011) 

has transferred some of the control and regulation activities related to the water sector to the Gas and 

Electric Energy Authority (AEEG), suggesting a tendency towards centralization of regulation. In such 

a framework, this contribution is able to provide helpful policy insights, since its purpose is twofold.

The first point is focused on the ratio of existence of a regulation authority, which is aimed to guar-

antee accessible prices and good quality of service to customers, characteristics (the former especially) 

which are not likely to be achieved in an unregulated monopolistic framework. However, the authority 

as well is a resource-consuming entity, whose cost ultimately burdens the consumers, either through the 

tariffs or through the tax system. Therefore, whether or not the authority is using its resources efficiently 

is one (and relatively the most innovative) of the relevant questions addressed in this work:

Q1: Are (were) Italian water authorities efficient?

The second point is related to the large number of OTAAs created in the country, which constituted 
an Italian peculiarity, and to the fact that after OTAAs abolition the regulation activity has been (at least 

partially) attributed to a single entity. In this context, a quite natural question is whether or not OTAAs 

were relevantly under-dimensioned, thus providing arguments in favor or against the policy makers’ 

aggregation choice. Then, the second issue considered here is:

Q2: Were OTAAs operating at a sub-optimal scale size?

BACKGROUND

Italian OTAAs, as implemented by Galli’s Act, are regulatory authorities in charge of controlling the 
activity of the firms providing the service over the Optimal Territorial Areas. Originally it was thought 
as a crucial aspect of the reform that the provider should have been unique in each OTA, but in practice 
there have been some cases in which the regional law has allowed the presence of multiple operators 
(whose number was, however, limited). Neglecting these exceptions, however, we can think about a 
one-to-one relationship between the authority and the firm.

Authorities are small entities, either in the sense that they operate at local level and because they are 
small offices: on average OTAAs employ 6 people, and in general not more than 16, with some cases
Related Content

A Virtual Learning Tool Design Using Lean Principles
www.igi-global.com/chapter/integrating-sustainability-into-project-risk-management/202226?camid=4v1a

Integrating Sustainability Into Project Risk Management
www.igi-global.com/chapter/integrating-sustainability-into-project-risk-management/202226?camid=4v1a

Smart Gateways for IOT-Factory Integration: Trends and Use Case
Eva Masero Rubio, Pedro Miguel Baptista Torres and Rogério Pais Dionísio (2019). *Technological Developments in Industry 4.0 for Business Applications* (pp. 149-170).
www.igi-global.com/chapter/smart-gateways-for-iot-factory-integration/210483?camid=4v1a

Local Perturbation Analysis of Linear Programming with Functional Relation Among Parameters
www.igi-global.com/article/local-perturbation-analysis-linear-programming/50560?camid=4v1a