Chapter 15
T–Scan as a Patient Education Tool

John R. Droter, DDS
The Pankey Institute, USA

ABSTRACT
The T-Scan is an effective patient education tool for illustrating existing occlusal pathology. It presents complex occlusal information in a visual format that is easily understood. The T-Scan applies to all stages of the teaching/learning process because its recorded data forms the framework upon which a doctor/patient discussion can begin regarding the patient’s occlusal disease manifestations, the potential benefit of treatments, and the risks of not undergoing corrective treatment. When used as part of an educational strategy, the T-Scan can lead the patient to accept procedures that would benefit their long-term dental health. This chapter outlines the four stages of creating optimum dental health, the steps required to perform effective teaching and learning, the differing styles of teaching and learning utilized in educational forums, and how to best employ the technique of Feature, Function, and Benefit. A case study illustrates how T-Scan data can educate a patient about their own occlusal problems.

INTRODUCTION
One of a doctor’s many roles is to educate patients with regards to their health (ADA, 2010). The three most prevalent diseases dentists regularly treat are caries, periodontal disease and occlusal disease (Christensen, 2001). Occlusal disease is under treated by many practitioners (Christensen, 1995), which is partially due to the difficultly of having a patient understand the benefits that occlusal therapies offer in the treatment of occlusal pathologies. Utilizing the T-Scan Computerized Occlusal Analysis System (T-Scan 8, Tekscan, Inc. S. Boston, MA, USA) in combination with a well-planned strategy for patient education, can improve the number of patients who accept occlusal therapies that likely would benefit them.

The Four Stages of Health Creation
There are four stages the patient and the clinician must go through, to create health from a diseased state:

Stage 1: Identifying the etiologic factors that cause the disease.
Stage 2: The patient accepting responsibility for their health.

Stage 3: Together, both the doctor and the patient eliminate the various disease factors.

Stage 4: Perform the necessary clinical procedures to repair the destruction resultant from the disease.

Repairing the destruction without elimination of the causative factors (Figure 1) will routinely lead to a repeat of the diseased state (Barkley, 1970).

Occlusal disease results from ongoing and repetitive microtrauma between contacting teeth, where occlusal force overload slowly injures tooth structure and supporting tissues. Time passes and the microtrauma breaks down the involved teeth. Figure 2 shows a T-Scan Force View illustrating an uneven force distribution throughout the arrangement of teeth, causing excessive load to be present on a single tooth (tooth #2). Over time, this tooth will have a greater susceptibility to fracturing a cusp, splitting, becoming loose, losing periodontal bone, having pulpal inflammation, or suffering pulpal necrosis.

If this tooth fractures and then is later restored with the excessive load still present, the new restoration now becomes susceptible to future fracture. If the fractured tooth is restored without excessive load, the new restoration will likely survive longer during its period of intraoral service. The excessive force that this tooth once endured will be redistributed to the next highest tooth, setting that tooth up for potential excessive load failure.

Helping patients move from a diseased state to one of health, involves the dentist not only having the technical skills to identify the disease etiologic factors, the resultant destruction, and develop a sequential plan to eliminate the disease factors and repair the destruction, but also involves the dentist and patient forming a healthy doctor-patient relationship. The doctor and patient

Figure 1. The Dental Disease/Health Model. Disease factors take a patient from healthy to sick. If only repairs are done, the patient will be not sick but may not necessarily be healthy. Existing disease factors will move a patient back into being sick. To break this cycle, the disease factors must be eliminated prior to performing the needed repairs.
Related Content

GWAS as the Detective to Find Genetic Contribution in Diseases
Simanti Bhattacharya and Amit Das (2019). Advanced Methodologies and Technologies in Medicine and Healthcare (pp. 57-68).
www.igi-global.com/chapter/gwas-as-the-detective-to-find-genetic-contribution-in-diseases/213584?camid=4v1a

Microscopic Image Processing for the Analysis of Nosema Disease
www.igi-global.com/chapter/microscopic-image-processing-for-the-analysis-of-nosema-disease/212538?camid=4v1a

A Gamification Update to the Taxonomy of Technology and Mental Health
www.igi-global.com/chapter/a-gamification-update-to-the-taxonomy-of-technology-and-mental-health/213587?camid=4v1a

RNA Interference Therapeutics and Human Diseases
www.igi-global.com/chapter/rna-interference-therapeutics-and-human-diseases/213585?camid=4v1a