INTRODUCTION

In the last several decades, organizations around the world have made enormous investments in information technology (IT) (Siegel, 1998). However, some claim that nearly one third of the outlays for IT are wasted (Alter, 1997). The Standish Group research (The Chaos Report White Paper) shows that 31% of IT projects are canceled before they are completed. Further, results indicate that 53% of IT projects will cost nearly double the original estimates (Webb, 1997). While there are many factors that lead to high failure rates and cost overruns, a contributor is the lack of foresight in IT acquisition or investment processes (Holme, 1997; GAO, 1993).

IT investment decisions have traditionally focused on financial or technological issues, using cost versus benefit analysis. Responding to what appears to be underperformance in anticipated IT investment payoffs, both researchers and practitioners have suggested that traditional valuation analyses are inadequate, and have called for additional research to identify seldom-considered costs and benefits (Hitt & Brynjolfsson, 1996).

Researchers have augmented the traditional cost/benefit approach by adding a strategic perspective to IT investment decisions (e.g., Clemons & Weber, 1990; Post et al., 1995). However, while strategic cri-
Information Resources Management Journal, 17(1), 1-18, Jan-Mar 2004

Criteria are increasingly being recognized in IT decisions (Bacon, 1992), some have suggested the dimension that is inadequately considered concerns the organizational issues associated with employees in the IT implementation and adoption process (Slater, 1995; Ryan & Harrison 2000). Consistent with the terminology and principles of socio-technical systems (STS) theory (Trist, 1982), we define these issues originating from employees’ assessments, capabilities, decisions, and task interdependencies as social subsystem issues (Emery, 1962). Social subsystem benefits and costs do accrue when an IT is acquired (Markus & Benjamin, 1996). However, without awareness or formal consideration of social subsystem issues, organizations have no way of understanding their impact on the success and potential payoff of the chosen IT.

Some prior research focusing on IT valuation has examined social subsystem issues. For example, Hochstrasser (1990) and Keen (1991) addressed techniques to evaluate “soft” organizational costs, some of which were in the social subsystem domain. Belcher and Watson (1993) included certain social subsystem benefits when assessing the returns of an Executive Information System (EIS). Holden and Wilhelmi (1995) used a knowledge value-added technique to evaluate people, culture and knowledge. Ryan and Harrison (2000) investigated the types of social subsystem costs and benefits decision makers incorporate into their decision process.

Our investigation continues this stream of research, taking a descriptive approach to understanding the incorporation of these issues. It was motivated by two primary research questions:

(RQ1): What weight does the decision maker place on social subsystem issues as compared with technological or financial factors?

(RQ2): To what extent are social subsystem issues considered in an explicit manner, an implicit manner, or not at all?

In examining these questions, we first present the theoretical foundation for our work and detail our research hypotheses. We then describe the methodology used to conduct our study. Finally, we present our research findings and discuss their implications. We believe our findings extend prior research by: (a) providing an empirical assessment of how social subsystem issues compare with other IT decision criteria given differing decision types, (b) identifying which social subsystem issues are considered most important by decision makers, and (c) distinguishing the manner by which these social subsystem issues are considered.

THEORETICAL BACKGROUND AND RESEARCH HYPOTHESES

Sociotechnical systems (STS) theory provides a strong theoretical basis for investigating issues in the technological and human resource domains. The social subsystem consists of employees and the skills, knowledge, abilities, interrelationships, ideas, attitudes, and needs they bring to work. The technological system incorporates the tools, devices, and techniques used within the social subsystem to accomplish organizational tasks (Pasmore, 1995). Relying on the key concept of joint optimization, which states that an organization will perform optimally only if the interdependency between social and technological subsystems is explicitly recognized, the STS approach views the social subsystem and the technological subsystem as interrelated.
Related Content

Computer Physician Order Entry (CPOE): Benefits and Concerns - A Status Report
Alberto Coustasse, Joseph Shaffer, David Conley, Julia Coliflower, Stacie Deslich and Andrew Sikula (2013). *Journal of Information Technology Research* (pp. 16-31).
[www.igi-global.com/article/computer-physician-order-entry-cpoe/97626?camid=4v1a](www.igi-global.com/article/computer-physician-order-entry-cpoe/97626?camid=4v1a)

Exploratory Study on Effective Control Structure in Global Business Process Sourcing
[www.igi-global.com/article/exploratory-study-effective-control-structure/1347?camid=4v1a](www.igi-global.com/article/exploratory-study-effective-control-structure/1347?camid=4v1a)
Current Developments and Diffusions in ICT: ERP, SCM, CRM
www.igi-global.com/chapter/current-developments-diffusions-ict/22549?camid=4v1a

Beyond Knowledge Management: Introducing Learning Management Systems
www.igi-global.com/article/beyond-knowledge-management/3139?camid=4v1a