Optimal Number of Mobile Service Providers in India: Trade-Off between Efficiency and Competition

Rohit Prasad, Management Development Institute, India
Varadharajan Sridhar, Management Development Institute, India

ABSTRACT

With 225 million subscribers, India has the world’s third largest mobile subscriber base in the world. The Indian mobile industry is also one of the most competitive in the world with 4-7 operators in each service area. A large number of operators bring competition and its associated benefits such as decrease in price and hence corresponding growth of the market. On the other hand, in the presence of economies of scale, too many operators may result in inefficient scales and high unit costs. This article analyses the trade-off between competition and economies of scale by estimating the production function for mobile subscribers and traffic carried. Analysis of panel data reveals the existence of economies of scale in the Indian mobile sector. We then derive an upper bound on the optimal number of operators in each license area and discuss policy implications.

Keywords: competition; economies of scale; mobile services; production function; telecom policy; telecom regulation

INTRODUCTION

Quick deployment, competition, advancement in technologies, and reduced cost of access have propelled the growth of mobile services in India much like in other emerging countries. The Indian mobile subscriber base continues to grow and has reached about 225 million in December 2007 from about 142 million a year ago. Figure 1 illustrates the exponential growth of mobile services in India. India currently has the world’s third largest mobile subscriber base, and is slated to exceed that of the U.S. by the end of this year to become the second largest in the world, next only to China.
The compounded annual growth rate of the mobile subscriber base has been 84.2% over the last 5 years. Revenue from cellular mobile services touched $12.5 billion for the fiscal year ending March 2007 (Voice & Data, 2007).

The Indian mobile industry is also one of the most competitive in the world. There are as many as 7 mobile operators in certain areas of the country. Figure 2 illustrates the amount of competition and market power as indicated by the Herfindahl Hirschman Index (HHI). (Viz. the lower the HHI, the higher the competition). As indicated, the overall HHI is about 0.2180 (as on December 2007) indicating very low market concentration.

A large number of operators bring competition and its associated benefits such as reduced prices, variety of products and services, and quality. On the other hand, in the presence of economies of scale, too many operators may result in inefficient scales and high unit costs (Nuechterlein & Weiser, 2005).

It is the objective of this article to analyze whether economies of scales are present in the Indian mobile industry using a classical production function approach. In the following section, we present an overview of the mobile industry in India including the method of allocating licenses. Next, we discuss the conceptual framework of economies of scale as applicable to the telecom industry. Thereafter, we discuss our model and illustrate the variables and data that we have used in the study. In the subsequent section, we discuss results of our analysis and finally conclude with limitations of our study and future research directions.

MOBILE SERVICES IN INDIA
As in China and the U.S., mobile operators in India are licensed to operate in designated geographical operating areas, referred to as “Licensing Service Areas (LSAs).” In India, there are 23 LSAs, which are categorized as metros, A, B and C. The categorization is based

Figure 1. Growth of mobile services in India
Related Content

A Review on Bio-Inspired Migration Optimization Techniques
www.igi-global.com/article/a-review-on-bio-inspired-migration-optimization-techniques/148728?camid=4v1a

Open Source Object Directory Services for Inter-Enterprise Tracking and Tracing Applications
www.igi-global.com/chapter/open-source-object-directory-services-for-inter-enterprise-tracking-and-tracing-applications/115138?camid=4v1a

An Analysis of Factors Affecting the Adoption Intention of eLearning in India
New Strategies and Extensions in Kruskal’s Algorithm in Multicast Routing
Mohamed Aissa, Adel Ben Mnaouer, Rion Murray and Abdelfettah Belghith (2011).
International Journal of Business Data Communications and Networking (pp. 32-51).
www.igi-global.com/article/new-strategies-extensions-kruskal-algorithm/61350?camid=4v1a