The Dynamics of Food Insecurity in Ethiopia

Melak Mesfin Ayenew, Millennium Institute, Addis Ababa, Ethiopia & Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

ABSTRACT

This paper assesses the dynamics of food insecurity in Ethiopia and tests policy options and scenarios that could alleviate the problem in the future. The study assesses food security based on the pillars: food availability, access to food, and stability. A System Dynamics model is designed which integrates population, market, and food production sectors and is used to analyze past and future developments. Model results show that both food supplies and the purchasing power of the population were insufficient for ensuring the required daily calorie intake of the population. Land degradation contributed considerably to the poor average productivity of the land. Policy analyses show that policy options such as land rehabilitation and capacity building for skilled use of agricultural land, and inputs need to be combined carefully to account for their different implementation times. Scenarios on average rainfall and food expenditure show that the food production and the purchasing power of the population are considerably influenced by erratic rainfall and economic growth respectively.

Keywords: Access to Food, Food Availability, Food Insecurity, Land Degradation, Land Productivity, Model, Policy, Prevalence of Undernourishment, System Dynamics

INTRODUCTION

Food insecurity remains a challenge in a world with a growing and more demanding population. The Millennium Development Goal on poverty and hunger aimed at reducing the number of undernourished people by 50% by 2015, i.e., reducing the number of undernourished to no more than 420 million people in 2015. However, data shows that the number of undernourished people is 805 million worldwide in 2014 (Food and Agriculture Organization-Food Security Indicators [FAO-FSI], 2014).

In Ethiopia, food insecurity has been a serious problem for decades. Since the 1970s, a series of production failures have caused chronic food insecurity (Berhane, Diressie, Hadino, Hoddinott, Kumar, Lind, Seyoum, Sabates-Wheeler, Tefera, and Yohannes, 2013; Haberli, 2013; Amede, Kaluski and Ophir, 2001). Data from disaster risk management and food security sector (DRMFSS) show that, in the last decades, several million people required immediate food assistance. As a result, Ethiopia has been the largest recipient of food aid in Sub-Saharan Africa. The prevalence of undernourishment shows that a large proportion of the population has been undernourished over the past one and a half decades. Although the proportion of the population undernourished improved from 69 percent in 1994/95 to 35 percent in 2013/14 (FAO-FSI, 2014), it still remains at an undesirable level.

DOI: 10.4018/IJSDA.2015100102
The definition of food security is adopted from the World Food Summit which states that food security exists when all people, at all times, have physical and economic access to sufficient, safe, and nutritious food to meet their dietary needs and food preferences for an active and healthy life. The analysis addresses three of the four pillars of food security (FAO, 2003, 2006; Messerle, 2011) which are; food availability, access to food, and stability.

Agriculture is the main economic activity in Ethiopian where more than 80% of the population is employed. Nevertheless, agricultural productivity and production is limited. Researchers attributed the causes of limited productivity and production to; insufficient and erratic rainfall, land degradation, low input application, rapid population growth and market imperfection (Chadhokar, 2003; Jolejole-Forman, Baylis, Lipper, 2012; Zelleke, Abera, Agegnehu and Rashed, 2010). However, very little is done to integrate the causes of the problem into unified conceptual framework. In this paper, a System Dynamics model is designed, calibrated and tested which integrates population, food production, and the market sectors so as to investigate and examine the processes underlying food insecurity and the impact of different policies and scenarios in alleviating the problem. This paper is a refined version of the previous work presented in the system dynamic conference. It also includes additional scenario analyses on rainfall and expenditure which makes it unique (Ayenew and Kopainsky, 2014).

Model simulations reveal that both availability of and access to food were important constraints to food security and are expected to remain so in the future. Policy options such as land rehabilitation and capacity building for use of agricultural inputs must be combined carefully coordinated to account for their different implementation times.

Figure 1. Prevalence of undernourishment

![Prevalence of undernourishment](source: FAO-FSI (2014))

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Related Content

Efficient Golden-Ball Algorithm Based Clustering to solve the Multi-Depot VRP With Time Windows

Towards Next Generation Web: Knowledge Web
[www.igi-global.com/chapter/towards-next-generation-web/46282?camid=4v1a](www.igi-global.com/chapter/towards-next-generation-web/46282?camid=4v1a)
New Optimal Solutions for Real-Time Reconfigurable Periodic Asynchronous Operating System Tasks with Minimizations of Response Time
[www.igi-global.com/article/new-optimal-solutions-real-time/73665?camid=4v1a](www.igi-global.com/article/new-optimal-solutions-real-time/73665?camid=4v1a)

Self-Evolvable Protocol Design Using Genetic Algorithms
[www.igi-global.com/article/self-evolvable-protocol-design-using/40903?camid=4v1a](www.igi-global.com/article/self-evolvable-protocol-design-using/40903?camid=4v1a)