"Anytime, Anywhere" in the Context of Mobile Work

Mikael Wiberg
Umea University, Sweden

INTRODUCTION

Kleinrock (1996, 1998) claims that advanced wireless technologies, the Internet, Global Positioning Systems, portable and distributed computing, and so forth will realize the vision of “anytime, anywhere” computing. We can today see the first signs of this vision. For example, telework is now possible, remote organizations can be engaged in close cooperation, and people can form communities on the Internet. The world has become a “global village,” some claim (Castells, 1996; Preece, 1994), where you can interact with anybody independent of time and space.

The vision of anytime and anywhere describes a situation where people can do tasks wherever they want and without any consideration for time. Related to the vision is the 2x2 matrix often used in the field of CSCW (computer-supported cooperative work) to denote different kinds of computer-supported collaboration (e.g., Baecker et al., 1993; Johansen, 1988). This model has the dimensions of time and place, where each can be same or different. The model is shown in Figure 1 below.

The vision of anytime and anywhere is tasks that can be done independent of time and place, that is, in any of the four scenarios. This does not say anything about where or when the tasks should be done, only that these dimensions should not restrict them.

It is interesting to notice that the model does not take into consideration mobility. It assumes that people are either in the same place or in a different place, and whether or not they are mobile does not seem to make a difference.

BACKGROUND

In the past, people traveled because they had no choice. If you wanted to do business or talk to remote friends, you had to meet them face to face. However, transportation costs prohibited certain meetings and activities. A long series of technological developments (including the pony express, railroads, automobiles, and the telephone) have aimed at lowering the costs associated with transaction and conversation. Computer-mediated communications are the most recent development in that progression. Even so, people still travel and still meet in person.

To summarize, the adoption of Internet technologies, mobile phones, and so forth have increased and, in a sense, made the world smaller. Compared to 10 years ago, it is today much easier to communicate with remote sites, and the frequency of communication in many organizations has increased accordingly. Some people have even talked about the global village (Preece, 1994). A parallel trend is that people travel more than they used to do. According to predictions, this trend will sustain and even increase. For example, the national road agency of Sweden reports the number of flights will increase by a factor of four in the next 10 years. How can it be that the global village is so mobile? If people can interact and work independent of time and space, why then do they spend more and more time traveling? Is that not a paradox?

Reviewing the literature on the topic, we find no research that has explored this apparent paradox. Authors are either concerned with remote interaction (e.g., Brave, Ishii, & Dahley, 1998; Ellis et al., 1991; Kuzuoka, 1992; McDaniel, 1996; Tang & Minneman, 1991), mobility (e.g., Bejerano & Cidon, 1998; Luff & Heath, 1998; Porta, Sabnani, & Gitlin, 1996), or mobility as anytime, anywhere work (e.g., Dix, Rodden, Davies, Trevor, Friday, & Palfreyman, 2000; Perry, O’hara, Sellen, Brown, & Harper, 2001). Furthermore, research on mobility has mainly dealt with technology issues, for example, limited battery life, unreliable network connections, varying channel coding and characteristics, volatile access points, risk of data loss,

Figure 1. Model showing different scenarios for groupware (Ellis et al., 1991)
Related Content

A Conceptual Framework to Improve Project Team Learning in Major Projects
[www.igi-global.com/article/a-conceptual-framework-to-improve-project-team-learning-in-major-projects/123966?camid=4v1a](www.igi-global.com/article/a-conceptual-framework-to-improve-project-team-learning-in-major-projects/123966?camid=4v1a)

Organizing Multimedia Objects by Using Class Algebra
[www.igi-global.com/chapter/organizing-multimedia-objects-using-class/14592?camid=4v1a](www.igi-global.com/chapter/organizing-multimedia-objects-using-class/14592?camid=4v1a)

Excellence in Virtual Education: The Tutor Online Approach
Ángeles Bosom, Elisa Fernández, María José Hernández, Francisco José García and Antonio Seoane (2007). *Journal of Cases on Information Technology* (pp. 61-74).
[www.igi-global.com/article/excellence-virtual-education/3202?camid=4v1a](www.igi-global.com/article/excellence-virtual-education/3202?camid=4v1a)

Open Source Software Development Model
[www.igi-global.com/chapter/open-source-software-development-model/14588?camid=4v1a](www.igi-global.com/chapter/open-source-software-development-model/14588?camid=4v1a)