Introduction

Currently, there is no integration among CASE tools (computer aided software engineering, also named AMD tools, analysis modeling and design), costing tools, and project management (PM) tools. Not only are there no integrated tools, but there is also no conceptual integration among software engineering (SE) aspects and accounting-costing aspects of software projects within PM tools. PM tools, as well as costing tools are used not only for tracking and controlling an ongoing software project, but also at the very beginning stages of the project, in which critical estimations concerning budget and time frame are made. In order to have a firm, robust, and accurate planning, project planning should be based directly upon raw SE components-objects, that is, upon analysis and design components-objects.

According to the Standish Group CHAOS Report 2003, each year in the USA there are approximately 175,000 projects in IT Application Development which spends $250 billion. Among these, 31.1% of projects will be cancelled, 52.7% of projects will cost 189% of their original estimates, only 52% of required features and functions make it to the released product, and Time overruns 82%. In financial terms $55 Billion dollars is wasted in these projects (Madpat, 2005).

Budget overrun indicates cost management problems, although this area is defined by the project management integration (PMI), as one of the nine core activities of projects management. Costing difficulties result from both implementation limitations of costing solutions in complex and changing requirements as well as the technological environment. Risk management is also defined by the PMI as one of the nine core areas of project management; but there is also no integration between PM tools and SE tools in light of the need for risk management.

According to Maciaszek and Liong (2005), success of a software project depends on five software engineering areas that are related to each other: the development of the life cycle of the software, processes management, the model’s configuration and language, and SE tools and project planning. The combining between formal tools of SE and PM processes in the different stages has been proved by research as holding a positive contribution to the efficacy of the project and as an improver of the adherence to costs, technical requirements, and the schedules that were allocated to the project (Barker & Verma, 2003).

This study proposes and prototypes a model that integrates these three aspects of software projects by automatically mapping SE objects and accounting–costing objects into PM objects. To validate the feasibility of the model and without loss of generality, it is demonstrated using former research platform focused on conversion of data flow diagrams (DFD), which are actually full enterprise set of use cases diagrams reflecting entire system-software project into Gantt charts.

Background

CASE and PM Tools

CASE/AMD tools support the analysis, design, construction, and implementation stages of the information...
Integrating Software Engineering and Costing Aspects

In contrast, the following two commercial CASE software packages demonstrate the heterogeneity of tools in the area of software engineering. Oracle’s Designer supports functional hierarchy analysis based on Barker and Longman (1992) methodology, and IBM-Rational offers XDE-Rose, a modeling tool based on the unified modeling language (UML) only. PM tools thus seem more standardized and mature than CASE tools. This could be the reason why 71% of 397 software engineers surveyed in 20 European countries employ PM tools while only about 26% utilize CASE tools, despite similar levels of training (Domges & Pohl, 1998).

Although CASE tools, including those mentioned above, support teamwork, none contain elements that take into consideration teamwork planning, time planning, dependencies, resources allocation, cost estimation, or risk management. Moreover, none include Gantt or Pert models or offer built-in interfaces to PM tools. Methodologies and models for managing software projects have yet to make it from the idea to the product phase, despite persistent improvements in automated tools for requirement definition, systems modeling, and software engineering. The failure to transform project management theory to practice in the context of software development is especially troubling since more than 50% of such projects do not succeed (Madpat, 2005; Reel, 1999). In addition to the lack of integration between SE tools and PM tools managers in charge of software projects usually refrain from basing managerial judgement on data about requirements and functional characteristics of the specific development project (Reel, 1999).

With decades of systems development behind us, there is quite a consensus today with respect to the critical success factors (CSF) of system development projects and agile methodologies, there is still a need to introduce effective concepts, methods, measures, and tools for better control of software projects. All these observations lead one to conclude that assembling a repository of system requirements and system components, complete as it might be, does not guarantee effective planning of teamwork, scheduling of tasks, and controlling deviations between planned milestones and actual progress.

Against this background, the questions to consider are:
Related Content

Examining Mobile SNS Continuance from a Dual Perspective of Social Capital and Privacy Concern

Information Systems Strategy Formation Embedded into a Continuous Organizational Learning Process
www.igi-global.com/article/information-systems-strategy-formation-embedded/51035?camid=4v1a

The Selection of the IT Platform: Enterprise System Implementation in the NZ Health Board
Maha Shakir and Dennis Viehland (2005). *Journal of Cases on Information Technology* (pp. 22-33).
www.igi-global.com/article/selection-platform-enterprise-system-implementation/3137?camid=4v1a

Developing a Basis for Global Reciprocity: Negotiating Between the Many Standards for Project Management
www.igi-global.com/chapter/developing-basis-global-reciprocity/28675?camid=4v1a