INTRODUCTION

Criminal Justice has been one of the public sectors in the forefront of the move toward automation and digital government. The effect of computerization on American criminal justice has been profound and it has transformed the criminal justice process in many fundamental ways. Starting with the Challenge of Crime in a Free Society: A Report by the President’s Commission on Law Enforcement and the Administration of Justice, public and private experts in criminal justice and technology laid out the information needs of the criminal justice system and the computer systems to meet those demands. At a time when computerization was minimal throughout the criminal justice system, these task force members developed the blueprint for today’s multilayered automated criminal justice environment (Dallek, 1998, pp. 405-407, 409-411; Challenge of crime in a free society, 1967, pp. 268-271).

Among the major recommendations of the commission were the creation of a national directory of offenders’ criminal records, what came to be known as Computerized Criminal History (CCH) and the development of similar directories at the state level. The commission also called for federal coordination of standards for criminal justice information and sharing. Finally, the report urged that a study of fingerprint classification techniques be undertaken with a view to automating much of the fingerprint search and identification effort and that work be intensified to create a national linkage of files on wanted persons and stolen vehicles under the name of the National Crime Information Center (NCIC) (Challenge of crime in a free society, 1967, pp. 255, 268-271; Task force report: Science and technology, 1967, p. 69).

BACKGROUND

One of the earliest responses to this report was the creation of the Law Enforcement Assistance Administration (LEAA) within the United States Department of Justice (DOJ). In 1969, LEAA funded Project SEARCH to create a nationwide computerized criminal history system. From this initial effort, SEARCH quickly evolved into an independent consortium of states with the mission of demonstrating a computerized system for the electronic exchange of criminal history information. On the national level, the United States Attorney General assigned management responsibility for the interstate and national portion of this system to the Federal Bureau of Investigation. The states also formed the National Law Enforcement Telecommunications System (NLETs) electronically linking the states as well as the FBI and the Royal Canadian Mounted Police. By 1976, 26 states had used LEAA funding to create state level central repositories for computerized criminal history information (U.S. Department of Justice, 2001c, p. 26).

It became apparent during the last half of the 1970s, however, that greater decentralization of the nation’s criminal history systems was urgently needed. To respond to these issues and concerns, the various states, FBI and SEARCH created the Interstate Identification Index or Triple I (III) concept in 1980 (U.S. Department of Justice, 2001c, pp. 26-27, 76-82, 88). Designed to replace a centralized national criminal history file, III was an index of criminal offenders that pointed to the state or states where detailed criminal history information could be found. There was widespread acceptance of III for criminal justice purposes: By 2001, 43 states participated. Legal restrictions and concerns, however, limited use of III for non-criminal justice use and weakened any effort to achieve a truly decentralized criminal history system. Consequently, the FBI continued to maintain criminal histories on individuals to meet interstate non-criminal justice needs (U.S. Department of Justice, 2001c, pp. 76-82).

Another factor that prevented the decentralization of criminal history information was the vast effort required in the time-consuming fingerprint identification process. A new system called the NCIC classification was implemented in the 1970s. It did little, however, to speed up the overall identification process (Challenge of crime in a free society, 1967, p. 255; Task force report, 1967, p. 16; Ms. Shirley Andrews, personal communication, September 9, 2002).

During the mid 1980s, new technological solutions for fingerprint identification emerged on the market. These systems, called automated fingerprint identification systems (AFIS), significantly reduced the manual tasks needed to search a fingerprint and made true searching of latent crime scene fingerprints possible. By the close of the 1980s, many states and a few local agencies had purchased these systems. Most were stand alone systems dedicated to the fingerprint input, search, and presentation of potential candidates for human comparison. A few states, however, attempted to expand the capabilities of these systems and link them to
Related Content

Wireless Technologies to Enable Electronic Business
[www.igi-global.com/chapter/wireless-technologies-enable-electronic-business/14751?camid=4v1a](www.igi-global.com/chapter/wireless-technologies-enable-electronic-business/14751?camid=4v1a)

Methodology of Creating Ontology of Information Science (OIS)
Ahlam F. Sawsaa and Joan Lu (2017). *Ontologies and Big Data Considerations for Effective Intelligence* (pp. 510-517).
[www.igi-global.com/chapter/methodology-of-creating-ontology-of-information-science-ois/177401?camid=4v1a](www.igi-global.com/chapter/methodology-of-creating-ontology-of-information-science-ois/177401?camid=4v1a)

Methodology and Software Components for E-Business Development and Implementation: Case of Introducing E-Invoice in Public Sector and SMEs
Neven Vrcek and Ivan Magdalenic (2011). *Journal of Cases on Information Technology* (pp. 39-61).
[www.igi-global.com/article/methodology-software-components-business-development/56308?camid=4v1a](www.igi-global.com/article/methodology-software-components-business-development/56308?camid=4v1a)

Domain Knowledge Embedding Regularization Neural Networks for Workload Prediction and Analysis in Cloud Computing