Expanding Data Mining Power with System Dynamics

Edilberto Casado
Gerens Escuela de Gestión y Economía, Peru

INTRODUCTION

Data Mining

Business intelligence (BI) is a key topic in business today, since it is focused on strategic decision making and on the search of value from business activities through empowering a “forward-thinking” view of the world. From this perspective, one of the most valuable concepts within BI is the “knowledge discovery in databases” or “data mining,” defined as “the process of discovering meaningful new correlations, patterns, and trends by sifting through large amounts of data stored in repositories, using pattern recognition technologies as well as statistical and mathematical techniques” (SPSS, 1997).

The usage of data mining as we currently know dates back to 1995 (Pyle, 2003). Since then, many applications were developed, and now it is a critical discipline to gain business insight. Table 1 shows a list of current data mining applications.

System Dynamics

System dynamics was created by Jay W. Forrester, Germeshausen Professor Emeritus of Massachusetts Institute of Technology (MIT), in 1956. It is defined by the System Dynamics Society (www.systemdynamics.org) as “a methodology for studying and managing complex feedback systems, such as one finds in business and other social systems.”

System dynamics evolved from prior work in feedback control systems, and progressively its application was extended to fields other than engineering. Though its primary application is focused in the understanding of complex systems, it is also used as a predictive tool (Sterman 2000; An, Uhm, Kim & Kwak, 2002; Forrest, 1998). Table 2 shows a list of some fields where system dynamics has found applications.

LIMITATIONS OF DATA MINING FOR PREDICTIVE APPLICATIONS

Regarding data mining techniques and algorithms, Table 3 summarizes the most commonly accepted classification (Berson & Smith, 1997; Thearling, 2003; The Pilot Software’s Data Intelligence Group, 1995).

As predictive tools, the data mining techniques listed in Table 3 have the following shortcomings:

1) The statistical foundation of data mining: Most of the current BI methods and tools, such as rule induction, decision trees, neural networks, and so forth, are extensively used to develop predictive models; and their conceptual foundation are a combination of mathematical, statistical, and artificial intelligence techniques. It is here where we find a source of limitation for a wider set of real-world applications, since statistics works with historical data and there is no full guarantee about predictions based on such data. A change in the characteristics
Expanding Data Mining Power with System Dynamics

Table 3. Main categories of data mining techniques and algorithms

Decision Trees	Building of tree-shaped structures that represent sets of decisions.
Rule Induction	Extraction of useful if-then rules from data, based on statistical significance.
Nearest Neighbor	Classification of each record in a dataset based on a combination of the classes of the k record(s) most similar to it in a historical dataset (where \(k > 1 \)).
Neural Networks	Statistical analysis tools that, through a “learning” process, build a model of the dependencies between the descriptive variables and the behavior to be explained.
Genetic Algorithms	Building of models using processes such as genetic combination, mutation, and natural selection in a design based on the concepts of evolution.

of a market from a developing to a mature phase, for example, is enough to invalidate the use of statistical methods to forecast customer behavior (An et al., 2002).

2) **Explanation of results:** Another limitation of some data mining methods like neural networks, genetic algorithms, and so forth is their inability to provide an adequate explanation of their results, because they are not easily mapped into human terms (Moxon, 1996), or they are seen as black boxes and no explanation of the results is given, which inhibits confidence, acceptance, and application of results (Parallel Computer Centre at The Queen’s University of Belfast, 1997).

3) **The thinking paradigm under the application of data mining methods:** As consequence of their statistical foundation, data mining methods provide information about trends and patterns in the context of a “straight-line thinking” paradigm (i.e., an outcome is expressed as a function of one or more independent variables). However, real world is a feedback system made of interacting elements in a closed-loop context, where an action leads to a result that affects current conditions, and the changed conditions become the basis for future action (Forrester, 1991). A growth strategy executed only relying in trends provided by data mining methods, for example, can lead to failures in achieving the desired goals, because the feedback effects in the business system were ignored (Avila, Mass & Turchan, 1995).

TOOLS OF SYSTEM DYNAMICS: BASIC CONCEPTS

There are two fundamental tools in system dynamics to represent the structure and behavior of a system: causal loop diagrams and stock-and-flow diagrams.

Causal Loop Diagrams

A causal loop diagram is a tool to represent the feedback structure of a system. It is a closed representation of the links between causes and effects involved in it, and also contains an identification of their most important feedback loops (Kirkwood, 1998; Sterman, 2000). Figure 1 shows an example of a causal loop diagram.

Stock-and-Flow Diagrams

A stock-and-flow diagram is another way to represent the feedback structure of a system. But, unlike a causal loop diagram, it can include more precise and detailed information about the nature of the system it represents. Figure 2 shows the following basic elements in a stock-and-flow diagram (Kirkwood, 1998; Sterman, 2000). While causal loop diagrams are more oriented to a qualitative description of a system, stock-and-flow diagrams allow relating mathematical functions to their elements and, therefore, they represent a quantitative description.