Chapter 3
Laser Metal Deposition Process

Rasheedat M. Mahamood
University of Johannesburg, South Africa & University of Ilorin, Nigeria

ABSTRACT
Laser metal deposition process belongs to the directed energy deposition class of additive manufacturing process that is capable of producing highly complex part directly from the three dimensional (3D) computer aided design file of the component by adding materials layer after layers. Laser metal deposition process is a very important additive manufacturing process and it is the only class of additive manufacturing process that can be used to repair valued component parts which were not repairable in the past. Also because this additive manufacturing process can handle multiple materials simultaneously, it is used to produce part with functionally graded material. Some of the features of the laser metal deposition process are described in this chapter. Some experimental studies on the laser metal deposition of Titanium alloy-composite are also presented.

1. INTRODUCTION
Laser Metal Deposition (LMD) is an additive manufacturing process that uses laser beam to create a melt pool on the surface of a metallic substrate and powder particle or wire is fed into the melt pool created. The powder or wire melts in the process to form a deposit that is metallurgically bonded to the substrate. The required shape is built up layer after layer according to the geometry of the two dimensional (2D) cross section of the part from the three dimensional computer aided design (CAD)
Laser Metal Deposition Process

model of the part (Scott et al., 2012). Laser metal deposition process is an important additive manufacturing process that was grouped into the class of Directed Energy Deposition by the F42 committee on additive manufacturing standards (Scott et al., 2012). Laser metal deposition process has a unique characteristics such as reduction in material wastage during the manufacturing process, repair of high valued parts which were in the past costly to replace or difficult to repair, and deposition of functionally graded material (Zang et al., 2008). Difficult to machine engineering materials such as titanium and its alloys are easily formed using the laser metal deposition process.

Titanium alloy Ti6Al4V is an important aerospace alloy and it is the most widely used titanium alloy that is referred to as the workhorse of the industry (Ramesh et al., 2008; Cui et al., 2012). Ti6Al4V possess some exciting properties such as high strength to weight ratio, good corrosion resistance, retaining of properties even at elevated temperature and bio-compatibility which makes them to be more favoured in most field of human endeavor (Ribeiro et al., 2003; Lütjering and Williams, 2003). Despite all these exciting properties, titanium and its alloys are difficult to machine because they chemically react with the cutting tool material thereby causing high temperature and galling of the cutting tool (Arrazola et al., 2009). In the aerospace industry, manufacturing of complex part is material wasting when produce through the traditional manufacturing process which results in the typical high buy-to-fly ratio of the aerospace parts (Brandl et al. 2011). All of these challenges can be overcome if the complex aerospace parts are manufactured through the laser metal deposition process. The development of the part using the laser metal deposition process is achieved by adding materials layer by layer directly from the CAD model of the part no matter the complexity resulting in improvement of the buy-to-fly ratio. Also producing part made of titanium and its alloy through laser metal deposition process will overcome the problem of tool reacting with the workpiece since the LMD process is a tool-less process. The features of the laser metal deposition process are described in this chapter and how the processing parameters influence the properties of the deposited part. Also some experimental studies on the laser metal deposition of titanium alloy composite are presented in this chapter. The laser metal deposition process is described in the following sub-section.

2. THE LASER METAL DEPOSITION PROCESS

Typical laser metal deposition process equipment consists of a laser system with optical laser beam for focusing, a powder feeding system (nozzles) and a control system. The Laser engineering net shaping (LENS) is an example of machine that is based on the laser metal deposition process. There are five (5) basic steps involved
Related Content

Design and Fabrication of a Strain Gauge Type 3-axis Milling Tool Dynamometer: Fabrication and Testing

[www.igi-global.com/article/design-and-fabrication-of-a-strain-gauge-type-3-axis-milling-tool-dynamometer/159819?camid=4v1a](www.igi-global.com/article/design-and-fabrication-of-a-strain-gauge-type-3-axis-milling-tool-dynamometer/159819?camid=4v1a)

Application of Teaching: Learning Based optimization to Surface Integrity Parameters in Milling

[www.igi-global.com/article/application-of-teaching/130695?camid=4v1a](www.igi-global.com/article/application-of-teaching/130695?camid=4v1a)
Investigation of the Effect of Cutting Conditions and Tool Edge Radius on Micromachining with the Use of the Finite Elements Method

[www.igi-global.com/chapter/3d-catalysts-of-mow-carbide-nitride-oxide-phosphide-and-boride/177535?camid=4v1a](www.igi-global.com/chapter/3d-catalysts-of-mow-carbide-nitride-oxide-phosphide-and-boride/177535?camid=4v1a)