Knowledge Transfer Model within Strategic Alliance in Telecommunication Industries

Yang Zhao, School of Economics and Management, Beijing Jiaotong University, Beijing, China

Jie Tan, School of Economics and Management, Beijing Jiaotong University, Beijing, China

ABSTRACT

This paper focuses on the development of knowledge transfer system between strategic alliances within telecommunication industry and attempts to classify the models of knowledge transfer within strategic alliances aiming to provide a clear focus on making the optimal choice of the most suitable knowledge transfer model in SA by its partners. In this paper, a platform and function structure is put forward and four kinds of alliances are illustrated while types of resources are defined, based on which a correspondence between the types of the strategic alliances and choosing these knowledge transfer models and 5 corresponding propositions about the issue is given at last.

Keywords: Function Structures, Knowledge Transfer Model, Knowledge Transfer System, Strategic Alliances, Telecommunication Industry

INTRODUCTION

As Francis Bacon said, “Knowledge is power”. The power of knowledge is an essential resource for preserving valuable heritage, learning new things, solving problems, creating core competences, and initiating new situations for both individual and organizations now and in the future. How to manage this knowledge has become an important issue in the past few decades, and the knowledge management (KM) community has developed a wide range of technologies and applications for both academic research and practical applications. In modern business world, ‘Knowledge has emerged as the most strategically- significant resource of the firm(Grant, 1996) This assertion characterizes well the recent research impetus centred on the role of knowledge-based resources in the firm and on competitiveness. In KM, knowledge transfer (KT) plays an important role for it describes the process of generating new knowledge, cultivates talents and creates a firm’s core competences.

DOI: 10.4018/ijitn.2015010101
Accordingly, of all approaches to KT between a knowledge holder and a knowledge seeker, strategic alliances (SAs) constitute perhaps the most adequate, but nevertheless challenging vehicle for internalizing the other’s competency. Not surprisingly, the growing interest in how organizations learn from their partners and develop new competencies through SAs has led to the emergence of a distinct stream of research. With the era of information coming, the emergence of MIS manifests the incomparable efficiency and accuracy, so the research of KM is always associated with MIS. As a part of KM research, this paper focuses on KT within SA, especially in telecommunication industry, attempting to build a KT Management Information System within Strategic Alliance (SA-KT-MIS) based on the Internet which helps SA partners to make alliances on the purpose of KT and provide a clear focus on how partners chose the most suitable KT model in SA.

FEATURES OF TELECOMMUNICATION INDUSTRY AND FIRMS WITHIN STRATEGIC ALLIANCE

Features of Telecommunication Industry

Telecom industry, also known as telecommunication industry or communication service, is one of the three mainstay industries in IT field. It is divided into communication services and communication device manufacture. For a long time, scholars regarded telecom industry as a branch of IT industry, and now with the fast pace of development in telecom industry, it has separated from IT and flies on its own colours. As a combination of high-intelligence and device manufacturing, the main features of telecom industry are listed as following:

- **Intelligence intensive, knowledge intensive and technology intensive**: In telecom industry’s R&Ds, high-level personnel is not only demanding, it also requires a joint collaboration and a fully communicated mechanism. This phenomenon determines the majority of staffs in telecom industry possess a high level of education, and here lies the firm’s core value;

- **Highly creative and highly innovative**: Growth and advancement in telecom industry is based on large amount of inventions and creations. In modern society, the ability of renewing technology and developing scientific research achievements are significant factors on judging a telecom firm;

- **High output and high profit**: Industry of telecom is a collection of capital, technology and knowledge. As the growth of capital, technology and knowledge, the scope of telecom business extends larger and as a result, brings not only larger output, but also acceleration of economies of scale. Hence, level of resources utilization turns better, labour productivity raises, and cost of production descends in the meanwhile. It has a rather low margin cost so to speak;

- **High risk**: What lies behind a communication enterprise’s high profitability is high risk. To start with, this communication field requires a large amount of input at the starting line. Considering the uncertainty of R&D. millions of invest can be easily evaporated. Secondly, so far, this market area remains a small number of category, and the price is still way too high before it goes in great quantity, and the specialization of market can be affected by the interference factor of market demand.

Types of Firm's Resources

Since firm resources are of various types, it is no surprise that scholars have proposed a number of resource typologies. These descriptive typologies, however, lack adequate theoretical underpinnings. Miller and Shamsie suggest that based on the notion of barriers to imitability, all resources may be classified into two broad categories: property-based resources (PBRs) and knowledge-based resources (KBRs) (Miller and Shamsie, 1996).
A SEEP Protocol Design Using 3BC, ECC(F2m) and HECC Algorithm
www.igi-global.com/chapter/seep-protocol-design-using-3bc/6050?camid=4v1a

Time Synchronization in Wireless Sensor Networks
www.igi-global.com/chapter/time-synchronization-wireless-sensor-networks/54628?camid=4v1a

Modeling Intrusion Detection with Self Similar Traffic in Enterprise Networks
Cajetan M. Akujuobi and Nana K. Ampah (2009). Handbook of Research on Telecommunications Planning and Management for Business (pp. 760-774).
www.igi-global.com/chapter/modeling-intrusion-detection-self-similar/21701?camid=4v1a