Chapter 15

Detecting Individual-Level Deception in the Digital Age: The DETECT Model ©

Eugenie de Silva
University of Leicester, UK & Virginia Research Institute, USA

ABSTRACT

This chapter presents a discussion of a new model titled, “DETECT (Determining and Evaluating Truthfulness through Explicit Cue Testing) which relies upon the assessment of verbal and non-verbal cues. The author presents the argument that the digital age has posed novel challenges to law enforcement and intelligence personnel; hence, the author further explains the ways in which the DETECT model (©, Eugenie de Silva, 2014) can be used to determine deceptive activities at the individual-level even in a technologically advanced society. The chapter touches upon Denial and Deception (D&D), and how the detection of deception must be carried out in the twenty-first century, especially through rigorous monitoring within the established legal framework.

DOI: 10.4018/978-1-4666-9661-7.ch015
INTRODUCTION

It seems counterintuitive that deception could be detected, since the very act is executed to mislead others. Yet, this chapter expands upon the notion of utilizing verbal (e.g. spoken) and non-verbal (e.g. body movements) cues to detect deception to precisely explicate the extent to which deception can be detected in the twenty-first century.

Denial and Deception (D&D) is an all-inclusive term that commonly refers to activities that involve distorting information, manipulating facts to establish a false story, or even withholding data from an adversary. Whilst denial and deception can be utilized as two individual terms, they are undoubtedly interlinked and can be used to strengthen operations aimed at feeding false information to adversaries. In 2000, Roy Godson and James Wirtz explicitly reinstated this information by denoting that denial and deception are intertwined terms that work uniquely as a blend to essentially pull wool over the eyes of opponents or enemies (2000, 5). The denial of information results in a misinformed perception of an event, whereas deception can result in a completely distorted view of a scenario or the distortion to various degrees of specific aspects of cases. Accordingly, when used in combination, an individual can relay a completely false story to a targeted opponent to whom it would seem completely feasible and truthful. The use of realistic characteristics is what makes D&D such a dominating tool.

With regard to the disciplines of law enforcement and intelligence, deception must be identified at its earliest stages in order to avert any possible dangers aimed at damaging the national security of the U.S. This being the case, it is imperative to recognize that a successful deceptive story will commonly take advantage of the opponent’s weaknesses and/or known perceptions of the world. Through the recognition of these weaknesses, an opponent may specifically tailor a deception activity to ensure that the false story is believable to his/her adversary. As a result, if one seeks to identify deception, then one should not be oblivious to the actual facts that may have been hidden or altered, based on the given set of data. Further, as history has shown, it is necessary to take into consideration all activities as they relate to other on-going operations.

Indubitably, officials who have daily interactions with individuals will encounter acts of trickery and guile. For an officer specialized in the recognition of deception, there is assuredly a higher probability of having the ability to detect duplicity at a faster rate than in cases of untrained individuals. Thus, there is a necessity to establish a model that would aid in the prediction and/or identification of deception solely by observing, and then analyzing an individual’s actions or inactions, in addition to their spoken words. For the purpose of distinguishing the truth from lies without requiring an in-depth background in the field, any proposed model must not necessitate any outside or previous knowledge. Thus, the DETECT model in this chapter simply requires that individuals study the requirements of the model itself, which lessens the responsibility of having to learn an entirely new subject in order to know how to detect deception.

One scenario that explicates the necessity of a more personal approach to solving problems is the 2001 U.S. terrorist attacks. During this period, intelligence analysts in the U.S. had devoted much time to conduct research and finalize reports to determine when and where an imminent attack would take place. For those working in the Central Intelligence Agency (CIA), the identification of several suspects had already been successful. The list of these individuals had been sent to the Federal Bureau of Intelligence (FBI), yet it had not been transferred to local state troopers, and the information that had been sent were not the complete lists (de Silva, 2003, 113). As a result, although the suspected terrorist was stopped for traffic violations, he was not detained due to the troopers’ lack of knowledge on the topic (de Silva, 2003, 113). This should be deemed a noteworthy instance of a failure to share information among